11 research outputs found

    Development of Internal Magnetic Probe Array with Dual Sensors in Versatile Experiment Spherical Torus (VEST)

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2013. 8. ํ™ฉ์šฉ์„.์‹œ๋™ ๋‹จ๊ณ„์˜ VEST์—์„œ ์ž๊ธฐ์žฅ ๋„ (Null) ๊ตฌ์กฐ์™€ ํ”Œ๋ผ์ฆˆ๋งˆ ๋ณ‘ํ•ฉ ๊ณผ์ •์„ ์œ„์‹œํ•œ ์ž๊ธฐ์žฅ ๊ตฌ์กฐ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํƒ์นจ ์‹œ์Šคํ…œ์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ๋Š๋ฆฌ๊ฑฐ๋‚˜ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ•˜๋Š” ์ž๊ธฐ์žฅ์„ ๋ชจ๋‘ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ™€ ์„ผ์„œ์™€ ์นฉ ์ธ๋•ํ„ฐ์˜ ๋‘ ๊ฐ€์ง€ ์ธก์ •๊ธฐ๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ธก์ •๊ธฐ์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘๊ธฐ ๋•Œ๋ฌธ์—, ์ž๊ธฐ์žฅ ํƒ์นจ ์‹œ์Šคํ…œ์ด ํ”Œ๋ผ์ฆˆ๋งˆ ๋ณ€์ˆ˜๋ฅผ ์‹ฌ๊ฐํ•˜๊ฒŒ ๋ณ€ํ™”์‹œํ‚ค์ง€ ์•Š์œผ๋ฉด์„œ๋„ ํ”Œ๋ผ์ฆˆ๋งˆ๋กœ ์‚ฝ์ž…๋  ์ˆ˜ ์žˆ๋‹ค. ์„ธ๋ผ๋ฏน ์ฝ”์–ด ์นฉ ์ธ๋•ํ„ฐ์™€ ์ง‘์  ํ™€ ์„ผ์„œ๊ฐ€ ์ธก์ •๊ธฐ๋กœ์„œ ์„ ํƒ๋˜์—ˆ๋‹ค. ์„ ํƒ ๊ณผ์ •์—์„œ๋Š” ๋…ธ์ด์ฆˆ ์ด์ƒ์˜ ์ตœ์†Œ ์ธก์ • ๊ฐ€๋Šฅ ์ž๊ธฐ์žฅ๊ณผ ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ฅธ ์˜ํ–ฅ์ด ๊ณ ๋ ค๋˜์—ˆ๋‹ค. ๊ทธ ํ›„ ๋ชฉํ‘œํ•˜๋Š” ์ž๊ธฐ์žฅ ๊ตฌ์กฐ๋ฅผ ์กฐ์‚ฌํ•˜์—ฌ ๋‚ด์‚ฝ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ๋„ ๊ณตํ•™์  ํ•œ๊ณ„์— ๋ถ€ํ•ฉํ•˜๋Š” 25๊ฐœ์˜ ์ธก์ • ์ง€์ ์ด ํ™•์ •๋˜์—ˆ๋‹ค. ์ธก์ •๊ธฐ๋“ค์€ ๊ทธ ์œ„์น˜์˜ ํŠน์ˆ˜ ์„ค๊ณ„๋œ ๊ธฐํŒ ์œ„์— 3๋ฐฉํ–ฅ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋‚ฉ๋•œ๋˜์—ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ „์ž๊ธฐ ๊ฐ„์„ญ ํ˜„์ƒ์ด ๋ฐฉํ˜ธ๋˜์—ˆ๊ณ  ํŠนํžˆ ํŽธ์กฐ์„ ์„ ์ด์šฉํ•˜์—ฌ ์ „์ž ์ž๊ธฐ ๊ณต๋ช… ์ฃผํŒŒ์ˆ˜ ๋งˆ์ดํฌ๋กœํŒŒ ๋…ธ์ด์ฆˆ๋ฅผ 7 G๋กœ ์ค„์˜€๋‹ค. ํ”Œ๋ผ์ฆˆ๋งˆ ์—๋„ˆ์ง€๋กœ๋ถ€ํ„ฐ์˜ ์—ด ๋ถ€ํ•˜๊ฐ€ ๊ณ„์‚ฐ๋˜์–ด ์ฟผ์ธ  ๊ด€์˜ ์„ค๊ณ„์— ์ฐธ๊ณ ํ•˜์˜€๋‹ค. ์„ญ์”จ 0.2๋„์˜ ์˜จ๋„ ์ƒ์Šน์ด ์˜ˆ์ธก๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณ„๋„์˜ ๋ƒ‰๊ฐ ๊ณ„ํ†ต์€ ๊ตฌ์„ฑํ•˜์ง€ ์•Š์•˜๋‹ค. ์ธก์ •๊ธฐ๋“ค์€ ์„ค์น˜๊ฐ€ ์™„๋ฃŒ๋œ ํ›„ ํ—ฌ๋ฆ„ํ™€์ธ  ์ฝ”์ผ์„ ์ด์šฉํ•ด ์ ˆ๋Œ€์ ์œผ๋กœ ๋ณด์ •๋˜์—ˆ๋‹ค. 100 G์˜ ์ž๊ธฐ์žฅ์„ ๋‚ผ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•˜๊ธฐ ์œ„ํ•ด ์˜ค๋””์˜ค ์•ฐํ”„๊ฐ€ ์ด์šฉ๋˜์—ˆ๋‹ค. ํ™€ ์„ผ์„œ์˜ ๊ฐ๋„๋Š” 13 V/T์ด๋ฉฐ ์ฃผํŒŒ์ˆ˜ ๋ฐ˜์‘์€ 0.03๋ถ€ํ„ฐ 10 kHz์ด๋‹ค. ์นฉ ์ธ๋•ํ„ฐ ๊ฐ๋„๋Š” 7.52 V/T์ด๋ฉฐ ์ฃผํŒŒ์ˆ˜ ๋ฐ˜์‘์€ 0.1๋ถ€ํ„ฐ 50 kHz๊นŒ์ง€์ด๋‹ค. ๋‘ ๊ฐ์ง€๊ธฐ์˜ ์œ„์ƒ ํŽธ์ด๋Š” ํŽธ์กฐ์„ ์„ ์‚ฌ์šฉํ–ˆ์Œ์—๋„ ๋ฌด์‹œํ•  ๋งŒํ–ˆ๋Š”๋ฐ, ์ด๋Š” ํŽธ์กฐ์„ ์ด ๋งค์šฐ ์–‡์€ ๊ธˆ์†ํŒ์ฒ˜๋Ÿผ ์ทจ๊ธ‰๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณด์ •๋œ ์ž๊ธฐ ์ธก์ •๊ธฐ๋Š” VEST ์•„๋ž˜์ชฝ ์ฑ”๋ฒ„์— ์„ค์น˜๋˜์—ˆ๋‹ค. ์ธก์ •๊ธฐ๋“ค์˜ ์ •๋ ฌ ๋ฌธ์ œ๋Š” VEST์˜ ํ† ๋กœ์ด๋‹ฌ ์ž์žฅ์„ ์ด์šฉํ•ด ๋ฐ”๋กœ ๋ณด์ •๋˜์—ˆ๋‹ค. ๋ฐ˜์ง€๋ฆ„ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์ธก์ •๊ธฐ ์œ„์น˜ ์—ญ์‹œ ํ† ๋กœ์ด๋‹ฌ ์ž์žฅ์„ ์ด์šฉํ•ด ๋ณด์ •๋˜์—ˆ๋‹ค. ์ด ๋ณด์ • ๋ฐฉ๋ฒ•๋“ค์€ ํ† ๋กœ์ด๋‹ฌ ์ž์žฅ์ด ์ •ํ™•ํžˆ ์ธก์ •๋  ์ˆ˜ ์žˆ๊ธฐ์— ์ œ์•ˆ๋  ์ˆ˜ ์žˆ์—ˆ์Œ์„ ์ฃผ๋ชฉํ•  ๋งŒ ํ•˜๋‹ค. ์‹œํ—˜ ์ธก์ •์€ ์ง„๊ณต ์ž๊ธฐ์žฅ์„ ์ด์šฉํ•ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ฑ”๋ฒ„ ์ค‘์•™์—์„œ ์ธก์ •๋œ ์ง„๊ณต ์ž๊ธฐ์žฅ์€ ์˜ˆ์ƒ๋œ ๋ฐ”์™€ ์ž˜ ์ผ์น˜ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๊ฐ€์žฅ์ž๋ฆฌ์—์„œ๋Š” ๋งด๋Œ์ด ์ „๋ฅ˜๋ฅผ ์˜ˆ์ƒํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ณด์ด๋Š” ๋ถˆ์ผ์น˜๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๋˜ ๋‹ค๋ฅธ ์‹œํ—˜ ์ธก์ •์€ ์ˆ˜์น˜์ ์œผ๋กœ ํŽผ์ณ์ง„ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜์— ๋Œ€ํ•ด ์ˆ˜ํ–‰๋˜์–ด ํ”Œ๋ผ์ฆˆ๋งˆ ๋ณ‘ํ•ฉ์‹œ ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํƒ์นจ ์‹œ์Šคํ…œ์˜ ์‚ฌ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ฆ๋ช…ํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ํ˜„์žฌ์˜ ์„ค๊ณ„๋กœ๋Š” ์ˆ˜์ง ๋ฐฉํ–ฅ ์ž๊ธฐ์žฅ ๋ณ€ํ™”์˜ ํŠน์„ฑ ๊ธธ์ด๊ฐ€ 3 cm์ธ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ๋ถ„ํฌ์— ๋Œ€ํ•ด 2 % ์ดํ•˜์˜ ์˜ค์ฐจ๋กœ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. Flux function์˜ ์žฌ๊ตฌ์„ฑ ๋ฐฉ๋ฒ•์€ ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํƒ์นจ์„ ํ”Œ๋Ÿญ์Šค ๋ฃจํ”„๋‚˜ ํ”ฝ์—… ์ฝ”์ผ๊ณผ ํ˜ผ์šฉํ•˜์—ฌ ๊ฐœ์„ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ธก์ •๊ธฐ๊ฐ„์˜ ๊ฐ„๊ฒฉ์€ ์ข€๋” ๋‹ค์–‘ํ•œ ํ”Œ๋ผ์ฆˆ๋งˆ ๋ชจ์–‘์„ ์žฌ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ์—…๊ทธ๋ ˆ์ด๋“œ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด์ƒ์˜ ๊ฒฝํ—˜๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ, ๊ฐ€์šด๋ฐ ์ฑ”๋ฒ„์— ์ ํ•ฉํ•œ ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํƒ์นจ ์‹œ์Šคํ…œ์ด ๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์— ๊ฐœ๋ฐœ๋  ์ˆ˜ ์žˆ๋‹ค.Abstract i Contents iii List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Versatile Experiment Spherical Torus (VEST) 1 1.2 Review of Current Density Profile Measurement 2 1.3 Motivation and Objectives 5 1.4 Thesis Outline 6 Chapter 2 Theoretical Backgrounds 7 2.1 Previous Works on Magnetic Probe 7 2.2 Principles of Magnetic Sensors 11 2.2.1 Chip Inductor 11 2.2.2 Hall Sensor 12 2.3 Magnetic Field Analysis from Maxwells Equations 14 Chapter 3 Overall System Design 17 3.1 Design Requirements 17 3.2 System Specifications 19 3.2.1 Sensor Selection 19 3.2.2 Placing the Sensors 20 3.3 Electromagnetic Interference Consideration 23 3.4 Thermal Consideration 26 Chapter 4 Calibration 27 4.1 Helmholtz Coil System 27 4.1.1 Power Supply for Helmholtz Coil 29 4.2 Sensitivity Calibration 29 4.2.1 Copper Braided Shielding Effect 32 Chapter 5 Installation and In-situ Calibration on VEST 34 5.1 System Assembly 34 5.2 In-situ Calibration 37 5.2.1 Tilted Angle 37 5.2.2 Position 38 Chapter 6 Test Experiments on VEST 41 6.1 Vacuum Field Measurement 41 6.1.1 Experimental Setup 41 6.1.2 Result and Discussion 43 6.2 Phantom Plasma Field Measurement 46 6.2.1 Experimental Setup 46 6.2.2 Result and Discussion 48 Chapter 7 Conclusion 52 7.1 Summary and Conclusion 52 7.2 Future Work 53 Bibliography 54 Abstract (Korean) 57Maste

    Studies on Molecular Design and Synthesis of Novel Fluorescent Materials for Organic Light Emitting Diodes

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2016. 8. ๋ฐ•์ˆ˜์˜.์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ (OLED)๋Š” ๋ฐ•ํ˜•ํ™”, ๋‚ฎ์€ ๊ตฌ๋™ ์ „๋ ฅ, ๋†’์€ ์ƒ‰ ์žฌํ˜„์œจ, ๋„“์€ ์‹œ์•ผ๊ฐ, ๋น ๋ฅธ ๋ฐ˜์‘์†๋„ ๋“ฑ์˜ ์žฅ์ ์„ ๊ฐ€์ง„ ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด ์žฅ์น˜๋กœ์„œ ์ง€๋Œ€ํ•œ ๊ด€์‹ฌ์„ ์ด๋Œ์–ด์™”๋‹ค. OLED๋Š” ๋‹น์ดˆ ์ตœ๋Œ€ 25%์˜ ๋‚ด๋ถ€์–‘์žํšจ์œจ์„ ๊ฐ–๋Š” ํ˜•๊ด‘์ฒด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋‚˜, ์ตœ๋Œ€ 100%์˜ ๋‚ด๋ถ€์–‘์žํšจ์œจ์„ ๊ฐ–๋Š” Ir(โ…ข)๊ธฐ๋ฐ˜ ์ธ๊ด‘์ฒด๊ฐ€ ๊ฐœ๋ฐœ๋จ์— ๋”ฐ๋ผ ์†Œ์žํšจ์œจ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‚ฐ์—…์ ์œผ๋กœ๋„ ๋งŽ์€ ๋ฐœ์ „์ด ์ด๋ฃจ์–ด์กŒ๋‹ค. ํ•˜์ง€๋งŒ ์ธ๊ด‘์ฒด๋Š” ๊ฐ’๋น„์‹ผ ํฌ๊ท€๊ธˆ์†์„ ์‚ฌ์šฉํ•˜๋Š” ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ์•„์ง๊นŒ์ง€๋„ ๊ณ ํšจ์œจ ์ฒญ์ƒ‰ ๋ฐœ๊ด‘์ฒด๊ฐ€ ๋ถ€์žฌํ•˜์—ฌ ์ด๋ฅผ ๊ทน๋ณตํ•˜๋Š” ์‹ ๊ทœ๋ฐœ๊ด‘์ฒด์˜ ๊ฐœ๋ฐœ์ด ๊ณ„์†ํ•ด์„œ ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ํ•™๊ณ„ ๋ฐ ์‚ฐ์—…๊ณ„์—์„œ๋Š” ์•ž์„œ ๊ธฐ์ˆ ํ•œ ํ˜•๊ด‘ ๋ฐ ์ธ๊ด‘๊ธฐ๋ฐ˜์˜ ๊ธฐ์กด ๋ฐœ๊ด‘์ฒด์˜ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ์‹ ๊ทœ ๋ฐœ๊ด‘์ฒด ๊ฐœ๋ฐœ์ด ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, TADF (thermally activated delayed fluorescence) ํ˜„์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์ด๋ก ์  ๋‚ด๋ถ€์–‘์žํšจ์œจ 100%๊ฐ€ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•œ TADF ํ˜•๊ด‘์ฒด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋งค์šฐ ํ™œ๋ฐœํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ์— ์˜ํ•˜์—ฌ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” OLED์šฉ TADF ๊ธฐ๋ฐ˜ ์‹ ๊ทœ๋ฐœ๊ด‘์ฒด์˜ ๋ถ„์ž ์„ค๊ณ„ ๋ฐ ํ•ฉ์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. Chapter 2์—์„œ๋Š” ์ธ๋Œ๋กœ[3,2-b]์ธ๋Œ (IDID)๊ธฐ๋ฐ˜์˜ ์‹ ๊ทœ ์ฒญ์ƒ‰ ํ˜•๊ด‘์ฒด ๋ฐ TADF ํ˜•๊ด‘์ฒด๋กœ์„œ์˜ ๊ฐœ๋ฐœ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ IDID ๊ตฌ์กฐ์ฒด๋ฅผ ๋ถ„์ž๊ณจ๊ฒฉ์œผ๋กœ ํ•˜๋Š” ์‹ ๊ทœ ๋ฐœ๊ด‘์ฒด๋ฅผ ์„ค๊ณ„ ๋ฐ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ์ฒญ์ƒ‰๋ฐœ๊ด‘์„ ๋ชฉ์ ์œผ๋กœ ํ•ฉ์„ฑ๋œ ์œ ๋„์ฒด์—์„œ 80% ์ด์ƒ์˜ ๋†’์€ ์ ˆ๋Œ€ ํ˜•๊ด‘์–‘์žํšจ์œจ๊ณผ, ์ด๋ฅผ ์ด์šฉํ•œ OLED ์†Œ์ž์˜ ์™ธ๋ถ€์–‘์žํšจ์œจ 2.6%๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, IDID๋ฅผ ์ „์ž์ฃผ๊ฐœ๋กœํ•œ ๋ถ„์ž๋‚ด ์ „ํ•˜์ด๋™ ์ฐฉ์ฒดํ˜• IDID ์œ ๋„์ฒด์—์„œ TADF ํ˜„์ƒ์ด ๋ฐœํ˜„๋จ์„ ๊ด‘ํ•™์ , ๊ด‘-๋ฌผ๋ฆฌ์  ์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๊ณ , ์ด๋ฅผ ์ด์šฉํ•œ OLED ์†Œ์ž์˜ ์™ธ๋ถ€์–‘์žํšจ์œจ 6.0%๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. Chapter 3 ์—์„œ๋Š” ๋ฐœ๊ด‘์˜์—ญ์˜ ๋ฏธ์„ธํ•œ ์กฐ์ ˆ์ด ์–ด๋ ค์šด TADF ํ˜•๊ด‘์ฒด์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. TADF ํŠน์„ฑ์„ ์œ ์ง€ํ•˜๋˜, ๋ฐœ๊ด‘์˜์—ญ์„ ๋Šฅ๋™์ ์œผ๋กœ ์กฐ์ ˆ ํ•˜๊ณ ์ž ๋ถ„์ž๋‚ด ์ „ํ•˜์ด๋™ ์„ธ๊ธฐ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ํ•ฉ๋ฆฌ์ ์ธ ๋ถ„์ž์„ค๊ณ„๋ฅผ ํ•˜์˜€๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ์„ฑ๋œ ๋ฐœ๊ด‘์ฒด์˜ ํŠน์„ฑํ‰๊ฐ€๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ๋ฐœ์ƒ‰๋‹จ์˜ TADF ๋ฐœ๊ด‘ํšจ์œจ์„ ๊ทธ๋Œ€๋กœ ์œ ์ง€ํ•˜๋ฉฐ ๋Šฅ๋™์ ์ธ ๋ฐœ๊ด‘์˜์—ญ ์กฐ์ ˆ ๋ฐ ์ตœ๋Œ€๋ฐ˜์น˜ํญ (FWHM)์˜ ๊ฐ์†Œ๋ฅผ ํ†ตํ•œ ์ƒ‰ ์ˆœ๋„ ํ–ฅ์ƒ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. Chapter 4์—์„œ๋Š” ํ•ฉ๋ฆฌ์ ์ธ ๋ถ„์ž์„ค๊ณ„๋ฅผ ํ†ตํ•ด TADF ๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ๋‹จ๋ถ„์ž ๋ฐฑ์ƒ‰ ํ˜•๊ด‘์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ , ๋ถ„์ž์„ค๊ณ„ ์ „๋žต์„ ์ œ์‹œํ•˜์˜€๋‹ค. ํšŒ์ „ ์ด์„ฑ์งˆ์ฒด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด์ค‘์˜ ๋ถ„์ž๋‚ด ์ „ํ•˜์ด๋™์„ ์œ ๋„ํ•จ์œผ๋กœ์จ ๋ฐฑ์ƒ‰ ๋ฐœ๊ด‘ ํŠน์„ฑ์„ ๊ฐ–๋Š” TADF ํ˜•๊ด‘์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ด‘ํ•™์ , ์ด๋ก ์  ๊ณ„์‚ฐ์„ ํ†ตํ•˜์—ฌ ๋ฐฑ์ƒ‰ ๋ฐœ๊ด‘์˜ ๊ทผ์›์„ ๊ทœ๋ช…ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ฐฑ์ƒ‰ OLED (CIE x,y 0.35, 0.42, CCT 4949K, CRI 73.9, Lmax 6457)๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค.Organic light-emitting diodes (OLEDs) has drawn tremendous attention as a next generation display having variety of advantages such as small thickness, low operating voltage, vivid colors, wide viewing angle and fast switching. Frist OLEDs has been reported with fluorescent emitters exhibiting maximum theoretical internal quantum efficiency (IQE) of 25%. Since the emergence of phosphorescent emitters achieving maximum IQE of 100%, great advances have been achieved in industry as well as device performance. However, development of new emitters are still demanded because phosphorescent dyes contain expensive and rare noble-metal to satisfy their emitting mechanism and highly efficient blue emitters are still absent. Recently, studies on new materials using variety of mechanism overcoming the limitations of existing emitters(fluorescence, phosphorescence) are conducted very actively. Especially, studies on thermally activated delayed fluorescence (TADF) emitters reaching 100% IQE by using TADF phenomenon have reached much attention. In this study I studied on molecular design and synthesis of novel fluorescence materials for OLEDs on the basis of these background. In Chapter 2 To verify the potential of indolo[3,2โ€‘b]indole(IDID) as a new blue fluorescent emitter and a new TADF donor, I have newly designed and synthesized IDID-based organic emitters. Synthesized IDID derivatives showed high absolute photoluminescence quantum yield above 80% resulting 2.6% of external quantum efficiency (EQE) in OLEDs. Furthermore, I verified TADF property from newly synthesized intramolecular charge transfer (ICT) type IDID derivatives, consisting of IDID as an electron donor, by optical, photo-physical experiment, resulting EQE of 6.0%. In Chapter 3 To overcome limitation of TADF materialdifficulty of emission wavelength control, I have studied way to emission wavelength control with maintaining TADF property by introducing rational molecular design strategy, controlling ICT interaction strength. Based on this strategy I could verified the potential of this molecular strategyenhancement of color purity and active emission wavelength control with maintaining high performance TADF property by evaluating newly synthesized TADF emitters. In Chapter 4 I synthesized single molecule white emitting TADF material and suggested novel molecular design strategy by rational molecular design. I definitely confirmed that the white emission is based on the rotamer of molecule by theoretical, photo-physical evaluation. From this, high performance white OLED (CIE x,y 0.35, 0.42, CCT 4949K, CRI 73.9, Lmax 6457) was realized with completely new single white emitter.Chapter 1. ์„œ๋ก  1 1.1 OLED 1 1.2 ์ €๋ถ„์ž OLED ๋ฐœ๊ด‘์ฒด์˜ ์—ฐ๊ตฌ๋™ํ–ฅ 7 1.3 TADF์˜ ๊ฐœ๊ด„ 13 1.4 ์—ฐ๊ตฌ๋ชฉํ‘œ 20 1.5 ์ฐธ๊ณ ๋ฌธํ—Œ 23 Chapter 2. IDID ๊ณจ๊ฒฉ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ํ˜•๊ด‘์ฒด์˜ ์„ค๊ณ„, ํ•ฉ์„ฑ ๋ฐ OLED์˜ ์ ์šฉ 27 2.1 ๋„์ž… 27 2.2 ์‹คํ—˜ 34 2.3 ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 46 2.4 ๊ฒฐ๋ก  68 2.5 ์ฐธ๊ณ ๋ฌธํ—Œ 69 Chapter 3. ๋น„๋Œ€์นญ ์ „์ž์ฃผ๊ฐœ ์ „์ž๋ฐ›๊ฐœ ํ˜•ํƒœ์˜ TADF ํ˜•๊ด‘์ฒด : ๊ธฐ๋Šฅํ™”๋œ ์ „์ž๋ฐ›๊ฐœ๋ฅผ ํ†ตํ•œ ์ƒ‰์ˆœ๋„ ํ–ฅ์ƒ ๋ฐ ๋Šฅ๋™์ ์ธ ๋ฐœ๊ด‘ํŒŒ์žฅ ์กฐ์ ˆ 71 3.1 ๋„์ž… 71 3.2 ์‹คํ—˜ 77 3.3 ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 84 3.4 ๊ฒฐ๋ก  103 3.5 ์ฐธ๊ณ ๋ฌธํ—Œ 103 Chapter 4. ์ƒˆ๋กœ์šด ๋ฐฑ์ƒ‰ ๋‹จ๋ถ„์ž TADF ํ˜•๊ด‘์ฒด์˜ ์„ค๊ณ„ ์ „๋žต ๋ฐ OLED์˜ ์ ์šฉ 105 4.1 ๋„์ž… 105 4.2 ์‹คํ—˜ 109 4.3 ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 115 4.4 ๊ฒฐ๋ก  134 4.5 ์ฐธ๊ณ ๋ฌธํ—Œ 135 Abstract 137Maste

    Tearing Modes during Tokamak Plasma Current Ramp Up

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2019. 2. ํ™ฉ์šฉ์„.Tokamak is a concept to confine a plasma using the magnetic field and plasma current to extract the nuclear fusion energy. A fast plasma current ramp up is reportedly obstructed by a magneto-hydrodynamic plasma instability assumed to be a tearing mode excited by the hollow current density profile produced by the skin effect from the fast time-varying driving loop voltage. To test the assumption, a comprehensive diagnostics of the instability at the low temperature, transient phase of the plasma current ramp up is needed. An internal magnetic probe is used for the direct measurement of the magnetic islands in the low temperature plasmas where the perturbation is small. Previously, the interpretation of the measurements was difficult since a reliable equilibrium flux surface information was not available at small devices compatible with the internal magnetic probes. During the plasma current ramp up in a VEST (Versatile Experiment Spherical Torus) discharge, a distinctive instability pattern arises in the spectrogram of the Mirnov coils. In this dissertation, the instability during a tokamak plasma current ramp up is studied. VEST (Versatile Experiment Spherical Torus) is a spherical torus with the major radius of 0.4 m, the minor radius of 0.3 m, the on-axis toroidal field of 0.1 T and the plasma current of 0.1 MA. The TF coil is powered by an ultracapacitor bank and the PF coils are powered by the capacitor banks switched at the pre-programmed times. The PEV injects a prefill gas prior to the loop voltage application. Magnetic diagnostics in VEST are placed inside and outside the plasma. Total 11 flux loops and 49 magnetic probes are distributed along the poloidal plane. Flux loops are sampled at 25 kS/s, while magnetic probes are sampled at 250 kS/s. Equilibrium flux surfaces link various diagnostics into a single frame. The equilibrium reconstruction code VFIT is developed to implement the algorithm of the free boundary solution of the Grad Shafranov equation. Real data includes noise and signal that need to be separated carefully. A set of 12 squared elements are used to model the plasma current distribution, and the currents of each elements are used as a coil current equivalent for the computation of the wall current by the plasma current. In the VFIT run, the sensor signals are fit to 10% on average and the convergence criteria is set to 10-3. Useful equilibrium parameters can be post-processed from the reconstructed equilibrium flux surfaces. Mode information of a magnetic fluctuation bears the characteristics of the instability. Toroidal array of 2 Mirnov coils are Fourier analyzed to determine the toroidal mode number and the frequency. Poloidal array of 25 Mirnov coils are singular value decomposed to determine the poloidal mode number. The mode identification is performed every 0.2 ms, within 1 ms time window. In VEST, the plasma current decrease with the internal magnetic probes is no more than 10%, presumably because of the small plasma size and energy. A sensor group is composed of a Hall sensor and two chip inductors, and total 8 sensor groups cover > 0.30 m with the spatial resolution = 0.05 m on midplane. Mount of the internal magnetic probes is provided by a printed circuit board. Enclosure for the internal magnetic probes includes the stainless steel pipes and alumina tube to provide the electrostatic and thermal insulation respectively. Calibration of the internal magnetic probes includes three steps: Helmholtz coil, misalignment angle, and radial position. A magnetic island in a tokamak can produce a characteristic structure. Internal magnetic probe measurements shows the phase reversal structure, supporting the magnetic island existence. Phase reversal and island chain location measured using the internal and external magnetic diagnostics are in good agreement. Then, the dynamics of the magnetic islands can be studied using the internal magnetic probes. Two magnetic islands are onset simultaneously, are phase locked to each other, and move to the inboard with the bulk plasma. The magnetic islands moving together as they are phase locked is intriguing since the previous understandings were that the adjacent island would merge. The magnetic island width is generally related to the external Mirnov coil signals with the calibration factor determined from a direct measurement of the island. Then, the island width can be estimated from the external Mirnov coil signal when the internal magnetic probes are removed. The classical tearing mode theory explains the response of the tearing mode to the current ramp rate control. Control of the variables prefill gas pressure and wall condition is acceptable. To further clarify the interpretation based on the classical tearing mode theory, an experiment is designed to control the local magnetic shear itself. The onset and suppression of a mode coincides with the change in the magnetic shear at the surface, as predicted by the classical tearing mode theory. Although the classical tearing mode theory explained the tearing mode response to the current ramp rate control, the theory fails to explain the tearing mode response to the prefill gas pressure control. Control of the variables plasma current ramp rate and plasma shaping factor is acceptable. Comparing the Pearson correlation coefficients, the prefill gas pressure is a control knob as effective as the current ramp rate for the tearing mode control. It is presumed that in VEST, the neoclassical tearing mode theory may explain the response of the tearing mode during a plasma current ramp up to the control knobs of current ramp rate and prefill gas pressure. Island width evolution is in general modelled by the modified Rutherford equation. VFIT and PEST-3 are used to compute the variables in the modified Rutherford equation. The 2/1 mode island width evolution is followed, assuming a constant small island effect factor cm. Modelled and measured 2/1 mode island width evolution are in good agreement, supporting the neoclassical tearing mode existence. The specific mode number combination of the coexisting magnetic islands in VEST, at first the 2/1 + 3/2 and then the 3/1 + 4/2 modes, supports the neoclassical tearing mode existence. The observation of the fluctuation asymmetry would support the existence of two magnetic islands by the neoclassical tearing mode excitation. The fluctuation asymmetry is observed in the internal magnetic probe and external Mirnov coil measurements. Previously, the validity of the observations was unclear however since there were no internal measurements to confirm. Filament model of a magnetic island is used for the modelling of the fluctuation asymmetry. The combination of 4/2 + 3/1 instead of 2/1 + 3/2 magnetic islands is modelled with reasonable accuracy. The poloidal distribution of Mirnov coil signals from the measurements and the reconstruction using the filament modelling are in good agreement, supporting the existence of two magnetic islands by the neoclassical tearing mode excitation. The empirical stability diagram assumes that the instability during a tokamak plasma current ramp up is the classical tearing mode, and apparently fails to explain some stable shots located outside the stable region. Based on the experimental results, the stable region becomes wider at lower and narrower at higher . Then, the lower internal inductance startup is available if the normalized beta is kept low enough to avoid the neoclassical tearing mode excitation.ํ† ์นด๋ง‰์€ ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ์ž๊ธฐ์žฅ๊ณผ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜๋กœ ๊ฐ€๋‘์–ด ํ•ต์œตํ•ฉ ์—๋„ˆ์ง€๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ฐœ๋…์ด๋‹ค. ๋น ๋ฅธ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ์ƒ์Šน์€ ๋น ๋ฅธ ์‹œ๋ณ€ ๊ตฌ๋™ ์ผ์ฃผ ์ „์••์œผ๋กœ๋ถ€ํ„ฐ์˜ ํ‘œํ”ผ ํšจ๊ณผ์— ์˜ํ•ด ํ˜•์„ฑ๋œ ์†์ด ๋นˆ ์ „๋ฅ˜ ๋ฐ€๋„ ํ”„๋กœํŒŒ์ผ์ด ๋งŒ๋“œ๋Š” ์ฐข์–ด์ง ๋ชจ๋“œ๋กœ ์˜ˆ์ƒ๋˜๋Š” ์ž๊ธฐ์œ ์ฒด์—ญํ•™์  ํ”Œ๋ผ์ฆˆ๋งˆ ๋ถˆ์•ˆ์ •์„ฑ์— ์˜ํ•ด ๋ฐฉํ•ด๋œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด ์˜ˆ์ƒ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ฐจ๊ฐ‘๊ณ  ๋ณ€ํ™”ํ•˜๋Š” ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ์ƒ์Šน๊ธฐ์˜ ๋ถˆ์•ˆ์ •์„ฑ์— ๋Œ€ํ•œ ์ข…ํ•ฉ์  ์ง„๋‹จ์ด ํ•„์š”ํ•˜๋‹ค. ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ๊ฐ€ ์ฐจ๊ฐ€์›Œ์„œ ์„ญ๋™์ด ์ €์€ ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ์ž๊ธฐ์„ฌ์˜ ์ง์ ‘ ์ง„๋‹จํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค. ๊ธฐ์กด์—๋Š” ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์€ ์žฅ์น˜์—์„œ ํ‰ํ˜• ์ž๊ธฐ๋ฉด ์ •๋ณด๊ฐ€ ์•ˆ์ •์ ์œผ๋กœ ์–ป์–ด์ง€์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ์ธก์ •์˜ ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค. VEST ์—์„œ์˜ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ์ƒ์Šน๊ธฐ์—, ๋ฏธ๋ฅด๋…ธํ”„ ์ฝ”์ผ์˜ ๋ถ„๊ด‘๋„์—๋Š” ํŠน์ดํ•œ ๋ถˆ์•ˆ์ •์„ฑ ํŒจํ„ด์ด ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ† ์นด๋ง‰ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ์ƒ์Šน๊ธฐ์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ์—ฐ๊ตฌํ•œ๋‹ค. VEST ๋Š” ์ฃผ๋ฐ˜๊ฒฝ 0.4 m, ๋ถ€๋ฐ˜๊ฒฝ 0.3 m, ์ž๊ธฐ์ถ• ํ† ๋กœ์ด๋‹ฌ ์ž๊ธฐ์žฅ 0.1 T, ๊ทธ๋ฆฌ๊ณ  ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ 0.1 MA ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ตฌํ˜• ํ† ๋Ÿฌ์Šค์ด๋‹ค. TF ์ฝ”์ผ์€ ์šธํŠธ๋ผ์บํŒจ์‹œํ„ฐ ๋ฑ…ํฌ๋กœ, PF ์ฝ”์ผ์€ ์„ ๊ฒฐ ์‹œ๊ฐ„์— ์Šค์œ„์นญ๋˜๋Š” ์ถ•์ „๊ธฐ ๋ฑ…ํฌ๋กœ ๊ตฌ๋™๋œ๋‹ค. PEV๊ฐ€ ์ผ์ฃผ ์ „์•• ์ธ๊ฐ€ ์ „์— ์„ ์ž… ๊ฐ€์Šค๋ฅผ ์ฃผ์ž…ํ•œ๋‹ค. VEST์˜ ์ž๊ธฐ ์ง„๋‹จ์€ ํ”Œ๋ผ์ฆˆ๋งˆ ๋‚ด๋ถ€์™€ ์™ธ๋ถ€์— ์žˆ๋‹ค. 11๊ฐœ์˜ ์ž์† ๋ฃจํ”„์™€ 49๊ฐœ์˜ ์ž๊ธฐ ํ”„๋กœ๋ธŒ๊ฐ€ ํด๋กœ์ด๋‹ฌ ํ‰๋ฉด์— ๋ถ„ํฌ๋˜์–ด ์žˆ๋‹ค. ์ž์† ๋ฃจํ”„๋Š” 25 kS/s, ์ž๊ธฐ ํ”„๋กœ๋ธŒ๋Š” 250 kS/s ๋กœ ๋””์ง€ํ„ธํ™”ํ•œ๋‹ค. ํ‰ํ˜• ์ž์†๋ฉด์€ ๋‹ค์–‘ํ•œ ์ง„๋‹จ์„ ํ•˜๋‚˜์˜ ํ‹€๋กœ ์—ฐ๊ฒฐํ•œ๋‹ค. ํ‰ํ˜• ์žฌ๊ตฌ์„ฑ ์ฝ”๋“œ VFIT์ด ๊ทธ๋ผ๋“œ ์ƒคํ”„๋ผ๋…ธํ”„ ๋ฐฉ์ •์‹์˜ ์ž์œ  ๊ฒฝ๊ณ„ ํ•ด๋ฅผ ์ฐพ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์‹ค์ œ ๋ฐ์ดํ„ฐ์—๋Š” ์‹ ํ˜ธ์™€ ์žก์Œ์ด ์„ž์—ฌ ์žˆ์–ด ์„ธ์‹ฌํ•œ ๊ตฌ๋ถ„์ด ํ•„์š”ํ•˜๋‹ค. 12๊ฐœ์˜ ์‚ฌ๊ฐํ˜• ์š”์†Œ๊ฐ€ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ๋ถ„ํฌ๋ฅผ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๊ณ  ๊ฐ ์š”์†Œ์˜ ์ „๋ฅ˜๊ฐ€ ์ฝ”์ผ ์ „๋ฅ˜์™€ ๊ฐ™์ด ํ”Œ๋ผ์ฆˆ๋งˆ์— ์˜ํ•œ ๋ฒฝ ์ „๋ฅ˜๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. VFIT ์‹คํ–‰ ๊ฒฐ๊ณผ, ์ธก์ •๊ธฐ ์‹ ํ˜ธ๊ฐ€ ํ‰๊ท  10% ๊นŒ์ง€ ๋งž์ถ”์–ด์กŒ๊ณ  ์ˆ˜๋ ด ์กฐ๊ฑด์€ 10-3์œผ๋กœ ์„ค์ •๋˜์—ˆ๋‹ค. ์œ ์šฉํ•œ ํ‰ํ˜• ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์žฌ๊ตฌ์„ฑ๋œ ํ‰ํ˜• ์ž์†๋ฉด์œผ๋กœ๋ถ€ํ„ฐ ํ›„์ฒ˜๋ฆฌ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž๊ธฐ์  ์ง„๋™์˜ ๋ชจ๋“œ ์ •๋ณด๋Š” ๋ถˆ์•ˆ์ •์„ฑ์˜ ํŠน์ง•์„ ๋‚ดํฌํ•œ๋‹ค. 2๊ฐœ์˜ ๋ฏธ๋ฅด๋…ธํ”„ ์ฝ”์ผ๋กœ ๋œ ํ† ๋กœ์ด๋‹ฌ ๋ฐฐ์—ด์€ ํ‘ธ๋ฆฌ์— ๋ถ„์„๋˜์–ด ํ† ๋กœ์ด๋‹ฌ ๋ชจ๋“œ์ˆ˜์™€ ์ฃผํŒŒ์ˆ˜ ์ •๋ณด๋ฅผ ์ค€๋‹ค. 25๊ฐœ์˜ ๋ฏธ๋ฅด๋…ธํ”„ ์ฝ”์ผ๋กœ ๋œ ํด๋กœ์ด๋‹ฌ ๋ฐฐ์—ด์€ ํŠน์ด๊ฐ’ ๋ถ„ํ•ด๋˜์–ด ํด๋กœ์ด๋‹ฌ ๋ชจ๋“œ์ˆ˜๋ฅผ ์ค€๋‹ค. ๋ชจ๋“œ ๋ถ„์„์€ 0.2 ms ๋งˆ๋‹ค 1 ms ์ฐฝ์œผ๋กœ ์‹œํ–‰๋œ๋‹ค. VEST์—์„œ๋Š” ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ์— ์˜ํ•œ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ํ•˜๊ฐ•์ด 10%๋ฅผ ๋„˜์ง€ ์•Š๋Š”๋ฐ, ํ”Œ๋ผ์ฆˆ๋งˆ ํฌ๊ธฐ์™€ ์—๋„ˆ์ง€๊ฐ€ ์ž‘๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ณด์ธ๋‹ค. ์ธก์ •๊ธฐ ๊ทธ๋ฃน์€ ํ™€ ์„ผ์„œ ํ•˜๋‚˜์™€ ์นฉ ์ธ๋•ํ„ฐ ๋‘ ๊ฐœ๋กœ ๊ตฌ์„ฑ๋˜๊ณ , ์ด 8๊ฐœ์˜ ๊ทธ๋ฃน์ด ์ค‘์•™๋ฉด์—์„œ 0.30 m ์ด์ƒ์˜ ๋ฐ˜๊ฒฝ์„ 0.05 m ๊ฐ„๊ฒฉ์œผ๋กœ ์ธก์ •ํ•œ๋‹ค. ์ธก์ •๊ธฐ ์ง€์ง€๋Š” ์ธ์‡„ ํšŒ๋กœ ๊ธฐํŒ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ์˜ ๊ฒ‰๋ฉด์€ ์Šคํ…Œ์ธ๋ฆฌ์Šค ์Šคํ‹ธ ํŒŒ์ดํ”„์™€ ์•Œ๋ฃจ๋ฏธ๋‚˜ ํŠœ๋ธŒ๊ฐ€ ์ •์ „๊ธฐ์  ๊ทธ๋ฆฌ๊ณ  ์—ด์  ์ฐจํ๋ฅผ ์ œ๊ณตํ•˜๋„๋ก ๊ตฌ์„ฑ๋œ๋‹ค. ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ์˜ ๊ต์ •์€ ์„ธ ๋‹จ๊ณ„๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค: ํ—ฌ๋ฆ„ํ™€์ธ  ์ฝ”์ผ, ์–ด๊ธ‹๋‚จ ๊ฐ๋„, ๋ฐ˜๊ฒฝ ์œ„์น˜๊ฐ€ ๊ทธ๊ฒƒ๋“ค์ด๋‹ค. ํ† ์นด๋ง‰์—์„œ ์ž๊ธฐ์„ฌ์€ ํŠน์ง•์ ์ธ ์‹œ๋ณ€ ์ž๊ธฐ์žฅ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ ๋‹ค. ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ ์ธก์ •์€ ์œ„์ƒ ์—ญ์ „ ๊ตฌ์กฐ๋ฅผ ๋ณด์—ฌ์ฃผ์–ด ์ž๊ธฐ์„ฌ์˜ ์กด์žฌ๋ฅผ ๋’ท๋ฐ›์นจํ•œ๋‹ค. ๋‚ด๋ถ€ ๋ฐ ์™ธ๋ถ€ ํ”„๋กœ๋ธŒ๋กœ ์ธก์ •๋œ ์œ„์ƒ ์—ญ์ „๊ณผ ์„ฌ์—ด ์œ„์น˜๋Š” ์„œ๋กœ ์ž˜ ์ผ์น˜ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ์ž๊ธฐ์„ฌ์˜ ์—ญํ•™์ด ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ๋กœ ์—ฐ๊ตฌ๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๊ฐœ์˜ ์ž๊ธฐ์„ฌ์€ ๋™์‹œ์— ๋ฐœ์ƒํ•˜์—ฌ ์„œ๋กœ์—๊ฒŒ ์œ„์ƒ์ด ๋งž์ถ”์–ด์ง€๊ณ  ์ฃผ ํ”Œ๋ผ์ฆˆ๋งˆ์™€ ๋ชจ๋‘ ํ•จ๊ป˜ ๋‚ด๋ฒฝ์œผ๋กœ ์ด๋™ํ•œ๋‹ค. ์ž๊ธฐ์„ฌ๋“ค์ด ์œ„์ƒ์ด ๋งž์ถ”์–ด์ง„ ์ฑ„ ํ•จ๊ป˜ ์›€์ง์ธ๋‹ค๋Š” ๊ฒƒ์€ ํฅ๋ฏธ๋กœ์šด๋ฐ, ๊ธฐ์กด ์ดํ•ด๋Š” ์ธ์ ‘ํ•œ ์ž๊ธฐ์„ฌ๋“ค์ด ํ•ฉ์ณ์ง€๋Š” ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ž๊ธฐ์„ฌ ํญ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์™ธ๋ถ€ ๋ฏธ๋ฅด๋…ธํ”„ ์ฝ”์ผ ์‹ ํ˜ธ์— ์ง์ ‘ ์ธก์ •์„ ํ†ตํ•ด ๊ต์ •๋˜์–ด ์—ฐ๊ฒฐ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ๊ฐ€ ์—†๋”๋ผ๋„ ์™ธ๋ถ€ ๋ฏธ๋ฅด๋…ธํ”„ ์ฝ”์ผ ์‹ ํ˜ธ ์˜ํ•ด ์„ฌํญ์ด ๊ทผ์‚ฌ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ ์ด๋ก ์œผ๋กœ ์ „๋ฅ˜ ์ƒ์Šน ์†๋„ ์ œ์–ด์— ๋Œ€ํ•œ ์ฐข์–ด์ง ๋ชจ๋“œ ๋ฐ˜์‘์ด ์„ค๋ช…๋œ๋‹ค. ์ด ๋•Œ, ์„ ์ฃผ์ž… ๊ธฐ์ฒด ์••๋ ฅ๊ณผ ๋ฒฝ ์กฐ๊ฑด์ด ์ ์ ˆํžˆ ํ†ต์ œ๋˜์—ˆ๋‹ค. ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ ์ด๋ก ์„ ์ด์šฉํ•œ ํ•ด์„์„ ๋”์šฑ ๋ฐํžˆ๊ธฐ ์œ„ํ•ด, ๊ตญ์ง€์ ์ธ ์ž๊ธฐ ์ „๋‹จ ์ž์ฒด๋ฅผ ์ œ์–ดํ•˜๋Š” ์‹คํ—˜์ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ ์ด๋ก ์˜ ์˜ˆ์ธก๋Œ€๋กœ, ์–ด๋–ค ๋ชจ๋“œ์˜ ๋ฐœ์ƒ๊ณผ ์†Œ๋ฉธ์€ ํ•ด๋‹น ์ž๊ธฐ ํ”Œ๋Ÿญ์Šค๋ฉด์˜ ์ž๊ธฐ ์ „๋‹จ์˜ ๋ณ€ํ™”์™€ ์ผ์น˜ํ•œ๋‹ค. ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ ์ด๋ก ์ด ์ฐข์–ด์ง ๋ชจ๋“œ์˜ ์ „๋ฅ˜ ์ƒ์Šน ์†๋„ ์ œ์–ด์— ๋Œ€ํ•œ ๋ฐ˜์‘์„ ์ž˜ ์„ค๋ช…ํ•˜์ง€๋งŒ, ์ฐข์–ด์ง ๋ชจ๋“œ์˜ ์„ ์ฃผ์ž… ๊ธฐ์ฒด ์••๋ ฅ ์ œ์–ด์— ๋Œ€ํ•œ ๋ฐ˜์‘์„ ์„ค๋ช…ํ•˜๋Š” ๋ฐ๋Š” ์‹คํŒจํ•œ๋‹ค. ์ด ๋•Œ, ์ „๋ฅ˜ ์ƒ์Šน ์†๋„์™€ ํ”Œ๋ผ์ฆˆ๋งˆ ๋ชจ์–‘์ด ์ ์ ˆํžˆ ํ†ต์ œ๋˜์—ˆ๋‹ค. ํ”ผ์–ด์Šจ ์ƒ๊ด€ ๊ณ„์ˆ˜๋ฅผ ๋น„๊ตํ•˜๋ฉด, ์„ ์ฃผ์ž… ๊ธฐ์ฒด ์••๋ ฅ์€ ์ „๋ฅ˜ ์ƒ์Šน ์†๋„๋งŒํผ์ด๋‚˜ ์ฐข์–ด์ง ๋ชจ๋“œ ์ œ์–ด์— ๋Œ€ํ•ด์„œ ํšจ๊ณผ์ ์ธ ์ œ์–ด ์†์žก์ด์ด๋‹ค. VEST์—์„œ๋Š” ์‹ ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ ์ด๋ก ์ด ์ „๋ฅ˜ ์ƒ์Šน ์†๋„์™€ ์„ ์ฃผ์ž… ๊ธฐ์ฒด ์••๋ ฅ์— ์˜ํ•œ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ์ƒ์Šน๊ธฐ์˜ ์ฐข์–ด์ง ๋ชจ๋“œ ์ œ์–ด๋ฅผ ์„ค๋ช…ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ž๊ธฐ์„ฌ์˜ ์„ฑ์žฅ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์ˆ˜์ • ๋Ÿฌ๋”ํฌ๋“œ ๋ฐฉ์ •์‹์œผ๋กœ ๋ชจ์‚ฌ๋œ๋‹ค. VFIT๊ณผ PEST-3๊ฐ€ ์ˆ˜์ • ๋Ÿฌ๋”ํฌ๋“œ ๋ฐฉ์ •์‹์˜ ๋ณ€์ˆ˜๋“ค์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. 2/1 ๋ชจ๋“œ ์ž๊ธฐ์„ฌ์ด ์ถ”์ ๋˜์—ˆ๋Š”๋ฐ, ์ž‘์€ ์ž๊ธฐ์„ฌ ํšจ๊ณผ ์š”์†Œ๋Š” 6 cm๋กœ ๊ณ ์ •ํ•˜์˜€๋‹ค. 2/1 ๋ชจ๋“œ ์ž๊ธฐ์„ฌ ์„ฑ์žฅ์„ ๋ชจ์‚ฌํ•œ ๊ฒƒ๊ณผ ์ธก์ •ํ•œ ๊ฒƒ์€ ์„œ๋กœ ์ž˜ ์ผ์น˜ํ•˜์—ฌ ์‹ ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ์˜ ์กด์žฌ๋ฅผ ๋’ท๋ฐ›์นจํ•œ๋‹ค. VEST ์ž๊ธฐ์„ฌ๋“ค์€ ํŠน์ • ๋ชจ๋“œ ์ˆ˜ ์กฐํ•ฉ์„ ๊ฐ–๋Š”๋ฐ, ์ฒ˜์Œ์—๋Š” 2/1 + 3/2์ด๊ณ  ๊ทธ ํ›„์—๋Š” 3/1 + 4/2์ด๋ฉฐ, ์—ญ์‹œ ์‹ ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ์˜ ์กด์žฌ๋ฅผ ๋’ท๋ฐ›์นจํ•œ๋‹ค. ๋ถˆ์•ˆ์ •์„ฑ ๋น„๋Œ€์นญ์„ฑ์„ ๊ด€์ฐฐํ•œ๋‹ค๋ฉด ๋‘ ์ž๊ธฐ์„ฌ์ด ์‹ ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ์— ์˜ํ•ด ๋ฐœ์ƒํ•ด ๊ณต์กดํ•จ์„ ๋’ท๋ฐ›์นจํ•  ๊ฒƒ์ด๋‹ค. ๋‚ด๋ถ€ ์ž๊ธฐ์žฅ ํ”„๋กœ๋ธŒ์™€ ์™ธ๋ถ€ ๋ฏธ๋ฅด๋…ธํ”„ ์ฝ”์ผ์— ์˜ํ•ด ๋ถˆ์•ˆ์ •์„ฑ ๋น„๋Œ€์นญ์„ฑ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ธฐ์กด์—๋Š” ๋‚ด๋ถ€ ์ธก์ •์ด ์—†์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ด€์ฐฐ์˜ ์ง„์œ„๊ฐ€ ๋ถˆํ™•์‹คํ–ˆ๋‹ค. ์ž๊ธฐ์„ฌ์˜ ํ•„๋ผ๋ฉ˜ํŠธ ๋ชจ๋ธ์„ ํ†ตํ•ด ๋ถˆ์•ˆ์ •์„ฑ ๋น„๋Œ€์นญ์„ฑ์„ ๋ชจ์‚ฌํ•˜์˜€๋‹ค. 4/2 + 3/1 ๋ชจ๋“œ ์กฐํ•ฉ์ด 2/1 + 3/2 ๋ชจ๋“œ ์กฐํ•ฉ ๋Œ€์‹  ํ•ฉ๋ฆฌ์ ์œผ๋กœ ๋ชจ์‚ฌ๋˜์—ˆ๋‹ค. ์ธก์ • ๋ฐ ํ•„๋ผ๋ฉ˜ํŠธ ๋ชจ๋ธ๋กœ ์žฌ๊ตฌ์„ฑ๋œ ๋ฏธ๋ฅด๋…ธํ”„ ์ฝ”์ผ ์‹ ํ˜ธ์˜ ํด๋กœ์ด๋‹ฌ ๋ถ„ํฌ๊ฐ€ ์ž˜ ์ผ์น˜ํ•˜์—ฌ, ๋‘ ์ž๊ธฐ์„ฌ์ด ์‹ ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ์— ์˜ํ•ด ๋ฐœ์ƒํ•ด ๊ณต์กดํ•จ์„ ๋’ท๋ฐ›์นจํ•œ๋‹ค. ์ •๊ทœํ™” ๋‚ด๋ถ€ ์œ ๋„์šฉ๋Ÿ‰๊ณผ ๊ฐ€์žฅ์ž๋ฆฌ ์•ˆ์ „ ์ธ์ž๋กœ ํ‘œํ˜„๋œ ๊ฒฝํ—˜์  ์•ˆ์ •์„ฑ ๋„ํ‘œ๋Š” ํ† ์นด๋ง‰ ํ”Œ๋ผ์ฆˆ๋งˆ ์ „๋ฅ˜ ์ƒ์Šน๊ธฐ์˜ ๋ถˆ์•ˆ์ •์„ฑ์ด ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ง€๋งŒ, ์ผ๋ถ€ ์•ˆ์ • ์˜์—ญ ๋ฐ–์˜ ์ƒท๋“ค์„ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ์‹คํŒจํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‚ดํŽด๋ณด๋ฉด ์•ˆ์ „ ์˜์—ญ์ด ๋‚ฎ์€ ์ •๊ทœํ™” ๋ฒ ํƒ€์ผ ๋•Œ ๋„“์–ด์ง€๊ณ  ๋†’์€ ์ •๊ทœํ™” ๋ฒ ํƒ€์ผ ๋•Œ ์ข์•„์ง„๋‹ค. ๊ทธ๋Ÿฌ๋ฉด, ์ •๊ทœํ™” ๋ฒ ํƒ€๊ฐ€ ๋‚ฎ๊ฒŒ ์œ ์ง€๋˜์–ด ์‹ ๊ณ ์ „ ์ฐข์–ด์ง ๋ชจ๋“œ์˜ ๋ฐœ์ƒ์„ ํ”ผํ•œ๋‹ค๋ฉด ๋” ๋‚ฎ์€ ์ •๊ทœํ™” ๋‚ด๋ถ€ ์œ ๋„์šฉ๋Ÿ‰ ์‹œ๋™์ด ๊ฐ€๋Šฅํ•˜๋‹ค.Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Objectives 6 Chapter 2. VEST Device 8 2.1. Ohmic discharge 8 2.2. External magnetic diagnostics 13 2.2.1. Equilibrium reconstruction 17 2.2.2. Mode identification 24 2.3. Internal magnetic probes 28 Chapter 3. Internal Structure of Tearing Modes 39 3.1. Phase reversal layers 39 3.2. Phase reversal and island chain location 43 3.3. Dynamics of island chains 46 3.4. Island width identification by Mirnov coils 48 Chapter 4. Tearing Mode Response to Operation Variables 51 4.1. Current ramp rate 52 4.2. Local magnetic shear 56 4.3. Prefill gas pressure 59 4.4. Interpretation of tearing mode control 62 Chapter 5. Discussion 64 5.1. Modified Rutherford equation modelling 65 5.2. Fluctuation asymmetry 71 5.3. Stability diagram for tokamak current ramp up 84 Chapter 6. Conclusion 88 Bibliography iDocto

    ๊ตฌ์ƒ์„ฑ๋‹จ NGC 6316์˜ Washington CCD ์ธก๊ด‘

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :ๅคฉๆ–‡ๅญธ็ง‘,1997.Maste

    ํ”„๋กœ์„ธ์Šค ์ด์ฃผ ๋ชจ๋ธ์—์„œ์˜ ํ”„๋กœ์„ธ์Šค ๋ณต๊ตฌ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐ.์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2001.Maste
    corecore