18 research outputs found

    μ‚¬λžŒ 글루탐산 λΆ„ν•΄νš¨μ†Œμ˜ λ™μœ„νš¨μ†Œλ“€μ˜ ꡬ쑰와 κΈ°λŠ₯에 λŒ€ν•œ 비ꡐ 연ꡬ

    No full text
    Dept. of Biomedical Laboratory Science/박사[ν•œκΈ€] μ‚¬λžŒμ‘°μ§μ—μ„œ 글루탐산 λΆ„ν•΄νš¨μ†Œ (GDH)λŠ” μœ μ „μ  기원이 λ‹€λ₯Έ 두 가지 μ΄μƒμ˜ λ™μœ„νš¨μ†Œ (hGDH1, hGDH2)둜 μ‘΄μž¬ν•œλ‹€. hGDH1은 열에 비ꡐ적 μ•ˆμ •ν•˜κ³ , λͺΈ μ „μ²΄μ—μ„œ λ°œν˜„λ˜λŠ” λ°˜λ©΄μ— hGDH2λŠ” 열에 μ•½ν•˜κ³  κ³ ν™˜μ‘°μ§μ΄λ‚˜ μ‹ κ²½μ‘°μ§μ—μ„œ 특이적으둜 λ°œν˜„λœλ‹€. GDH λ™μœ„νš¨μ†Œμ˜ ꡬ쑰와 κΈ°λŠ₯에 λŒ€ν•΄μ„œ μ•Œμ•„λ³΄κΈ° μœ„ν•˜μ—¬, 1557-base-pair의 μ‚¬λžŒ GDH2λ₯Ό μœ μ „μžλ₯Ό ν•©μ„±ν•˜μ—¬ λŒ€μž₯κ· μ£Όλ₯Ό μ΄μš©ν•΄ ν™œμ„±μ„ μ§€λ‹Œ νš¨μ†Œλ‘œ λ°œν˜„ν•˜μ˜€λ‹€. 이것을 μ΄μš©ν•˜μ—¬ μ‚¬λžŒ GDH λ™μœ„νš¨μ†Œ κ°„μ˜ μ—΄μ˜ μ•ˆμ •μ„± 차이에 κ΄€μ—¬ν•˜λŠ” 주된 아미노산을 λ™μ •ν•˜κ³ μž ν•˜μ˜€λ‹€. 45C (pH 7.0)μ—μ„œ 열에 λŒ€ν•œ νš¨μ†Œμ˜ λΆˆν™œμ„±μ€ μ•Œλ‘œμŠ€ν…Œλ¦­ μ‘°μ ˆμ œκ°€ μ—†μ„λ•Œ hGDH1 보닀 hGDH2μ—μ„œ λ”μš± λΉ λ₯΄κ²Œ μ§„ν–‰λ˜μ—ˆλ‹€. ν•˜μ§€λ§Œ hGDH1, hGDH2 λͺ¨λ‘ 1 mM ADP 와 3mM L-Leu의 쑴재 μ‹œμ—λŠ” 열에 μ˜ν•œ νš¨μ†Œμ˜ λΆˆν™œμ„± 속도가 λŠλ €μ‘Œλ‹€. λŒμ—°λ³€μ΄λ₯Ό μΌμœΌν‚€λŠ” λ°©λ²•μœΌλ‘œ hGDH2 μœ μ „μžμ—μ„œμ˜ Ser443을 그에 λŒ€μ‘ν•˜λŠ” hGDH1 μœ μ „μžμ˜ Arg443으둜 μΉ˜ν™˜ν•œ κ²°κ³Ό hGDH2κ°€ μ§€λ‹ˆκ³  μžˆλŠ” 열에 λŒ€ν•œ λΆˆμ•ˆμ •μ„±μ΄ μ‚¬λΌμ‘Œλ‹€. λ°˜λ©΄μ— κ°€λŠ₯성이 μžˆλ‹€κ³  λ³΄μ—¬μ§€λŠ” λͺ‡ 가지 λ‹€λ₯Έ 아미노산에 λŒ€ν•œ λŒμ—°λ³€μ΄λ“€μ€ (L415M, A456G, H470R) μ—΄μ˜ μ•ˆμ •μ„±μ— λŒ€ν•œ νŠΉλ³„ν•œ λ³€ν™”λ₯Ό 보여주지 λͺ»ν–ˆλ‹€. λ”°λΌμ„œ μ‚¬λžŒ GDH λ™μœ„μ›μ†Œμ—μ„œ Ser443 μœ„μΉ˜κ°€ μ—΄ μ•ˆμ •μ„±μ— μ€‘μš”ν•œ 역할을 ν•˜λŠ” κ³³μž„μ„ μ•Œκ²Œ λ˜μ—ˆλ‹€. λ‹€μŒμœΌλ‘œ μ‚¬λžŒ GDH λ™μœ„νš¨μ†Œμ˜ 글루탐산 κ²°ν•©λΆ€μœ„λ₯Ό μ•Œμ•„λ³΄κΈ° μœ„ν•˜μ—¬ λͺ‡ 가지 κ°€λŠ₯성이 μžˆλŠ” λΆ€μœ„ (K94, G96, K118, K130, or D172)에 λŒ€ν•΄ λŒμ—°λ³€μ΄λ°©λ²•μ„ μ‚¬μš©ν•˜μ˜€λ‹€. hGDH1κ³Ό hGDH2의 K94, G96, K118μ—μ„œμ˜ λŒμ—°μ²΄μ—μ„œ νš¨μ†Œν™œμ„±μ΄ 크게 κ°μ†Œν•˜μ˜€κ³  글루탐산에 λŒ€ν•œ Km 값은4-10배정도 μ¦κ°€ν•˜μ˜€λ‹€. K130Y λŒμ—°μ²΄μ—μ„œλŠ” 글루탐산에 λŒ€ν•œ Km 값이 1.6배정도에 λΆˆκ³Όν•œ 반면 ν™œμ„±νš¨μœ¨μ€ μžμ—°ν˜•μ˜ 2~3%λ₯Ό λ³΄μ—¬μ£Όμ—ˆλ‹€. λ”°λΌμ„œ K130 μœ„μΉ˜λŠ” 글루탐산 κ²°ν•©λ³΄λ‹€λŠ” νš¨μ†Œν™œμ„±μ— μžˆμ–΄μ„œ μ€‘μš”ν•œ κ³³μž„μ„ μ•Œκ²Œ λ˜μ—ˆλ‹€. λ˜ν•œ D172Y λŒμ—°μ²΄μ—μ„œ μ•Œλ‘œμŠ€ν…Œλ¦­ ν™œμ„±μ œμΈ ADP에 λŒ€ν•œ ν™œμ„±μ˜ κ°μ†Œκ°€ ν™•μΈλ˜μ—ˆλ‹€. p-Chloromercuribenzoic acidλŠ” μ‚¬λžŒ GDH의 ν™œμ„±μ„ κ°μ†Œμ‹œν‚¨λ‹€. [14C]κ°€ ν‘œμ§€λœ peptideλ₯Ό ν™•μΈν•œ κ²°κ³Ό PCMB와 μž‘μš©ν•˜λŠ” 곳은 C323μ΄μ—ˆλ‹€. hGDH λ™μœ„νš¨μ†Œ μžμ—°μ²΄μ™€λŠ” λ‹€λ₯΄κ²Œ Arg, Gly, Leu, Met λ‚˜ Tyr둜 μΉ˜ν™˜μ‹œν‚¨ C323 λŒμ—°μ²΄λ“€μ€ [14C]p-chloromercuribenzoic acid 와 κ²°ν•©ν•˜μ§€ μ•Šμ•˜λ‹€. 이 λŒμ—°μ²΄λ“€μ˜ νš¨μ†Œ ν™œμ„± νš¨μœ¨μ€ μžμ—°μ²΄μ˜ 11%~14%μ΄μ—ˆκ³  μ΄λŸ¬ν•œ 사싀은 두 κ°€μ§€μ˜ μ‚¬λžŒ GDH λ™μœ„νš¨μ†Œμ—μ„œ λ‹€λ₯΄μ§€ μ•Šμ•˜λ‹€. μ•Œλ‘œμŠ€ν…Œλ¦­ 영ν–₯제인 ADP와 GTPλŠ” [14C]p-chloromercuribenzoic acid과의 결합에 μ–΄λ– ν•œ 영ν–₯도 λΌμΉ˜μ§€ μ•Šμ•˜λ‹€. μ§€κΈˆκΉŒμ§€μ˜ κ²°κ³ΌλŠ” C323 λΆ€μœ„κ°€ μ‚¬λžŒ GDH λ™μœ„νš¨μ†Œμ˜ νš¨μ†Œν™œμ„±μ— κ΄€μ—¬ν•œλ‹€λŠ” 것을 보여주고 μžˆλ‹€. μ•Œλ£¨λ―ΈλŠ„μ€ µM의 농도 λ²”μœ„μ—μ„œ pseudo-first-order reaction에 μ˜ν•΄ GDHλ₯Ό λΆˆν™œμ„±μ‹œν‚¨λ‹€. μ΄λŸ¬ν•œ λΆˆν™œμ„±μ€ pH에 μ˜μ‘΄ν•˜κ³  μ‚°μ„± μƒνƒœμ—μ„œ μ¦κ°€ν•œλ‹€. λΆˆν™œμ„±λœ GDHλŠ” νš¨μ†Œ λ‹¨μœ„ λ‹¨λŸ‰μ²΄ λ‹Ή 2λͺ°μ˜ μ•Œλ£¨λ―ΈλŠ„κ³Ό κ²°ν•©ν•œλ‹€. μ—¬λŸ¬ ν‘μ°©μ œλ“€ μ€‘μ—μ„œ ꡬ연산과 μ—Όν™”λΆˆμ†Œκ°€ μ•Œλ£¨λ―ΈλŠ„κ³Ό νš¨μ†Œμ˜ λ³΅ν•©μ²΄μ—μ„œ μ•Œλ£¨λ―ΈλŠ„μ„ λΆ„λ¦¬μ‹œν‚¨λ‹€. κ·Έ λΆ„λ¦¬μƒμˆ˜λŠ” 5.3 µM이닀. ADP, NAD+λ‚˜ GTP κ²°ν•©λΆ€μœ„μ—μ„œμ˜ μ‹€ν—˜μ€ κ·Έ λΆ€μœ„κ°€ GDH에 λŒ€ν•œ μ•Œλ£¨λ―ΈλŠ„ λΉ„ν™œμ„±κ³Ό 관련이 μ—†λ‹€λŠ” 사싀을 보여쀀닀. μ›νŽΈκ΄‘ 이색성 μΈ‘μ • μ‹€ν—˜μ—μ„œ GDH에 λŒ€ν•œ μ•Œλ£¨λ―ΈλŠ„μ˜ 결합은 νš¨μ†Œμ˜ Ξ±-λ‚˜μ„ κ΅¬μ‘° 와 Ξ²-병풍ꡬ쑰λ₯Ό κ°μ†Œμ‹œν‚€κ³  λžœλ€μ½”μΌκ΅¬μ‘°λ₯Ό μ¦κ°€μ‹œν‚¨λ‹€λŠ” 사싀을 ν™•μΈν•˜μ˜€λ‹€. λ”°λΌμ„œ μ•Œλ£¨λ―ΈλŠ„μ— μ˜ν•œ GDH의 λΆˆν™œμ„±ν™”λŠ” μ•Œλ£¨λ―ΈλŠ„ 결합에 μ˜ν•œ ꡬ쑰적인 변화에 κΈ°μΈν•œ κ²ƒμœΌλ‘œ 생각할 수 있고 μ΄λŸ¬ν•œ 사싀은 글루탐산 λŒ€μ‚¬μ— κ΄€μ—¬ν•˜λŠ” νš¨μ†Œμ—μ„œ μ•Œλ£¨λ―ΈλŠ„μ— μ˜ν•œ 영ν–₯이 μ•Œλ£¨λ―ΈλŠ„μ— μ˜ν•œ μ‹ κ²½λ…μ„±μ˜ 원인 쀑 ν•˜λ‚˜μΌ κ²ƒμ΄λΌλŠ” κ°€λŠ₯성을 μ œμ‹œν•΄ μ€€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ GDH에 λŒ€ν•œ siRNAλ₯Ό λ§Œλ“€ 수 μžˆλŠ” 벑터λ₯Ό μ‚¬μš©ν•¨μœΌλ‘œμ¨ νŒŒν‚¨μŠ¨μ”¨ 병 같은 신경퇴행성 μ§ˆν™˜μ—μ„œ GDH의 κΈ°λŠ₯을 μ‚΄νŽ΄λ³΄κ³ μž ν•˜μ˜€λ‹€. siRNAλŠ” λ¬΄μ²™μΆ”λ™λ¬Όμ—μ„œμ˜ RNA κ°„μ„­ λ™μ•ˆμ— RNA λΆ„ν•΄λ₯Ό μ•ΌκΈ°μ‹œν‚€λŠ” μ€‘κ°„μ²΄λ‘œμ˜ μž‘μš©μ„ ν•˜λŠ” 19-21 λ‰΄ν΄λ ˆμ΄ν‹°λ“œμ˜ μ΄μ€‘λ‚˜μ„  RNA이닀. phGDH-siRNA3 κ³Ό phGDH-siRNA4의 co-transfection은 GDH λ°œν˜„μ„ μ–΅μ œμ‹œν‚€κ³  mRNA 양을 κ°μ†Œμ‹œν‚¨λ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. λ˜ν•œ TUNEL 검사λ₯Ό ν†΅ν•΄μ„œ μ΄λŸ¬ν•œ GDH의 μœ μ „μž μ†Œλ©Έμ΄ μ‹ κ²½μ„Έν¬μ—μ„œ 세포사λ₯Ό μΌμœΌν‚¨λ‹€λŠ” 사싀과 caspase 3 λ°œν˜„μ˜ 증가가 μœ λ„λœλ‹€λŠ” 점을 ν™•μΈν•˜μ˜€λ‹€. λ”°λΌμ„œ μ‹ κ²½μ„Έν¬μ—μ„œ μ‚¬λžŒ GDH의 μ–΅μ œλŠ” 세포사와 관련이 μžˆλ‹€λŠ” 사싀을 증λͺ…ν•˜μ˜€μœΌλ©° μ΄λŠ” 신경세포 λ‚΄μ—μ„œ GDHκ°€ μ€‘μš”ν•œ μž‘μš©μ„ ν•œλ‹€λŠ” 것을 μ œμ‹œν•΄μ£Όκ³  μžˆλ‹€. [영문]Molecular biological studies confirmed that two human glutamate dehydrogenase isozymes (hGDH1 & hGDH2) of distinct genetic origin are expressed in human tissues. hGDH1 is heat stable and expressed widely, whereas hGDH2 is heat-labile and specific for neural and testicular tissues. To gain a insight into the structural and regulatory basis of GDH isozymes, a 1557-base-pair gene that encodes human GDH2 has been synthesized and expressed in E. coli as a soluble protein. At 45oC (pH 7.0), heat inactivation processed faster for hGDH2 (half-life = 45 min) than for hGDH1 (half-life = 310 min) in the absence of allosteric regulators. Both hGDH1 and hGDH2, however, showed much slower heat inactivation processes in the presence of 1 mM ADP or 3 mM L-Leu. In hGDH isozymes, the 443 site is Arg in hGDH1 and Ser in hGDH2, respectively. Substitution of Ser into Arg at 443 site by cassette mutagenesis abolished the heat-lability of hGDH2 with a similar half-life of hGDH1. These results suggest that the Ser 443 residue plays an important role in the different thermal stability of hGDH isozymes. The cassette mutagenesis at several putative positions (K94, G96, K118, K130, or D172) was performed to examine the residues involved in the glutamate-binding of the hGDH isozymes (hGDH1 and hGDH2). There was dramatic reduction in the catalytic efficiency in mutant proteins at K94, G96, K118, or K130 site, but not at D172 site. The Km values for glutamate were 4~10-fold greater for the mutants at K94, G96, or K118 site than for the wild-type hGDH1 and hGDH2. The decreased catalytic efficiency of the K130 mutant mainly results from the reduced kcat value, suggesting a possibility that the K130Y residue may be involved in the catalysis rather than in the glutamate-binding. The reduction of ADP activation in D172Y mutant was more profoundly observed in hGDH2 than in hGDH1. It is suggested that K94, G96, and K118 residues play an important role, although at different degrees, in the binding of glutamate to hGDH isozymes. Reaction of hGDH1 and hGDH2 with p-chloromercuribenzoic acid resulted in a loss of enzyme activity. A reactive cysteine residue was identified as C323 in the overall sequence of [14C]-labeled peptide. In contrast to the wild-type hGDH isozymes, no incorporation of [14C]p-chloromercuribenzoic acid was observed with the C323 mutants containing Arg, Gly, Leu, Met, or Tyr at position 323 using synthetic hGDH genes. The enzyme efficiency (kcat Km) of the mutants showed only 11%~14% of the wild type hGDH isozymes, suggesting that the decreased efficiencies of the mutants mainly result from the decrease in kcat values. There were no differences between the two hGDH isozymes in sensitivities to the mutagenesis at C323 site. It is suggested that C323 plays an important role for the catalysis of hGDH isozymes. Aluminum inactivated hGDH isozymes by a pseudo-first-order reaction at µM concentration. Double reciprocal plot gave a straight line with a kinact of 2.7 min-1 and indicated the presence of a binding step prior to inactivation. The inactivation was strictly pH-dependent and a marked increase in the sensitivity to aluminum was observed as the pH decreased. When preincubated with enzyme, several chelators such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid, ethylenediaminetriacetic acid, citrate, or NaF efficiently protected the enzyme against the aluminum inactivation. In a related experiment, only citrate and NaF released the aluminum from the completely inactivated aluminum-enzyme complex and fully recovered the enzyme activity. The dissociation constant for the aluminum-enzyme complex was calculated to be 5.3 µM. Circular dichroism studies showed that the binding of aluminum to the enzyme induced a decrease in Ξ±-helix and Ξ²-sheet and an increase in random coil. Therefore, it is suggested that inactivation of hGDH by aluminum is due to the conformational change induced by aluminum binding. These results suggest a possibility that aluminum-induced alterations in enzymes of the glutamate system may be one of the causes of aluminum-induced neurotoxicity. GDH function may be of importance for neurodegenerative disease such as Parkinson''s disease. In this study, several vector-based siRNA of hGDH was constructed and directly expressed intracellularly from a plasmid DNA. Using immunoblotting method, it was confirmed that hGDH expression were knockdown by most of phGDH-siRNAs in human neuroblastoma cells. RT-PCR analysis showed that mRNA level also decreased like as hGDH protein level. TUNEL assay after 48 h co-transfection revealed that inhibition of hGDH expression induced apoptotic condition and increased caspase-3 activity in human neuroblastoma cells. It is shown that inhibition of hGDH expression in neuronal cell are related with apoptosis.restrictio

    (A)Study on rhetorical expression of public information design : focus on information design case for Seoul public transportation

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :λ””μžμΈν•™λΆ€ μ‹œκ°λ””μžμΈμ „κ³΅,2005.Maste

    AlGaAs/GaAs HEMT and low noise amplifier with switchable two inputs

    No full text
    Maste

    Apoptosis and signal transduction by chobalt chloride in C6 glioma cells

    No full text
    μž„μƒλ³‘λ¦¬ν•™κ³Ό/μ„μ‚¬λ‡ŒλΉˆν˜ˆ(brain ischemia)은 hypoxiaλ₯Ό μ•ΌκΈ°ν•˜λŠ”λ°, 이것은 λ‡Œμ†μƒκ³Ό 쀑좔신경계 경색을 μΌμœΌν‚€λŠ” μ£Όμš”ν•œ 병리학적 μš”μ†Œμ΄λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” normoxiaμ—μ„œ hypoxia μƒνƒœλ₯Ό μœ λ„ν•˜ λŠ” κ²ƒμœΌλ‘œ μ•Œλ €μ§„ cobalt chloride둜 μ„Έν¬λ°°μ–‘λœ C6 glioma μ„Έν¬μ—μ„œ hypoxiaλ₯Ό μœ λ„ν•˜μ—¬ 그에 λ”°λ₯Έ apoptosisμ—μ„œ MAP kinase κ°€ 관여함을 μ•Œμ•„λ³΄κ³ μž ν•˜μ˜€λ‹€. λ¨Όμ € cobalt chlorideλ₯Ό C6 glioma 세포에 μ²˜λ¦¬ν•˜μ—¬ 세포 독성λŠ₯을 λ³Έ κ²°κ³Ό, IC_(50)이 400 ΞΌM둜 λ‚˜νƒ€λ‚¬λ‹€. 또 cobalt chloride μ²˜λ¦¬μ‹œ hypoxia-inducible factor 1(HIF-1)의 λ°œν˜„μ˜ μ¦κ°€λ‘œ cobalt chloride 처리둜 hypoxiaκ°€ μœ λ„λ¨μ„ 증λͺ…ν•˜μ˜€λ‹€. Cobalt chloride λ₯Ό 24μ‹œκ°„ μ²˜λ¦¬μ‹œ 300 ΞΌM μ΄μƒμ˜ λ†λ„μ—μ„œ DNA ladderκ°€ ν˜•μ„±λ¨μ„ 1.8% agarose μ „κΈ°μ˜ 동을 톡해 ν™•μΈν•˜μ˜€κ³ , Hoechst 33258 염색을 톡해 ν•΅μ˜ λΆ„μ ˆμ„ ν™•μΈν•˜μ˜€μœΌλ©°, μ „μžν˜„λ―Έ 경을 톡해 apoptosis둜 μ§„ν–‰λ˜λŠ” μ„Έν¬μ˜ ν˜•νƒœν•™μ μΈ λ³€ν™”λ₯Ό κ΄€μ°°ν•˜μ˜€λ‹€. λ˜ν•œ caspase-3 의 ν™œμ„± 증가λ₯Ό 톡해 apoptosis mediator의 μž‘μš©μ„ ν™•μΈν•˜μ˜€λ‹€. λ‹€μŒμœΌλ‘œ cobalt chlorid e에 μ˜ν•΄ μœ λ„λ˜λŠ” apoptosis의 μ‹ ν˜Έ 전달 기전에 λŒ€ν•΄ μ•Œμ•„λ³΄μ•˜λ‹€. 400 ΞΌM cobalt chlo rideλ₯Ό μ²˜λ¦¬μ‹œ μ„Έν¬μ§ˆμ—μ„œμ˜ ERK 1/2의 ν™œμ„±ν™”κ°€ 1μ‹œκ°„λΆ€ν„° μ‹œμž‘ν•˜μ—¬ 6μ‹œκ°„μ—μ„œ κ°€μž₯ κ°• ν•˜κ²Œ λ‚˜νƒ€λ‚¨μ„ μ•Œ 수 μžˆμ—ˆκ³ , μ΄λ ‡κ²Œ ν™œμ„±ν™”λœ ERK 1/2λŠ” μ„Έν¬μ§ˆμ—μ„œ ν™œμ„±ν™”κ°€ 된 μ‹œκ°„(1 μ‹œκ°„)에 ν•΅μœΌλ‘œ μ΄λ™ν•˜μ—¬ 3μ‹œκ°„λΆ€ν„° κ°μ†Œν•˜μ˜€λ‹€. ν•΅λ‚΄ 이동후 λ°œν˜„λ˜λŠ” transcription fa ctorλŠ” NFΞΊB의 증가λ₯Ό immunoblotting을 톡해 ν™•μΈν•˜μ˜€λ‹€. λ˜ν•œ MEK1의 inhibitor인 PD9 8059의 μ „μ²˜λ¦¬μ‹œ cobalt chloride둜 μœ λ„λ˜λŠ” DNA λΆ„μ ˆλŠ₯의 μ–΅μ œμ™€ μ „μžν˜„λ―Έκ²½μœΌλ‘œ λ³Έ μ„Έ ν¬μ—μ„œ ν˜•νƒœν•™μ  λ³€ν™”μ˜ κ°μ†Œλ₯Ό ν™•μΈν•¨μœΌλ‘œμ„œ apoptosis와 MAPK의 관련성을 λ’·λ°›μΉ¨ν•˜μ˜€λ‹€ . μœ„μ˜ μ‹€ν—˜ κ²°κ³Όλ₯Ό 톡해 C6 glioma μ„Έν¬μ—μ„œ cobalt chlorideκ°€ 세포 μ„±μž₯ μ–΅μ œ νš¨κ³Όμ™€ a poptosisλ₯Ό μœ λ„ν•˜λ©° 그의 μ‹ ν˜Έ 전달은 MAP kinase family μ€‘μ—μ„œλ„ ERK 1/2 pathwayλ₯Ό ν†΅ν•˜λ©° transcription factor인 NFΞΊBλ₯Ό ν™œμ„±μ‹œν‚΄μ„ μ•Œ 수 μžˆμ—ˆλ‹€. -------------------- ν•΅μ‹¬λ˜λŠ” 말 : Cobalt chloride, 세포 독성λŠ₯, Apoptosis, ERK 1/2, NFΞΊB. Apoptosis and Signal Trasduction by Cobalt Chloride in C6 Glioma cells Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and cenrtral nervous system infaction. In this study, I investigated the involvement of MAP kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. The cobalt chloride was used for the induction of hypoxia and its IC_(50) was 400 ΞΌM. I demonstrated DNA fragmentation after incubation with concentrations more than 300 ΞΌM cobalt chloride for 24 h. I also evidenced nuclear cleavage with Hoechst33258 stianing and morphological changes of the cells undergoing apoptosis with electron microscopy. Furthermore I confirmed activation of caspase-3, one of the mediator of apoptosis. Next I examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1h and more activated at 6h after treatment of 400 ΞΌM cobalt chloride. At the same time, the activated ERK 1/2 translocated into the nucleus and activated transcriptional factor, NFΞΊB not c-Jun. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced DNA fragmentation and apoptotic cell morphology. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).ope
    corecore