9 research outputs found

    Utility of Conventional Culture and MALDI-TOF MS for Identification of Microbial Communities in Bronchoalveolar Lavage Fluid in Comparison with the GS Junior Next Generation Sequencing System

    Get PDF
    BACKGROUND: Diverse microbiota exist in the lower respiratory tract. Although next generation sequencing (NGS) is the most widely used microbiome analysis technique, it is difficult to implement NGS in clinical microbiology laboratories. Therefore, we evaluated the performance of conventional culture methods together with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in identifying microbiota in bronchoalveolar lavage (BAL) fluid. METHODS: BAL fluid samples (n=27) were obtained from patients undergoing diagnostic bronchoscopy for lung mass evaluation. Bacterial and fungal culture was performed with conventional media used in clinical microbiology laboratories. On an average, 20 isolated colonies were picked from each agar plate and identified by MALDI-TOF MS. Microbiome analysis using 16S rRNA NGS was conducted for comparison. RESULTS: Streptococcus spp. and Neisseria spp. were most frequently cultured from the BAL fluid samples. In two samples, Enterobacteriaceae grew predominantly on MacConkey agar. Actinomyces and Veillonella spp. were commonly identified anaerobes; gut bacteria, such as Lactobacillus, Bifidobacterium, and Clostridium, and fungi were also isolated. NGS revealed more diverse bacterial communities than culture, and Prevotella spp. were mainly identified solely by NGS. Some bacteria, such as Staphylococcus spp., Clostridium spp., and Bifidobacterium spp., were identified solely by culture, indicating that culture may be more sensitive for detecting certain bacteria. CONCLUSIONS: Culture and NGS of BAL fluid samples revealed common bacteria with some different microbial communities. Despite some limitations, culture combined with MALDI-TOF MS might play a complementary role in microbiome analysis using 16S rRNA NGS.ope

    EphA2 Receptor Signaling Mediates Inflammatory Responses in Lipopolysaccharide-Induced Lung Injury

    Get PDF
    BACKGROUND: Eph receptors and ephrin ligands have several functions including angiogenesis, cell migration, axon guidance, fluid homeostasis, oncogenesis, inflammation and injury repair. The EphA2 receptor potentially mediates the regulation of vascular permeability and inflammation in response to lung injury. METHODS: Mice were divided into 3 experimental groups to study the role of EphA2 signaling in the lipopolysaccharide (LPS)-induced lung injury model i.e., IgG+phosphate-buffered saline (PBS) group (IgG instillation before PBS exposure), IgG+LPS group (IgG instillation before LPS exposure) and EphA2 monoclonal antibody (mAb)+LPS group (EphA2 mAb pretreatment before LPS exposure). RESULTS: EphA2 and ephrinA1 were upregulated in LPS-induced lung injury. The lung injury score of the EphA2 mAb+LPS group was lower than that of the IgG+LPS group (4.30±2.93 vs. 11.45±1.20, respectively; p=0.004). Cell counts (EphA2 mAb+LPS: 11.33×10(4)±8.84×10(4) vs. IgG+LPS: 208.0×10(4)±122.6×10(4); p=0.018) and total protein concentrations (EphA2 mAb+LPS: 0.52±0.41 mg/mL vs. IgG+LPS: 1.38±1.08 mg/mL; p=0.192) were decreased in EphA2 mAb+LPS group, as compared to the IgG+LPS group. In addition, EphA2 antagonism reduced the expression of phospho-p85, phosphoinositide 3-kinase 110γ, phospho-Akt, nuclear factor κB, and proinflammatory cytokines. CONCLUSION: This results of the study indicated a role for EphA2-ephrinA1 signaling in the pathogenesis of LPS-induced lung injury. Furthermore, EphA2 antagonism inhibits the phosphoinositide 3-kinase-Akt pathway and attenuates inflammation.ope

    EGFR and TTF-1 Gene Amplification in Surgically Resected Lung Adenocarcinomas: Clinicopathologic Significance and Effect on Response to EGFR-Tyrosine Kinase Inhibitors in Recurred Cases

    No full text
    Background Gene amplifications are implicated in cancer development and progression. In this study we investigated the clinicopathologic characteristics associated with EGFR or TTF-1 amplification in lung adenocarcinomas and its prognostic significance. Methods We analyzed 118 cases of surgically resected primary lung adenocarcinomas. Amplification of the EGFR or TTF-1 gene was evaluated by fluorescence in situ hybridization and correlated with patients’ clinicopathologic features, including disease-free survival (DFS) and overall survival (OS), in all patients and a subset that were TTF-1 positive or had EGFR mutation. Progression-free survival (PFS) also was analyzed among patients with EGFR mutation who had recurred cancer that was treated with EGFR tyrosine kinase inhibitors. Results EGFR or TTF-1 gene amplification was an independent poor prognostic factor for DFS in all patients (p = 0.001), in patients with TTF-1 positivity (p = 0.010), and in patients with EGFR mutation (p < 0.001) and for OS in patients with TTF-1 positivity (p = 0.021) and patients with EGFR mutation (p < 0.001). Patients with TTF-1 amplification had a shorter PFS following EGFR TKI treatment (p = 0.040). Conclusions EGFR or TTF-1 gene amplification was a predictive factor for poor prognosis in terms of DFS and OS, especially in patients with TTF-1 positivity or EGFR mutation. Our results also suggested that TTF-1 amplification might be a predictive marker of poor response to EGFR-TKI therapy in patients with recurrent tumor after surgical resection.ope

    MALDI-TOF Mass Spectrometry Based on Parylene-Matrix Chip for the Analysis of Lysophosphatidylcholine in Sepsis Patient Sera

    No full text
    In this work, medical diagnosis of sepsis was conducted via quantitative analysis of lysophosphatidylcholine 16:0 (LPC 16:0) by using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry based on a parylene-matrix chip. In the first step, specific mass peaks for the diagnosis of sepsis were searched by comparing MALDI-TOF mass spectra of sepsis patient sera with healthy controls and pneumonia patient sera. Two mass peaks at m/z = 496.3 and 518.3 were chosen as those that are specifically different for sepsis sera to compare with healthy controls and pneumonia patient sera. These mass peaks were identified to be protonated and sodium adducts of LPC 16:0 by using tandem mass spectra (MS2 and MS3) of purely synthesized LPC 16:0 and extracted LPC 16:0 from a healthy control and a sepsis patient. In the next step, a standard curve for LPC 16:0 for the quantitative analysis of LPC 16:0 with MALDI-TOF MS based on the parylene-matrix chip was prepared, and the statistical correlation to the LC-MS analysis results was demonstrated by using the Bland-Altman test and Passing-Bablok regression. Finally, MALDI-TOF MS based on the parylene-matrix chip was used for the quantification of LPC 16:0 with sera from patients with severe sepsis and septic shock (n = 143), pneumonia patients (n = 12), and healthy sera (n = 31). The sensitivity and the selectivity of medical diagnosis of sepsis was estimated to be 97.9% and 95.5% by using MALDI-TOF MS based on the parylene-matrix chip, respectively.restrictio

    Erythropoietin-Producing Hepatoma Receptor Tyrosine Kinase A2 Modulation Associates with Protective Effect of Prone Position in Ventilator-induced Lung Injury

    No full text
    The erythropoietin-producing hepatoma (Eph) receptor tyrosine kinase A2 (EphA2) and its ligand, ephrinA1, play a pivotal role in inflammation and tissue injury by modulating the epithelial and endothelial barrier integrity. Therefore, EphA2 receptor may be a potential therapeutic target for modulating ventilator-induced lung injury (VILI). To support this hypothesis, here, we analyzed EphA2/ephrinA1 signaling in the process of VILI and determined the role of EphA2/ephrinA1 signaling in the protective mechanism of prone positioning in a VILI model. Wild-type mice were ventilated with high (24 ml/kg; positive end-expiratory pressure, 0 cm; 5 h) tidal volume in a supine or prone position. Anti-EphA2 receptor antibody or IgG was administered to the supine position group. Injury was assessed by analyzing the BAL fluid, lung injury scoring, and transmission electron microscopy. Lung lysates were evaluated using cytokine/chemokine ELISA and Western blotting of EphA2, ephrinA1, PI3Kgamma, Akt, NF-kappaB, and P70S6 kinase. EphA2/ephrinA1 expression was higher in the supine high tidal volume group than in the control group, but it did not increase upon prone positioning or anti-EphA2 receptor antibody treatment. EphA2 antagonism reduced the extent of VILI and downregulated the expression of PI3Kgamma, Akt, NF-kappaB, and P70S6 kinase. These findings demonstrate that EphA2/ephrinA1 signaling is involved in the molecular mechanism of VILI and that modulation of EphA2/ehprinA1 signaling by prone position or EphA2 antagonism may be associated with the lung-protective effect. Our data provide evidence for EphA2/ehprinA1 as a promising therapeutic target for modulating VILI.restrictio

    All-trans retinoic acid attenuates bleomycin-induced pulmonary fibrosis via downregulating EphA2-EphrinA1 signaling

    No full text
    The role of all-trans retinoic acid (ATRA) in pulmonary fibrosis is relatively unknown, although this metabolite modulates cell differentiation, proliferation, and development. We aimed to evaluate the role of ATRA in bleomycin-induced pulmonary fibrosis, and whether the mechanism involves EphA2-EphrinA1 and PI3K-Akt signaling. We evaluated three groups of mice: a control group (intraperitoneal DMSO injection 3 times weekly after PBS instillation), bleomycin group (intraperitoneal DMSO injection 3 times weekly after bleomycin instillation), and bleomycin + ATRA group (intraperitoneal ATRA injection 3 times weekly after bleomycin instillation). The cell counts and protein concentration in the bronchoalveolar lavage fluid (BALF), changes in histopathology, Ashcroft score, hydroxyproline assay, expression of several signal pathway proteins including EphA2-EphrinA1, and PI3K-Akt, and cytokine levels were compared among the groups. We found that bleomycin significantly increased the protein concentration in the BALF, Ashcroft score in lung tissue, and hydroxyproline contents in lung lysates. Furthermore, bleomycin upregulated EphA2, EphrinA1, PI3K 110γ, Akt, IL-6 and TNF-α. However, administration of ATRA attenuated the upregulation of EphA2-EphrinA1 and PI3K-Akt after bleomycin instillation, and decreased pulmonary fibrosis. In addition, ATRA suppressed IL-6 and TNF-α production induced by bleomycin-induced injury. Collectively, these data suggest that ATRA attenuates bleomycin-induced pulmonary fibrosis by regulating EphA2-EphrinA1 and PI3K-Akt signaling.restrictio
    corecore