120 research outputs found
๋จ์ผ 3์ฐจ ์๋ฃ๊ธฐ๊ด์์ ํญ์์ ์ฌ์ฉ๊ด๋ฆฌ ํ๋ก๊ทธ๋จ์ ๋จ๊ณ์ ํ๋๊ฐ ํญ์์ ์ฌ์ฉ๋๊ณผ ๋ด์ฑ๋ฅ ์ ๋ฏธ์น ์ํฅ ๋ถ์
ํ์๋
ผ๋ฌธ(์์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์๊ณผ๋ํ ์ํ๊ณผ, 2023. 2. ๊น๋จ์ค.Background: To optimize antibiotic use, the United States Centers for Disease Control and Prevention outlined core elements of antimicrobial stewardship programs (ASP). However, they are difficult to implement in countries with limited-resources. We report on the successful implementation of a series of ASP with insufficient number of infectious diseases specialists.
Methods: We retrospectively collected data regarding antibiotic prescription and culture results of all patients admitted to a tertiary care teaching hospital (SNUBH) from January 2010 to December 2019. Trend analyses were performed using nonparametric two-sided correlated seasonal MannโKendall tests.
Results: Total antibiotic agent usage significantly decreased with ASP implementation at SNUBH since 2010 (days of therapy per 1000 patient-days [DOT]: 617.49 to 550.81; P < 0.01). Also, glycopeptide (DOT: 22.88 to 18.81; P < 0.01) and fluoroquinolone (FQ, DOT: 65.29 to 46.15; P < 0.01) use gradually decreased. Third-generation cephalosporins (3GC; DOT: 115.04 to 108.86; P = 0.48) and carbapenem use (DOT: 21.10 to 20.42; P = 1.00) did not significantly change. Furthermore, the rate of colonization with methicillin-resistant Staphylococcus aureus showed a consistently decreasing trend (Antimicrobial resistance [AMR] rate [%]: 55.4 to 45.5; P < 0.01). Although that with 3GC- (AMR rate [%]: 18.9 to 37.1; P < 0.01) and FQ-resistant Escherichia coli (AMR rate [%]: 41.4 to 53.7; P < 0.01) significantly increased, that of 3GC resistant-Klebsiella pneumoniae did not increase (AMR rate [%]: 22.3 to 26.5; P = 1.00). Also, that of 3GC- (AMR rate [%]: 15.8 to 12.3; P = 0.01) and FQ-resistant Pseudomonas aeruginosa (AMR rate [%]: 29.5 to 23.1; P = 0.01) significantly decreased.
Conclusions: Stepwise implementation of core ASP elements was effective in reducing total antibiotic use despite a lack of sufficient manpower.๋ฐฐ๊ฒฝ: ํญ์์ ์คํ์ด๋์ญ ํ๋ก๊ทธ๋จ(Antimicrobial stewardship program; ASP)์ ํต์ฌ ์ ๋ต์ ๋ฏธ๊ตญ ์ง๋ณํต์ ์๋ฐฉ์ผํฐ๊ฐ ๋ฐ๊ฐํ์์ผ๋, ์ธ๋ ฅ์ด ๋ถ์กฑํ ์๋ฃ ๊ธฐ๊ด์์๋ ์ ์ฉํ๊ธฐ ์ด๋ ค์ธ ์ ์๋ค. ๋ฐ๋ผ์ ์์์ด ์ ํ๋ ์๊ธ์ข
ํฉ๋ณ์์์ ASP์ ๋จ๊ณ์ ํ๋๊ฐ ํญ์์ ์ฌ์ฉ๋๊ณผ 5๊ฐ์ง ์ธ๊ท ์ ๋ด์ฑ๋ฅ ์ ๋ฏธ์น๋ ์ํฅ์ ์กฐ์ฌํ๊ณ ์ ํ๋ค.
๋ฐฉ๋ฒ: ์ผ๊ฐ ์๊ธ์ข
ํฉ๋ณ์์์ ์ํํ ASP ํ๋๋ค์ ํต์ฌ ์ ๋ต์ ๋ฐ๋ผ ์ ๋ฆฌํ์๋ค. ๋ํ, 2010๋
1์๋ถํฐ 2019๋
12์๊น์ง ์
์ํ๋ ๋ชจ๋ ํ์์ ํญ์์ ์ฒ๋ฐฉ๋๊ณผ ๋ชจ๋ ์์ ๊ฒ์ฒด์ ๋ฐฐ์ ๊ฒฐ๊ณผ๋ฅผ ํํฅ์ ์ผ๋ก ์์งํ์๋ค. ์ถ์ธ ๋ถ์์ ์ํด 2-sided correlated seasonal Mann-Kendall nonparametric tests๋ฅผ ์ํํ์๋ค.
๊ฒฐ๊ณผ: 10๋
๊ฐ ๋ค์ํ ASPํ๋๋ค์ ์ ์ฐฉ์์ผฐ๊ณ , ๊ทธ๋์ ์ด ํญ์์ ์ฌ์ฉ๋์ days of therapy per 1000 patient-days (DOT) ๊ธฐ์ค 617.49์์ 550.81๋ก ์ฝ 10.80%๊ฐ ์ ์ํ๊ฒ ๊ฐ์ํ์๋ค (P < 0.01). ๊ด๋ฒ์ ํญ์์ ์ค์์ glycopeptide (DOT: 22.88 to 18.81; P < 0.01)์ fluoroquinolone (FQ, DOT: 65.29 to 46.15; P < 0.01)์ ์ฌ์ฉ๋์ด ์ ์ํ๊ฒ ๊ฐ์ํ ๋ฐ๋ฉด, 3์ธ๋ cephalosporin (3rd generation cephalosporin; 3GC)์ ์ฌ์ฉ๋์ ์ ์ํ ๋ณํ๊ฐ ์์๋ค (DOT: 115.04 to 108.86; P = 0.48). ๋, ์ ์ฒด carbapenem ์ฌ์ฉ๋์ ์ ์ํ ๋ณํ๊ฐ ์์์ผ๋ (DOT: 21.10 to 20.42; P = 1.00), ertapenem ์ฌ์ฉ๋์ ์ฆ๊ฐํ์๋ค (DOT: 8.97 to 12.91; P = 0.02). Staphylococcus aureus์ methicillin ๋ด์ฑ๋ฅ ์ ์ง์์ ์ผ๋ก ๊ฐ์ํ์๊ณ (๋ด์ฑ๋ฅ [%]: 55.4 to 45.5; P < 0.01). Escherichia coli์ 3GC ๋ด์ฑ๋ฅ (๋ด์ฑ๋ฅ [%]: 18.9 to 37.1; P < 0.01), FQ ๋ด์ฑ๋ฅ (๋ด์ฑ๋ฅ [%]: 41.4 to 53.7; P < 0.01)์ ์ ์ํ๊ฒ ์ฆ๊ฐํ์๋ค. ๋ฐ๋ฉด, Klebsiella pneumoniae์ 3GC ๋ด์ฑ๋ฅ (๋ด์ฑ๋ฅ [%]: 22.3 to 26.5; P = 1.00)์ ์ ์ํ๊ฒ ์ฆ๊ฐํ์ง ์์๊ณ , Pseudomonas aeruginosa์ 3GC ๋ด์ฑ๋ฅ (๋ด์ฑ๋ฅ [%]: 15.8 to 12.3; P = 0.01), FQ ๋ด์ฑ๋ฅ (๋ด์ฑ๋ฅ [%]: 29.5 to 23.1; P = 0.01)์ ์ ์ํ๊ฒ ๊ฐ์ํ์๋ค.
๊ฒฐ๋ก : ์ธ๋ ฅ์ด ์ ํ๋ ์ํฉ์์๋ ASP์ ํต์ฌ ์ ๋ต์ ๊ทผ๊ฑฐํ ๋จ๊ณ์ ํ๋๊ฐ ์ด ํญ์์ ์ฌ์ฉ๋์ ์ค์ด๋๋ฐ ํจ๊ณผ์ ์ด์๋ค.Chapter 1. Introduction 1
1.1. Study background 1
1.2. Hypothesis 3
Chapter 2. Methods 3
2.1. Study population and data collection 3
2.2. Hospital leadership and stepwise implementation of the ASP at SNUBH 4
2.3. Definitions 9
2.4. Comparisons with Korean national data 10
2.5. Statistical analysis 11
Chapter 3. Results 12
3.1. Antibiotic use 12
3.2. AMR rates 16
Chapter 4. Discussion 21
References 28
Abstract in English 36์
Analysis of Nonlinear Wave Force Acting on Vertical Columns, Nonlinear Wave Transformation and Seabed Deformation around a Cylindrical Structure
์ต๊ทผ ํด์๊ณผ ํด์์ ๊ฐ๋ฐ์ ํ์์ฑ์ ๊ตญ๊ฐ์ ์ธ ๋ฌธ์ ๋ก ์ธ์๋๊ณ ์๋ค. ํด์๊ฐ๋ฐ์ ์๋์ง์์์ ๊ฐ๋ฐ๋ฟ๋ง ์๋๋ผ ๊ตญ๊ฐ์๋ณด์ ์ฐจ์์์ ์ ์ ๊ทธ ์ค์์ฑ์ด ๊ฐ์กฐ๋๊ณ ์์ผ๋ฉฐ, ํนํ ์์ ์ ํด์ ๊ด๋ฌผ์์์ ํ๋ณด ๋ฐ ์๋์์์ ํ๋ณด๋ ๊ตญ๊ฐ์๋์ง์ ๋๋ ฅ์ ํ๋ณด๋ผ๋ ์ค์ํ ๋ฌธ์ ์ ์ฐ๊ฒฐ๋์ด ์๋ค. ํด์์ญ์ ์ค์น๋๋ ์์ ๋น์ถ๊ธฐ์ง, ์์ ์ ์์์ค์ ๊ตญ๊ฐ์๋์ง์ ๊ณต๊ธ์์ผ๋ก์, ์ปจํ
์ด๋๋ถ๋์ ๊ฐ์ ํญ๋ง์์ค์ ๋ด๋ฅ๊ณผ ํด์์ ์ฐ๊ฒฐํ๋ ๋ฌผ๋ฅ์ ์ค์ฌ์ผ๋ก์ ๊ธฐ๋ฅ์ ์ํํ๊ณ ์๋ค. ์ด๋ฌํ ํด์ ๋ฐ ํด์๊ตฌ์กฐ๋ฌผ์ ์ค๊ณ์ ์์ด์ ๊ฐ์ฅ ์ค์ํ ์ธ๋ ฅ์ ์์ ์ค์ ํ๋์ธ ํ๋์ ์ํฅ์ ์ถฉ๋ถํ ๊ณ ๋ คํ์ฌ ๊ตฌ์กฐ๋ฌผ์ ์์ ์ฑ๊ณผ ์์
๊ฐ๋ฅ์ฑ์ ๊ฒํ ํ์ฌ์ผ ํ๋ค. ๋ฐ๋ผ์, ๋ํ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์ํด ๋ฐ์ํ๋ ํ์ ํ๋ฅผ ๊ณ ๋ คํ ์์ฉํ์ ๋ฐ ํ๋ ฅ์ ๋ดํ์ค๊ณ์ ์ ํํ ์์ธก๋ ํ์๊ฐ ์๋ค.
๋จผ์ , ๋ณธ ์ฐ๊ตฌ์์๋ ๋ณต์์ ๋ํ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์ค์ฌ์ผ๋ก ๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ๋น์ ํํ๋ ฅ๊ณผ ๊ตฌ์กฐ๋ฌผ์ ์ํ ๋น์ ํํ๋๋ณํ์ ๊ฒํ ํ๋ฉฐ, ์์นํด์์ ์ด๋ก ์ผ๋ก 1)Stokes 2์ฐจํ์ ๊ฒฝ์ฐ์ ๋ํ ์ญ๋์ ๊ฐ๋ฒ๊ณผ ๊ฒฝ๊ณ์ ๋ถ๋ฒ์ ๊ธฐ์ดํ ๋น์ ํ์ฃผํ์์์ญํด์๋ฒ์ ์ ์ฉํ์ฌ ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ๋น์ ํํ๋ ฅ ๋ฐ ๊ตฌ์กฐ๋ฌผ์ ์ํ ๋น์ ํํ๋๋ณํ์ ํด์ํ๊ณ , 2)ํ๋๊ณผ ๊ตฌ์กฐ๋ฌผ๊ณผ์ ๋น์ ํ์ํธ๊ฐ์ญ์ ๋ฐ๋ฅธ ๋ณต์กํ ์์ ์๋ฉด์ ๊ฑฐ๋ํน์ฑ์ ๊ณ ์ ๋๋ก ํด์ํ ์ ์๋ 3์ฐจ์ Navier-Stokes์ ์ด๋๋ฐฉ์ ์๊ณผ ์์ ์๋ฉด์ถ์ ์ 3์ฐจ์ VOF (Volume Of Fluid)๋ฒ(Full-nonlinearํด์๋ฒ)์ ์ ์ฉํ์ฌ ๋น์ํ ๋ฐ ์ํํ์ ํ๋์ ์ํ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ๋น์ ํํ๋ ฅ ๋ฐ ๊ตฌ์กฐ๋ฌผ์ ์ํ ๋น์ ํํ๋๋ณํ์ ํด์ํ๋ค.
์ด์์ ์์นํด์ ์ด๋ก ์ผ๋ก๋ถํฐ ์ป์ด์ง๋ ์์นํด์ ํ๋น์ฑ์ ๊ฒ์ฆํ๊ธฐ ์ํด ์ฐ์ง์์ฃผ๊ตฌ์กฐ๋ฌผ๊ณผ ํ๋๊ณผ์ ๋น์ ํ๊ฐ์ญ์ ์์ด์ ํด์ํด ๋ฐ 2์ฐจ์ค๋์ ํ์ ์ฐ๋ํฌํ
์
์์ ๋ํ Sanada(1998)์ ์์นํด์๊ฒฐ๊ณผ์ ์๋ฆฌ์คํ๊ฒฐ๊ณผ๋ฅผ ์ค์ฌ์ผ๋ก ํ ๊ธฐ์กด์ ํด์๊ฒฐ๊ณผ์๋ณธ ์์นํด์๊ฒฐ๊ณผ๋ฅผ ๋น๊ตใ๊ฒํ ํ์๊ณ , ์ฐ์ง์์ฃผ๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ํ๋ ฅํน์ฑ์ ๋ํ์ฌ Chakrabarti and Tam(1975)์ ์๋ฆฌ์คํ๊ฒฐ๊ณผ์ ๋ณธ ์ฐ๊ตฌ์ ์์นํด์๊ฒฐ๊ณผ๋ฅผ ๋น๊ตใ๊ฒํ ํ์๋ค. ๊ฐ๊ฐ์ ์์นํด์์ 2๊ธฐ๋ก ๊ตฌ์ฑ๋ ์์ํ์์ ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์ ์ฉํ๋ฉฐ, ๊ตฌ์กฐ๋ฌผ์ ํ์, ๊ตฌ์กฐ๋ฌผ์ ๋ฐฐ์น๊ฐ๊ฒฉ, ์
์ฌํํฅ๊ฐ์ ๋ณํ์ ๋ฐ๋ฅธ ๋น์ ํํ๋ ฅ๊ณผ ๋น์ ํํ๋๋ณํ์ ํน์ฑ์ ๋
ผ์ํ์๋ค. ๊ทธ๋ฆฌ๊ณ , Navier-Stokes์ ์ด๋๋ฐฉ์ ์๊ณผ VOF๋ฒ์ ์ ์ฉํ์ฌ ๊ฒฝ์ฌ๋ฉด์ ์ง๋ ์ผ์ ์์ฌ์ญ์ ์์นํ ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ๋ํ์ฌ ํ๊ณ ๋ณํ ๋ฐ ๊ตฌ์กฐ๋ฌผ ์์น๋ณํ์ ๋ฐ๋ฅธ ์ํํ์ ๋น์ ํํ๋ ฅ์ ๋ณํํน์ฑ์ ๊ฒํ ํ์๋ค.
๋ค์์ผ๋ก, ๊ตฌ์กฐ๋ฌผ์ ์ฃผ๋ณ์์ ํ๋์ ์ํ ์ธ๊ตด๊ณผ ํด์ ํ์๊ณผ ๊ฐ์ ์งํ๋ณ๋์ ๊ท๋ช
ํ๊ธฐ ์ํด 3์ฐจ์ Navier-Stokes์ ์ด๋๋ฐฉ์ ์๊ณผ 3์ฐจ์ VOF๋ฒ(Full-nonlinearํด์๋ฒ)์ผ๋ก๋ถํฐ ์ฐ์ ๋๋ ์ ๋ฉด์์์ ์ต๋์ ์๋ฒกํฐ์ ํ๊ท ์ ์๋ฒกํฐ ๋ฐ ํ๊ณ ๋ถํฌ์ ๊ฐ์ ํ๋์ฅ์ ํน์ฑ์ ์ด์ฉํ์ฌ ์์ฃผ๊ตฌ์กฐ๋ฌผ์ ์ ๋ฉด์์ ๋ฐ์๋๋ ์ธ๊ตด๊ณผ ํด์ ํ์์ ๋ํ ๊ธฐ์กด์ ์๋ฆฌ์คํ๊ฒฐ๊ณผ์ ์ฐ๊ณํ์ฌ ํ๋์ฅ์ ํน์ฑ์ด ์ ๋ฉด์ ์งํ๋ณํ์ ๋ฏธ์น๋ ์ํฅ์ ๊ฒํ ํ์๋ค.๋ํ, Saito(1988)์ ํ ์ฌ์ด๋์์ ๋ณธ ํด์๋ฒ์ ์ํด ์ฐ์ ๋ ์ ์์ ์ ์ฉํ์ฌ ํ ์ฌ์ด๋์๊ดํ ์์น์๋ฎฌ๋ ์ด์
์ ์ํํ์ฌ ํ ์ฌ์ด๋์ ํด์ํ์์ผ๋ฉฐ, ํนํ ์ํ์์ ์์ค์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์ํ ์งํ๋ณ๋์ ํด์ํ๊ณ Toe(1985)์ ์๋ฆฌ์คํ๊ฒฐ๊ณผ์ ๋น๊ตํ์๋ค.
์ด์์ ๊ณผ์ ์ผ๋ก๋ถํฐ ๋ค์๊ณผ ๊ฐ์ ๊ฒฐ๋ก ์ ์ป์ ์ ์์๋ค.
(1)๋น์ํ์์ ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ๋น์ ํํ๋ ฅ๊ณผ ๊ตฌ์กฐ๋ฌผ์ ์ํ ๋น์ ํํ๋๋ณํ
1)์ํ๋จ๋ฉด ๋ฐ ์ ์ฌ๊ฐํ๋จ๋ฉด์ ๊ฐ๋ ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์์ด์ ๊ตฌ์กฐ๋ฌผ์ ์ ๋ฉด์์๋๋ถ๋ถ์ค๋ณตํ์ ์ํฅ์ผ๋ก ๋์ ์๋ฉด์์น๊ณ ๋ฅผ, ๊ตฌ์กฐ๋ฌผ์ ๋ฐฐํ๋ฉด์์๋ ์๋์ ์ผ๋ก ๋ฎ์ ์๋ฉด์์น๊ณ ๋ฅผ ๋ํ๋ด์๋ค. ๋ํ, ๊ตฌ์กฐ๋ฌผ ์ ๋ฉด๊ณผ ๋ฐฐํ๋ฉด์์์ ์๋ฉด์์น๊ณ ์ ์๊ฐ๋ณํ์ ์์์ฐจ์ด๋ฅผ ๋ณด์ด๋ฉฐ, ํนํ ๊ตฌ์กฐ๋ฌผ ๋ฐฐํ๋ฉด์์์ ์๋ฉด์์น๊ณ ์ ๋ํ ์๊ฐ๋ณํ๋ ๊ตฌ์กฐ๋ฌผ๊ฐ์๊ฐ์ญํ์ ๋ฐ ํ์ ์ฐ๋ํ์ ์ํฅ์ผ๋ก ๋น์ ํ์ฑ์ด ํฌ๊ฒ ๋ํ๋ฌ๋ค.
2)๋ณต์์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์์ ๋ฐฐ์น๊ฐ๊ฒฉ์ ๋ณํ์ ๋ฐ๋ฅธ ๊ตฌ์กฐ๋ฌผ์ ํ๋ฉด๋๋ ์์ ์ต๋์๋ฉด์์น๊ณ ๋ ๊ตฌ์กฐ๋ฌผ์ ์ํ ํ์ ์ฐ๋ํ์ ์ํฅ๊ณผ ๊ตฌ์กฐ๋ฌผ๊ฐ์ ๋น์ ํ๊ฐ์ญ์ผ๋ก ๋ณต์กํ๊ฒ ๋ํ๋๋ ๊ฒ์ ์ ์ ์์๋ค.
3)๊ตฌ์กฐ๋ฌผ์ ๋ฐฐ์น๊ฐ๊ฒฉ์ ๋ฐ๋ฅธ ๋ณต์์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ๊ฐ ์ฑ๋ถํ๋ ฅ์ ๋ณํ๋ ๊ตฌ์กฐ๋ฌผ์ ๋ฐฐ์น๊ฐ๊ฒฉ์ด ์ผ์ ๊ฑฐ๋ฆฌ ์ด์์ผ๋ก ๋๋ฉด ๋จ์์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ๊ฐ ์ฑ๋ถํ๋ ฅ์ ๊ทผ์ ํ๊ฒ ๋๋ ๊ฒ์ ์ ์ ์์๋ค.
(2)์ํํ์ ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ๋น์ ํํ๋ ฅ๊ณผ ๊ตฌ์กฐ๋ฌผ์ ์ํ ๋น์ ํํ๋๋ณํ
1)๊ตฌ์กฐ๋ฌผ์ ์ ๋ฌด์ ๋ฐ๋ผ ์ํํํ์ ๋ณํ๊ฐ ๋ฐ์ํ๋ฉฐ, ์ผ์ ์์ฌ์ญ์ ์์ฌ์ด ๊น์์๋ก ๊ตฌ์กฐ๋ฌผ์ ์ํ ๋ฐ์ฌํ์ ์ํฅ์ด ๋ ์ปค์ง๊ณ , ๋๋ถ์ด ์ํํํ์์ ๋ณํ๋ ํฌ๊ฒ ๋ํ๋ฌ๋ค.
2)์ํ๋ฐ์์ง์ ์ด ๊ฒฝ์ฌ๋ฉด์์ ๋ฐ์ํ๋ฉด ์ผ์ ์์ฌ์ญ์ ์์นํ ๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ๋น์ ํํ๋ ฅ์ ๊ฐ์๊ธฐ์ธ๊ธฐ๊ฐ ์ฌ๋ฉด๋ถ๊ธฐ์ ํ์ ์ํํํ์ด ๋ฐ์ํ๋ ๊ฒฝ์ฐ๋ณด๋ค ํฌ๊ณ , ๋ฐ๋ผ์ ์ผ๋ถ์์ญ์์๋ ํ๊ณ ๊ฐ ์ฆ๊ฐํ์ฌ๋ ๊ตฌ์กฐ๋ฌผ์ ์์ฉํ๋ ํ๋ ฅ์ด ์๊ฒ ๋ํ๋ฌ๋ค.
3)์ํ๋ฐ์์์น์ ๋ฐ๋ฅธ ํ๋ ฅ๋ณํํน์ฑ์ ์ผ์ ์์ฌ์ญ์ ์์ฌ์ ๋ณํ์ํค๋ฉด์ ๊ณ ์ฐฐํ์๊ณ , 2)์ ๋์ผํ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์๋ค.
4) ์ํ๋ฐ์์ง์ ์ ๊ตฌ์กฐ๋ฌผ์ด ๊ทผ์ ํ ์๋ก ํ๋ ฅ์ ๋ณํ๊ธฐ์ธ๊ธฐ๋ ๊ธ๊ฒฉํ๊ฒ ์ฆ๊ฐํ๊ณ , ๋ฉ์ด์ง์ ๋ฐ๋ผ ํ๋ ฅ์ ๋ณํ๊ธฐ์ธ๊ธฐ๊ฐ ์๋งํด์ง๋ ๊ฒฐ๊ณผ๋ฅผ ์ป์๋ค.
(3)์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ์ ์ฃผ๋ณ์์ ํ๋ฆ๊ณผ ์งํ๋ณ๋
1)๊ธฐ์กด์ ์คํ๊ฒฐ๊ณผ์ ๋ณธ ํด์๋ฒ์ ์ํด ์ฐ์ ๋ ์ ๋ฉด์ต๋์ ์, ํ๊ท ์ ์ ๋ฐ ํ๊ณ ๋ถํฌ์ ๋น๊ตํ์ฌ ์ธ๊ตด๊ณผ ํด์ ๊ณผ์ ์ฐ๊ด์ฑ์ ๊ฒํ ํ์๋ค. ๊ตฌ์กฐ๋ฌผ์ ์ ๋ฉด์์ -x์ถ๋ฐฉํฅ์ผ๋ก ์ต๋์ ์์ด ๋ฐ์ํ๋ ์์ญ์์ ์ต๋์ธ๊ตด์ฌ์ด ๋ํ๋๊ณ , ์ ์์ด ๊ฐ์ํ๋ ์์ญ์์๋ ํด์ ์ด ๋ํ๋๋ฉฐ, ๋ค์ ์ ์์ด ์ฆ๊ฐํ๋ ์์ญ์์ ์ธ๊ตด์ด ๋ํ๋ฌ๋ค.
2)ํ๊ณ ๋ถํฌ์ ๋น๊ตํ์์ ๋ ์ค๋ณตํ์ Node๋ถ๋ถ์์๋ ์ธ๊ตด์ด, Anti-node์์๋ ํด์ ์ด ์ผ์ด๋ฌ๋ค.
3)๋ณธ ํด์๋ฒ์ ์ํด ์ฐ์ ๋ ์ ๋ฉด์ ์์ ๊ธฐ์กด์ ํ ์ฌ์ด๋์์ ์ ์ฉํ์ฌ ์ํ ๋ฐ ๋น์ํ์์ ๊ฒฝ์ฐ์ (์์ค)์์ฃผ๊ตฌ์กฐ๋ฌผ์ ์ฃผ๋ณ์์ ์งํ๋ณ๋์ ๊ดํ ์์น์๋ฎฌ๋ ์ด์
์ ์ํํ์๊ณ , ๊ธฐ์กด์ ์คํ๊ฒฐ๊ณผ์ ์ธ๊ตด ๋ฐ ํด์ ์ ๊ฒฝํฅ์ด ๋์ฒด๋ก ์ ์์ํ์๋ค.์ 1์ฅ ์๋ก 1
1. ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ 1
2. ๊ธฐ์กด์ ์ฐ๊ตฌ 6
2.1 ๋น์ ํํ๋์ฅ์ ํด์ 6
2.2 ํ๋์ฅ์์ ์งํ๋ณ๋์ ํด์ 8
3. ์ฐ๊ตฌ์ ๋ชฉ์ ๊ณผ ๊ตฌ์ฑ 9
11
์ 2์ฅ Stokes์ 2์ฐจํ์ด๋ก ์ ์ํ ๋น์ ํํ๋ ฅ ๋ฐ
๋น์ ํํ๋๋ณํ์ ํด์ 16
1. ๊ฐ์ 16
2. ์์นํด์์ด๋ก 16
2.1 ์ง๋ฐฐ๋ฐฉ์ ์๊ณผ ์์ ์๋ฉด๊ฒฝ๊ณ์กฐ๊ฑด 16
2.2 ์ญ๋์ ๊ฐ์ ๋ณตํฉ์๋ฉด๊ฒฝ๊ณ์กฐ๊ฑด 17
2.2.1 ์ญ๋์ ๊ฐ 17
2.2.2 ๋ณตํฉ์๋ฉด๊ฒฝ๊ณ์กฐ๊ฑด 18
2.2.3 First order 19
2.2.4 Second order 21
2.2.5 Green๊ณต์๊ณผ 24
2.2.6 ์ด์ฐํ 26
2.2.7 ์๋ฉดํํ 30
2.2.8 ํ๋ ฅ 30
3. ์์นํด์๊ฒฐ๊ณผ 32
3.1 ์์นํด์๊ฒฐ๊ณผ์ ๊ฒ์ฆ 32
3.2 ์์นํด์๊ฒฐ๊ณผ 35
3.2.1 ๋น์ ํํ๋๋ณํ 35
3.2.2 ๋น์ ํํ๋ ฅ 51
4. ๊ฒฐ๋ก 54
55
์ 3์ฅ ๋น์ํ์ Full-nonlinearํด์๋ฒ์ ์ํ ๋น์ ํํ๋ ฅ
๋ฐ ๋น์ ํํ๋๋ณํ์ ํด์ 57
1. ๊ฐ์ 57
2. ์์นํด์์ด๋ก 58
2.1 ์์นํ๋์๋ก 58
2.1.1 ๊ธฐ์ด๋ฐฉ์ ์ 59
2.1.2 ์๊ฐ๋ฆฐ๊ฒฉ์ 60
2.1.3 ๊ธฐ์ด๋ฐฉ์ ์์ ์ด์ฐํ 61
2.1.4 Two-step projection method 63
2.2 VOF๋ฒ์ ์ํ ์์ ์๋ฉด์ ์ถ์ 69
2.2.1 ์ด๋ฅ๋ฐฉ์ ์ 69
2.2.2 ์ด๋ฅ๋ฐฉ์ ์์ ์ด์ฐํ 70
2.2.3 ์์ ์๋ฉด์ ๋ชจ๋ธ๋ง 70
2.2.4 ์์ ์๋ฉด์ ํ์ 70
2.2.5 ์์น๊ณ์ฐ 74
2.3 ๊ฒฝ๊ณ์กฐ๊ฑด 80
2.3.1 ์์ ์๋ฉด์์์ ๊ฒฝ๊ณ์กฐ๊ฑด 80
2.3.2 ๊ฐ๊ฒฝ๊ณ์กฐ๊ฑด 81
2.3.3 ์กฐํ์กฐ๊ฑด 82
2.3.4 ์์ ์กฐ๊ฑด 85
2.3.5 ๊ทธ ์ธ์ ๊ฒฝ๊ณ์กฐ๊ฑด 86
2.4 ์์น๊ณ์ฐ์ ํ๋ฆ 86
3. ์์นํด์๊ฒฐ๊ณผ์ ๊ฒ์ฆ 88
3.1 ์กฐํํํ 88
3.2 ํ๋๋ณํ 89
3.3 ํ๋ ฅ 93
4. ์์นํด์๊ฒฐ๊ณผ 95
4.1 ๋จ์์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ 95
4.2 ์ํ๋จ๋ฉด์ ๋ณต์์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ 100
4.2.1 ์
์ฌํํฅ๊ฐ 101
4.2.2 ์
์ฌํํฅ๊ฐ 110
4.2.3 ์
์ฌํํฅ๊ฐ 115
4.3 ์ ์ฌ๊ฐํ๋จ๋ฉด์ ๋ณต์์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ 119
4.3.1 ์
์ฌํํฅ๊ฐ 120
4.3.2 ์
์ฌํํฅ๊ฐ 125
4.3.3 ์
์ฌํํฅ๊ฐ 131
5. ๊ฒฐ๋ก 136
139
์ 4์ฅ ์ํํ Full-nonlinearํด์๋ฒ์ ์ํ ๋น์ ํํ๋ ฅ ๋ฐ
๋น์ ํํ๋๋ณํ์ ํด์ 141
1. ๊ฐ์ 141
2. ์์นํด์ 142
2.1 ๊ตฌ์กฐ๋ฌผ ๋ฐ ํด์ ์ ์กฐ๊ฑด 142
2.2 ์์นํด์๊ฒฐ๊ณผ(d=4cm) 144
2.2.1 ํ๊ณ ๋ณํ์ ๋ฐ๋ฅธ ๋น์ ํํ๋ ฅ์ ํน์ฑ 144
2.2.2 ํ๊ณ ๋ณํ์ ๋ฐ๋ฅธ ๋น์ ํํ๋๋ณํ์ ํน์ฑ 146
2.2.3 ๊ตฌ์กฐ๋ฌผ์ ์์น๋ณํ์ ๋ฐ๋ฅธ ๋น์ ํํ๋ ฅ์ ํน์ฑ 157
2.3 ์์นํด์๊ฒฐ๊ณผ(d=6cm) 158
2.3.1 ํ๊ณ ๋ณํ์ ๋ฐ๋ฅธ ๋น์ ํํ๋ ฅ๊ณผ ๋น์ ํํ๋๋ณํ์ ํน์ฑ 158
2.3.2 ๊ตฌ์กฐ๋ฌผ์ ์์น๋ณํ์ ๋ฐ๋ฅธ ๋น์ ํํ๋ ฅ์ ํน์ฑ 167
2.3.3 3์ฐจ์ํ๋ฉดํํ์ ๋ณํ 170
3. ๊ฒฐ๋ก 178
179
์ 5์ฅ ๊ตฌ์กฐ๋ฌผ์ ์ฃผ๋ณ์์์ ํ๋ฆ๊ณผ ์งํ๋ณ๋์ ํด์ 180
1. ๊ฐ์ 180
2. ์ง๋ฆฝ๋ฒฝ์ ์ ๋ฉด์์ ์ธ๊ตด๊ณผ ํด์ 182
3. ์ฐ์ง์ฃผ์๊ตฌ์กฐ๋ฌผ(์ํ๋จ๋ฉด)์ ์ฃผ๋ณ์์ ์งํ๋ณ๋์ ํด์ 184
3.1 ์๋ฆฌ์คํ ๋ฐ ์์นํด์์ ์กฐ๊ฑด 184
3.2. ํ๋ํน์ฑ์ด ์งํ๋ณ๋์ ๋ฏธ์น๋ ์ํฅ 185
3.2.1 Model-I 185
3.2.2 Model-II 193
4. ์งํ๋ณ๋์ ์์น์๋ฎฌ๋ ์ด์
200
4.1 ํ ์ฌ์ด๋์ 200
4.2 ์ ๋ฉด์งํ๋ณ๋์ ํํ์ํ 202
4.3 ์์น์๋ฎฌ๋ ์ด์
์ ๊ฒฐ๊ณผ 203
4.4 ํ ์ฌ์ด๋์์ ํ๊ณ์ฑ ๋ฐ ์ ์ฉ์ฑ 207
5. ๊ฒฐ๋ก 208
209
์ 6์ฅ ์ข
ํฉ๊ฒฐ๋ก 21
Ion Transport Properties of CaTi0.9Sc0.1O3-ฮด in Temperature Gradients
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ฌ๋ฃ๊ณตํ๋ถ, 2016. 2. ๋ฅํ์ผ.ํ๋ก๋ธ์ค์นด์ดํธ๊ณ(ABO3) ๋ฌผ์ง๋ค์ ๋์ ์์ ์ฑ์ ๋ฐํ์ผ๋ก ๋ง์ ์ฐ๊ตฌ๋ฅผ ์๋ํ๊ณ ์๋ค. ๊ทธ ์ค ๋ช๋ช์ ์ฐ๊ตฌ์๋ค์ด CaTiO3์ acceptor๋ฅผ ๋ค์ฌ ์ด์จ์ ๋๋๋ฅผ ๋์ด๋ฉด ๊ธฐ์กด์ SOFC์ ์ ํด์ง์ธ YSZ๋ฅผ ๋์ฒดํ ์๋ ์๋ค๋๊ฒ์ ์
๊ฐํ์ฌ ์ด์จ๋๋ฆ์๋ฅผ ๋์ด๋ ๋
ธ๋ ฅ์ ํด์๋ค. Sc 10 m/o ๋ค์ธ CaTi0.9Sc0.1O3-ฮด๋ 1000๋ ์์์ ์ด์จ์ ๋๋๊ฐ ๊ธฐ์กด์ YSZ์ ์์ํ๋ฉฐ ๋ํ ์ด์จ๋๋ฆ์๊ฐ 0.9 ์ด์์ธ ์์ญ์ด ๋ค๋ฅธ ๋ฌผ์ง์ ๋นํด ๋์ ํธ์์ ๋ณด์๋ค. ๋ฐ๋ผ์ SOFC์ ์ ํด์ง์ ํ๋ณด๋ก ์ฌ๋ฌ ํน์ฑ์ ์ฐ๊ตฌ๊ฐ ํ์ํ์ง๋ง ํน์ฑ์ฐ๊ตฌ์ ๋ํด ๋ฌธํ๋ ๋ถ์กฑํ ์ค์ ์ด๋ค.
๋ฌผ์ง์ด ์ด๋ํ๊ฒ ๋๋ ํ์์ ๊ตฌ๋๋ ฅ(driving force)์๋ ์ ๊ธฐํํํฌํ
์
๋ฌผ๋งค(electrochemical potential gradient), ์จ๋๋ฌผ๋งค(temperature gradient) ๊ฐ ์๋ค. ์ด๋ฌํ ๊ตฌ๋๋ ฅ์ด ์กด์ฌํ ๋ ๋ฌผ์ง์ด ์ด๋ํ๊ฒ ๋๋๋ฐ ์ ๊ธฐํํ ํฌํ
์
๋ฌผ๋งค๊ฐ ์ง์ ์ ์ธ(direct effect) ๊ตฌ๋๋ ฅ์ผ๋ก ๋ณด๋๋ฐ ๋นํด ์จ๋๋ฌผ๋งค๋ ๊ฐ์ ์ ์ธ(indirect effect) ๊ตฌ๋๋ ฅ์ด๋ค. ๊ทธ๋ฌ๋ ์ง์ ์ ์ธ ๊ตฌ๋๋ ฅ์ ๋นํด ๊ฐ์ ์ ์ธ ๊ตฌ๋๋ ฅ์ ํจ๊ณผ๊ฐ ๋ฏธ๋นํ๋ค๊ณ ํ๋จํ์ฌ ์์ง๊น์ง ์ฐ๊ตฌ๊ฐ ๋ฏธ๋นํ์๋ค. ๊ทธ๋ฌ๋ ๋ณด๋ค ์ ๋ฐํด์ง ์ฐ๊ตฌ์กฐ๊ฑด์์ ์จ๋๋ฌผ๋งค๋ ๋ ์ด์ ๋ฌด์ํ ์ ์๋ ๊ตฌ๋๋ ฅ์ผ๋ก ๋ณด๊ธฐ ํ๋ค์ด ์ด๋ฌํ ์จ๋๋ฌผ๋งค๊ฐ ๊ฑธ๋ ธ์ ๋ ๋์๊ณ์์ ์ด๋ ํ ๋ฌผ์ง์ด๋์ด ์๋์ง์ ๋ํ ์ฐ๊ตฌ์ ํ์์ฑ์ด ์ ์ฐจ ๋๋ ๋๊ณ ์๋ค. ๋ฐ๋ผ์ ์จ๋๋ฌผ๋งค๊ฐ ๊ฑธ๋ ธ์ ๋์ ์ด์จ์ด๋ํน์ฑ ๋ถ์์ ์ค์ํ ์งํ์ธ reduced heat of transport์ ์ด์ฉํ์ฌ ๋ช๋ช์ ์ฐ๊ตฌ์๋ค์ด ๋ถ์์ ์๋ํ์๋ค. ํนํ ๋ณธ ์ฐ๊ตฌ์ ์ฌ์ฉ๋ Sc๋ค์ธ CaTiO3๋ 1000๋์์ ์ฐ์๋ถ์์๋ฐ๋ผ n-type, p-type, ๊ทธ๋ฆฌ๊ณ electrolyte์์ญ์ ํ์ธํ ์ ์์ด์ ์ฃผ ๊ฒฐํจ์์ญ์ ๋ฐ๋ฅธ ์ด๋ํ์์ ๋ํ ๋ถ์์ด ๊ฐ๋ฅํ๋ค๋ ์ฅ์ ์ด ์๋ค. ๋ฐ๋ผ์ ์ด๋ฌํ ์ด๋ํ์ ์คํ์ ์ํด, ์ฐจ๋จ์ ๊ทน์ ํ์ฑํ์ฌ Soret ํํ์ํ๋ฅผ ์ป์ ์ ์๋ ์คํ์ ํ์์ผ๋ฉฐ, ๊ทธ์ ๋ฐ๋ฅธ ๋ถ์์(analytic solution)์ ์ป์ด๋๋ค. ์ด๋ฌํ ๋ถ์์์ ๋ฐํ์ผ๋ก ํํํ์ฐ๊ณ์, reduced heat of transport ์ ์ด์จ๋๋ฆ์์ ๊ณฑ, ๋ถ๋ถ ์ ์ ์ด๊ธฐ์ ๋ ฅ์ ์ป์ด๋ด์๋ค. reduced heat of transport๋ฅผ ๋ฐ๋ก ๋ถ๋ฆฌํด๋ด๊ธฐ ์ํด ์ ์ฒด ์ ๊ธฐ์ ๋๋๋ฅผ ๋ค์ ํ๋ฒ 800~1000๋์์ ์ฐ์๋ถ์ 10-20<Po2 <1 ์์ญ์์ ์ธก์ ํ์๊ณ ์ด์จ์ ๋๋์ ์ ์์ ๋๋๋ฅผ ๋ถ๋ฆฌํ์ฌ ์ฌํ์ฑ์ ํ์ธํ์๋ค. ๋ฐ๋ผ์ ๊ฒฐํจ ์์ญ์ ๋ฐ๋ผ ๋ถ๋ฆฌ๋ reduced heat of transport์ ์ฐ์๋ถ์ ์์กด์ฑ์ ๋ถ์ํ๋ ค๊ณ ์๋ํ์๋ค.1.์๋ก 1
1.1 ์ฐ๊ตฌ๋ชฉ์ ๋ฐ ๋ฐฐ๊ฒฝ 1
2.๋ฌธํ์ฐ๊ตฌ 4
2.1 CaTiO3์ ๊ฒฐ์ ๊ตฌ์กฐ 4
2.2 CaTiO3์ ๊ฒฐํจ๊ตฌ์กฐ 10
2.3 ์ ๊ธฐ์ ๋๋ 11
2.4 ๊ณ ์ฒด์ฐํ๋ฌผ ์ ํด์ง 15
2.5 ํํํ์ฐ๊ณ์ 17
3.์ด๋ก ์ ๋ฐฐ๊ฒฝ 18
3.1 ์ ๊ธฐ์ ๋๋์ ๊ฒฐํจ๊ตฌ์กฐ์ ์ฐ๊ด์ฑ 18
3.2 ๋น๊ฐ์ญ์ด์ญํ 24
3.3 2x3 ๋๋ฆ๊ณ์ ํ๋ ฌ(2x3 transport coefficient matrix) 32
3.4 ๋น๋ฑ์จ ๋๋ฆ๊ณ์(Nonisothermal transport coefficient) 34
3.5 ๋น๋ฑ์จ ์กฐ๊ฑดํ์ ์ ๊ธฐํํ ๊ธฐ์ ๋ ฅ์์๊ฐ์์กด์ฑ 39
4.์คํ ๋ฐฉ๋ฒ 59
4.1 ์ํธ ์ ์ 59
4.2 ์ฐ์๋ถ์ ์กฐ์ 63
4.3 ์ ๊ธฐ์ ๋๋ ์คํ 64
4.4 ๋น๋ฑ์จ ์ฐจ๋จ ์ด๊ธฐ์ ๋ ฅ ์คํ 67
5.๊ฒฐ๊ณผ ๋ฐ ๋ถ์ 72
5.1 ์ ๊ธฐ์ ๋๋ ๊ฒฐ๊ณผ 72
5.2 ๋น๋ฑ์จ Soret ์คํ 82
5.2.1 ์ด์จ ์ฐจ๋จ์กฐ๊ฑด์์์ ์ ์ ์ด๊ธฐ์ ๋ ฅ ๊ฑฐ๋ 82
5.2.2 ์ ์ ์ด๊ธฐ์ ๋ ฅ์ ์๊ฐ์์กด์ฑ 88
5.3 ๋น๋ฑ์จ ์คํ์์์ ํํํ์ฐ๊ณ์ 91
5.4 ์ฐ์์์์ ๋๋ฆ์ด 97
6.์์ฝ ๋ฐ ๊ฒฐ๋ก 102
์ฐธ๊ณ ๋ฌธํ 104
Appendix-numerical data 109
Abstract 115Maste
Fabrication of Palladium-decorated Polypyrrole and Graphene Electrodes for Sensor Applications
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ํํ์๋ฌผ๊ณตํ๋ถ, 2017. 2. ์ฅ์ ์.There has been tremendous research for the devolopment of novel materials with excellent properties and performances. In particular, composite materials, consist of inorganic and organic component, not only display synergetic effect between inorganic (high performance) and organic (high stability) but also meet the economic and environmental demands. Among them, palladium contained carbon-based composite materials have attracted enormous attention in research and industry fields due to the high hydrogen reactivity and catalytic performance. Although blending technique of inorganic nanomaterials as filler and carbon materials already applied for various part, there is still lack of investigation on the decoration of inorganic materials on the carbon materials.
This dissertation demonstrates that polypyrrole/polyacrylonitrile nanofibers using electrospinning and VDP (vapor deposition polymerization) and graphene thin layer using CVD (chemical vapor deposition) were fabricated as conductive substrates, and then, composite materials based on palladium nanostructure synthesized via electrodeposition process. These synthesized composite materials present improved electric and chemical properties, enabling to be applied for various sensor applications. When introduced to transducer materials for sensor device, it provides the fast response and high stability owing to the synergetic effect. In addition, increasing surface area from controllable palladium nanostructure induces the amplified interaction with target materials and facilitates realization of the high sensitive sensor.1. Introduction 1
1.1 Background 1
1.1.1 Conducting Polymers 1
1.1.1.1 Polypyrrole 3
1.1.1.2 1D nanomaterials 8
1.1.1.2.1 Electrospinning method 8
1.1.2 CVD graphene 12
1.1.3 Noble metal 15
1.1.4 Composite materials 16
1.1.4.1 Noble metal/Conducting polymer 16
1.1.4.2 Noble metal/CVD graphene 17
1.1.4.3 Electrodeposition method 18
1.1.5 Sensor applications 20
1.1.5.1 Chemical sensor 20
1.1.5.1.1 H2 gas sensor 21
1.1.5.2 Liquid-ion gated FET-type biosensor 22
1.1.5.2.1 H2O2 sensor 22
1.1.5.2.2 Glucose sensor 23
1.2 Objectives and Outlines 26
1.2.1 Objectives 26
1.2.2 Outlines 27
2. Experimental Details 29
2.1 Fabrication of shape-controlled Pd NPs-decorated PPy/PAN NFs electrode for FET-type H2O2 sensor 29
2.1.1 Fabrication of PPy/PAN NFs 29
2.1.2 Fabrication of shape-controlled Pd_PPy/PAN NFs 29
2.1.3 Characterization of shape-controlled Pd_PPy/PAN NFs 30
2.1.4 Electrical measurement of shape-controlled Pd_PPy/PAN NFs electrode 31
2.2 Fabrication of population-controlled flower-like Pd NCs-decorated CVD graphene electrode for ultrasensitive and flexible H2 sensing 32
2.2.1 Fabrication of CVD graphene on the flexible film 32
2.2.2 Fabrication of population-controlled FPNCs_CG 33
2.2.3 Characterization of population-controlled FPNCs_CG 33
2.2.4 Electrical measurement of population-controlled FPNCs_CG electrode 34
2.3 Fabrication of sharpness-controlled Pd nanoflower-decorated CVD graphene electrode for selectivity-improved FET-type glucose sensor 36
2.3.1 Fabrication of CVD graphene 36
2.3.2 Fabrication of sharpness-controlled SPNFG 37
2.3.3 Characterization of sharpness-controlled SPNFG 37
2.3.4 Electrical measurement of sharpness-controlled SPNFG electrode 38
3. Results and Disccusions 39
3.1 Fabrication of shape-controlled Pd NPs-decorated PPy/PAN NFs electrode for FET-type H2O2 sensor 39
3.1.1 Fabrication of shape-controlled Pd_PPy/PAN NFs 39
3.1.2 Characterization of shape-controlled Pd_PPy/PAN NFs 45
3.1.3 Eletrical properties of shape-controlled Pd_PPy/PAN NFs electrode 50
3.1.4 Real-time response of FET-type H2O2 sensor based on shape-controlled Pd_PPy/PAN NFs electrode 52
3.2 Fabrication of population-controlled flower-like Pd NCs-decorated CVD graphene electrode for ultrasensitive and flexible H2 sensing 57
3.2.1 Fabrication of population-controlled FPNCs_CG 57
3.2.2 Characterization of population-controlled FPNCs_CG 67
3.2.3 Eletrical properties of population-controlled FPNCs_CG electrode 71
3.2.4 Real-time response of chemiresistive H2 sensor based on population-controlled FPNCs_CG electrode 74
3.3 Fabrication of the sharpness-controlled Pd nanoflower-decorated CVD graphene electrode for selectivity-improved FET-type glucose sensor 87
3.3.1 Fabrication of sharpness-controlled SPNFG 87
3.3.2 Characterization of sharpness-controlled SPNFG 92
3.3.3 Fabrication of sharpness-controlled SPNFG sensor electrode 95
3.3.4 Eletrical properties of sharpness-controlled SPNFG electrode 97
3.3.5 Real-time response of FET-type glucose sensor based on sharpness-controlled SPNFG electrode 99
3.3.6 Selectivity-improved FET-type glucose sensor 106
4. Conclusion 112
Reference 116
๊ตญ๋ฌธ์ด๋ก 126Docto
์ฐจ๋๊ฐ ํต์ ์ ์ด์ฉํ ์ง๋ฅํ ์๋์ฐจ์ ์ ๋ฐฉ์ฐจ๋ ์ํํ๋จ ๊ธฐ๋ฒ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ ๊ณต๊ณผ๋ํ ๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ, 2017. 8. ์ด๊ฒฝ์.In recent years, advanced driver assistance systems or highly automated driving systems are expected to enhance road traffic safety, transport efficiency, and driver comfort. Practical applications have become possible due to recent advances in vehicle local sensors and inter vehicle communications. These advances have opened up many possibilities for active safety systems to be more intelligent and robust. The further enhancement of these technologies can be utilized as a risk assessment system of automated drive.
This dissertation presents a risk assessment for improved vehicle safety using Front Vehicle Dynamic States through vehicle-to-vehicle wireless communication. A vehicle-to-vehicle wireless communication (V2V communication) has been implemented and fused with a radar sensor to obtain the prediction of remote vehicles motion. Based on the predicted behavior of remote vehicles, a collision risk and a human reaction time are determined for a better driver acceptance and active safety control intervention. A human-centered risk assessment using the V2V communication has been incorporated into a collision avoidance algorithm to monitor threat vehicles ahead and to find the best intervention point. The performance of the proposed algorithm has been investigated via computer simulations and vehicle tests for application to urban and highway driving situation. It has been shown from both simulations and vehicle tests that the proposed integrated risk assessment algorithm with the V2V communication can be beneficial to active safety systems in decision of controller intervention moment and in control of automated drive for the guaranteed safety.Chapter 1 Introduction 1
1.1 Background and Motivations 1
1.2 Previous Researches 5
1.3 Thesis Objectives 9
1.4 Thesis Outline 11
Chapter 2 Vehicular Communication 12
2.1. Literature Review 14
2.1.1 An Empirical Model for V2V communication 14
2.1.2 Position based Sampling and Distance based Interpolation 17
2.2. Communication Delay and Packet Loss Ratio 21
2.2.1 Compensation of V2V Communication Delay 21
Chapter 3 Human Factor Considerations 27
3.1. Driver Acceptance 30
3.1.1 Driver inattention and distraction 31
3.1.2 Mode Confusion 31
3.1.3 Motion Sickness 32
3.2. Sight Distance 33
3.2.1 Stopping Sight Distance 35
3.2.2 Decision Sight Distance 35
Chapter 4 Human-Centered Risk Assessment using Vehicular Wireless Communication 37
4.1. Human-Centered Design 41
4.2. Convergence 43
4.2.1. Sensor-Based Solutions 44
4.2.2. The Benefits to Convergence 45
4.2.3. V2V/Radar Information Fusion 45
4.3. Related Work 46
4.3.1. Radar Sensing Characteristics 47
4.3.2. Probabilistic Threat Assessment 50
4.3.3. Human-Centered Vehicle Control 52
4.3.4. High-Level Information Fusion 54
4.3.5. Target Vehicle State Estimation Performance 58
4.4 Remote Vehicle States Prediction 64
4.5. Collision Risk Analysis 67
4.6. Predicted Collision Distance 70
4.7. Active Safety Intervention Moment Decision 72
Chapter 5 Performance Evaluations 77
5.1. Simulations: MPC based Automated Vehicle Control 78
5.1.1. Effects of V2V Communication on the Controller 78
5.2. Simulations : Human-Centered Risk Assessment 84
5.2.1. Scenarios 84
5.2.2. Effects of V2V Communication: Host vehicle perception only 86
5.2.3. Effects of V2V Communication: Controlled host vehicle 90
5.3. Vehicle Tests 94
5.3.1. Test Vehicle Configuration and Scenario 94
5.3.2. Implementation and Evaluation 96
Chapter 6 Conclusion 99
Bibliography 100
๊ตญ๋ฌธ์ด๋ก 110Docto
Pressure-driven Structural identification of Tetramethylammonium Perchlorate
Tetramethylammonium perchlorate (TMAP) is a [(CH3)4N]+ salt containing [ClO4]- as a counter ion. TMAP has the tetragonal crystal system at room temperature, and it undergoes a structural phase transition to the orthorhombic crystal system at the low temperature under 150 K (Papacios, 2003). The crystal structure of TMAP with such a character was determined by X-ray diffraction under an ultra high pressure condition of up to 8.5 GPa created using the diamond anvil cell, and the result clearly showed that TMAP that had the tetragonal system at the pressure under 2 GPa underwent the structural phase transition to the orthorhombic system. In order to determine the molecular motion within the TMAP crystal at the ultra high pressure, x-ray diffraction data were analyzed and visualized into images using the Generalized Structure Analysis System (GSAS).์ 1 ์ฅ. ์ ๋ก 1
1.1 ์ฐ๊ตฌ๋ฐฐ๊ฒฝ 1
1.2 ๊ฐ์ค ํ์ด๋๋ ์ดํธ (Gas hydrate) 3
1.2.1 ๊ฐ์ค ํ์ด๋๋ ์ดํธ์ ๊ตฌ์กฐ 3
1.2.2 ์ด์ง์ ์ ์ ํด์ (Promotor and Inhibitor) 4
1.3 Tetramethylammonium Perchlorate (TMAP) 6
1.4 ์ฐ๊ตฌ๋ชฉ์ 9
์ 2 ์ฅ. ์คํ์ฅ๋น ๋ฐ ์คํ๋ฐฉ๋ฒ 10
2.1 ํ
ํธ๋ผ๋ฉํธ์๋ชจ๋ ํผํด๋ก๋ ์ดํธ ํฉ์ฑ 10
2.2 Diamond Anvel Cell : DAC 10
2.2.1 ์คํ์๋ฆฌ 10
2.2.2 ์คํ์ฅ์น ๋ฐ ๋ฐฉ๋ฒ 11
2.3 X-ray diffraction 13
2.3.1 ์คํ์๋ฆฌ 13
2.3.2 ์คํ์ฅ์น ๋ฐ ๋ฐฉ๋ฒ 14
2.4 Raman Spectroscopy 16
2.4.1 ์คํ์๋ฆฌ 16
2.4.2 ์คํ์ฅ์น ๋ฐ ๋ฐฉ๋ฒ 16
2.5 GSAS(Generalized Structure Analysis System) 17
2.5.1 ์คํ์๋ฆฌ 17
2.5.2 ์คํ์ฅ์น ๋ฐ ๋ฐฉ๋ฒ 18
์ 3 ์ฅ. ์คํ๊ฒฐ๊ณผ ๋ฐ ํ ์ 20
3.1 TMAP X-์ ํ์ ๋ถ์ 20
3.1.1 ์ด๊ณ ์ ์๋ ฅ๋ณํ์ ๋ฐ๋ฅธ TMAP ๊ฒฐ์ ๊ตฌ์กฐ ๋ณํ 20
3.1.2 Tetrgonal TMAP X-์ ํ์ Refinement 24
3.1.3 Orthorhombic TMAP X-์ ํ์ Refinement 30
3.1.4 ์๋ ฅ ์ฆ๊ฐ์ ๋ฐ๋ฅธ lattice parameter ๋ณํ 41
์ 4 ์ฅ. ๊ฒฐ๋ก 44
์ฐธ๊ณ ๋ฌธํ 46Maste
Regulation of CFTR Bicarbonate Channel Activity by WNK1: Implications for Pancreatitis and CFTR-Related Disorders
Backgraoud & aims: Aberrant epithelial bicarbonate (HCO3-) secretion caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with several diseases including cystic fibrosis and pancreatitis. Dynamically regulated ion channel activity and anion selectivity of CFTR by kinases sensitive to intracellular chloride concentration ([Cl-]i) play an important role in epithelial HCO3- secretion. However, the molecular mechanisms of how [Cl-]i-dependent mechanisms regulate CFTR are unknown.
Methods: We examined the mechanisms of the CFTR HCO3- channel regulation by [Cl-]i-sensitive kinases using an integrated electrophysiological, molecular, and computational approach including whole-cell, outside-out, and inside-out patch clamp recordings and molecular dissection of WNK1 and CFTR proteins. In addition, we analyzed the effects of pancreatitis-causing CFTR mutations on the WNK1-mediated regulation of CFTR.
Results: Among the WNK1, SPAK, and OSR1 kinases that constitute a [Cl-]i-sensitive kinase cascade, the expression of WNK1 alone was sufficient to increase the CFTR bicarbonate permeability (PHCO3/PCl) and conductance (GHCO3) in patch clamp recordings. Molecular dissection of the WNK1 domains revealed that the WNK1 kinase domain is responsible for CFTR PHCO3/PCl regulation by direct association with CFTR, while the surrounding N-terminal regions mediate the [Cl-]i-sensitivity of WNK1. Furthermore, the pancreatitis-causing R74Q and R75Q mutations in the elbow helix 1 of CFTR hampered WNK1-CFTR physical associations and reduced WNK1-mediated CFTR PHCO3/PCl regulation.
Conclusion: The CFTR HCO3- channel activity is regulated by [Cl-]i and a WNK1-dependent mechanism. Our results provide new insights into the regulation of the ion selectivity of CFTR and the pathogenesis of CFTR-related disorders.ope
TMED3 Complex Mediates ER Stress-Associated Secretion of CFTR, Pendrin, and SARS-CoV-2 Spike
Under ER stress conditions, the ER form of transmembrane proteins can reach the plasma membrane via a Golgi-independent unconventional protein secretion (UPS) pathway. However, the targeting mechanisms of membrane proteins for UPS are unknown. Here, this study reports that TMED proteins play a critical role in the ER stress-associated UPS of transmembrane proteins. The gene silencing results reveal that TMED2, TMED3, TMED9 and TMED10 are involved in the UPS of transmembrane proteins, such as CFTR, pendrin and SARS-CoV-2 Spike. Subsequent mechanistic analyses indicate that TMED3 recognizes the ER core-glycosylated protein cargos and that the heteromeric TMED2/3/9/10 complex mediates their UPS. Co-expression of all four TMEDs improves, while each single expression reduces, the UPS and ion transport function of trafficking-deficient ฮF508-CFTR and p.H723R-pendrin, which cause cystic fibrosis and Pendred syndrome, respectively. In contrast, TMED2/3/9/10 silencing reduces SARS-CoV-2 viral release. These results provide evidence for a common role of TMED3 and related TMEDs in the ER stress-associated, Golgi-independent secretion of transmembrane proteins.ope
Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition
As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19).ope
์ธ์ ์ ์๋ฅผ ์ํ ์์ฝ์ฌ ์ฉ๋งค ๊ธฐ๋ฐ์ ๊ตฌ๋ฆฌ ์ ๊ธฐ ์ ๊ตฌ์ฒด ์ํฌ์ ํฉ์ฑ๋ฒ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ์ตํฉ๊ณผํ๊ธฐ์ ๋ํ์ : ๋๋
ธ์ตํฉํ๊ณผ, 2013. 8. ๋ฐ์์ฒ .๋ณธ ํ์ ๋
ผ๋ฌธ ์์๋ ์์ฝ์ฌ ์๋ฐดํธ์ ์ฉํด๊ฐ ์ฉ์ดํ๋ฉฐ ํ์์ ์์ด ์ด๋ถํด ๋ง์ผ๋ก๋ ๊ธ์ ๊ตฌ๋ฆฌ๋ก ํ์์ด ๊ฐ๋ฅํ ๊ตฌ๋ฆฌ ์ ๊ธฐ ์ ๊ตฌ์ฒด๋ฅผ ํฉ์ฑํ์ฌ ์ ๋์ฑ ์ํฌ๋ฅผ ๋ง๋ค์๋ค. ์นดํ (II) ํฌ๋ฅด๋ฉ์ดํธ๋ฅผ ์์ ๋ฌผ์ง๋ก ํ์ฌ ์์นด๋ ์๋ฏผ ์ค์ ํ๋์ธ 2-amino-2-mehtyl-1-propanol (AMP) ์ ๋ฆฌ๊ฐ๋๋ก ๋์
ํ์๋ค. AMP๋ ์นดํผ (II) ํฌ๋ฅด๋ฉ์ดํธ๋ฅผ ์์ฝ์ฌ์ ๋
น๊ฒ ๋ง๋ค์ด ์ฃผ๋ฉฐ ๋ํ ์นดํผ (II) ํฌ๋ฅด๋ฉ์ดํธ์ ์ด๋ถํด ์จ๋๋ฅผ ๋ฎ์ถ์ด ์ฃผ๋ ์ญํ ์ ์ํํ๋ค. ์ด๊ฒ์ ๋ํ์ฌ ์ฅํธ ์๋ฏผ๊ณผ ํฅ์ฌ๋
ธ์ต ์์๋๋ฅผ ์ฒจ๊ฐํ์ฌ ์์ฑํ ์์ฑ๋๋ ์นดํผ ์ ๋์ฑ ๋ง์ ์ฑ๋ฅ์ ํฅ์ ์์ผฐ๋ค. ์ด๊ฒ์ ๋ฉ์ปค๋์ฆ์ ๋ํด์๋ ๋ฌด์ฉ๋งค ๋ฌด๊ธฐ ์
์ ํฉ์ฑ๋ฒ์ ์ด์ฉํ์ฌ ์ค๋ช
ํ์๋ค. ๋น์ ํญ ๊ฐ์ 350 oC ์์ ์์ฑ ํ์์ ๊ฒฝ์ฐ 9.46 ฮผฮฉโcm ๋ก์จ ์ด๋ ์นดํผ ์์ฒด์ ๊ณ ์ ๊ฐ ๋ณด๋ค 5.5 ๋ฐฐ ๋์ ๊ฐ์ด๋ค. ๋ณธ ํ์ ๋
ผ๋ฌธ์ ์ํฌ๊ฐ ๋ฆฌ๋ฒ์ค ์คํ์
์ ์ ์ฉ์ด ๊ฐ๋ฅํ ๊ฒ์ ํ์ธํ๊ธฐ ์ํด ๊ฐ๋จํ ์คํฌํ-ํธ๋์คํผ ์คํ์ ์ํํ์ฌ ๋ณธ ์ํฌ์ ์ค์ ์์ฉ ๊ฐ๋ฅ์ฑ์ ๋ณด์๋ค.Contents
Abstract โขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโข โ
Contents โขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโข โ
ข
List of table and figure โขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโขโข โ
ค
1. Introductionโฆโฆโฆโฆโฆ...โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ 1
1.1 Motivation
1.2 Background information
2. Experimental Section โฆโฆ.โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ. 13
2.1 Chemicals and Materials
2.2 Synthesis of Copper (II) Formate Based Metal Organic Compounds
2.3 Preparation of Conductive Copper Films
2.4 Stamping Transfer Test
2.5 Characterization
3. Results and discussion โฆโฆโฆโฆโฆโฆ.โฆโฆ.โฆโฆโฆโฆ. 17
3.1 The roles of 2-amino-2-methyl-1-propanol (AMP)
3.2 Effects of introducing co-complexing agent: Octylamine
3.3 Addition of carboxylic acid to promote sintering
3.4 Resistivity of copper films at various temperatures
3.5 Simple Stamping Transfer Test.
4. Conclusion โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ 50
Reference โฆโฆโฆ.โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ. 52
์ด๋ก(๊ตญ๋ฌธ)โฆ.โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ. 55Maste
- โฆ