3 research outputs found

    ์ „์••์ฐจ-์‹œ๊ฐ„ ๋ณ€ํ™˜๊ธฐ๋ฅผ ์ด์šฉํ•œ Dynamic Low Dropout Voltage Regulator

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€, 2019. 2. ์ „๋™์„.์ตœ๊ทผ IoT์™€ mobile ํ™˜๊ฒฝ์—์„œ ๋™์ž‘ํ•˜๋Š” ์‹œ์Šคํ…œ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ SoC์˜ ๋‚ด๋ถ€์˜ ์ „์›๊ด€๋ฆฌ ํšŒ๋กœ์˜ ์„ค๊ณ„๊ฐ€ ์ค‘์š”์‹œ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ์‹  SoC๋Š” ์ „์› ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด SoC ๋‚ด๋ถ€์˜ ๊ฐ block๋งˆ๋‹ค ๊ฐ๊ฐ์˜ ์ „์› ๊ด€๋ฆฌ์šฉ ํšŒ๋กœ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ block์˜ load์— ๋งž๊ฒŒ ์ ์ ˆํ•œ ๊ณต๊ธ‰ ์ „์••์„ ์ œ๊ณตํ•œ๋‹ค. Low Dropout Voltage Regulator (LDO)๋Š” ๋น ๋ฅธ ์‘๋‹ต์‹œ๊ฐ„๊ณผ ์ ์€ die area๋กœ SoC๋‚ด๋ถ€์— ์ ์šฉํ•˜๊ธฐ ์ ํ•ฉํ•˜์—ฌ SoC๋‚ด๋ถ€์˜ ์ „์› ๊ด€๋ฆฌ ํšŒ๋กœ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ œํ’ˆ์˜ ์†Œํ˜•ํ™”๋ฅผ ์œ„ํ•ด Printed Circuit Board (PCB) ๋ฉด์ ์„ ์ค„์ผ ํ•„์š”์„ฑ์ด ์žˆ์–ด ๊ธฐ์กด์˜ ํฐ ์™ธ๋ถ€ ์ถœ๋ ฅ capacitor๋ฅผ ์—†์• ๋Š” output capacitor-less LDO์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์กŒ๋‹ค. ๋˜ํ•œ mobile ํ™˜๊ฒฝ์—์„œ ๋ฐฐํ„ฐ๋ฆฌ ์ˆ˜๋ช…์„ ์œ„ํ•ด ๋ฌธํ„ฑ ์ „์•• ๊ทผ์ฒ˜์—์„œ ๋™์ž‘์„ ํ•˜๋Š” ์‹œ์Šคํ…œ์ด ๋งŽ์•„์ ธ ๋ฌธํ„ฑ ์ „์•• ๊ทผ์ฒ˜์—์„œ ๊ฐ€๋Šฅํ•œ Digital LDO (DLDO)์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋งŽ์ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฌธํ„ฑ ์ „์•• ๊ทผ์ฒ˜์—์„œ ์ž‘๋™ํ•˜๋ฉฐ ์™ธ๋ถ€ capacitor์™€ pad๋ฅผ ์—†์•จ ์ˆ˜ ์žˆ๋Š” output capacitor-less ๋™์ž‘์„ ์ง€์›ํ•˜๋Š” dynamic ๊ตฌ์กฐ์˜ LDO๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ฌธํ„ฑ ์ „์•• ๊ทผ์ฒ˜์—์„œ ์ž‘๋™์ด ๊ฐ€๋Šฅํ•œ DLDO์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ์ œ์•ˆ๋œ LDO๋Š” analog LDO์™€ ๊ฐ™์ด ํ•˜๋‚˜์˜ power transistor๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, op-amp ๋Œ€์‹  Voltage Difference to Time Converter(VDTC)๋ฅผ ์ œ์•ˆํ•ด ๋ฌธํ„ฑ ์ „์•• ๊ทผ์ฒ˜์—์„œ์˜ ๋™์ž‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ VDTC๋ฅผ ํ†ตํ•ดDLDO์—์„œ๋Š” ํž˜๋“  ์ถœ๋ ฅ ์ „์••์˜ ripple-lessํŠน์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ž‘์€ capacitor๋กœ ๋†’์€ ์ฃผํŒŒ์ˆ˜์—์„œ์˜ ์ถœ๋ ฅ ์ž„ํ”ผ๋˜์Šค ๊ฐ์†Œ ๋ฃจํ”„๋ฅผ ์ ์šฉํ•ด load transient๊ฐ€ ๋ฐœ์ƒํ•˜์˜€์„ ๋•Œ ์ถœ๋ ฅ capacitor ์—†์ด ์ ์€ ์ถœ๋ ฅ ์ „์•• ๋ณ€ํ™”๋ฅผ ์–ป์—ˆ๋‹ค. ์„ค๊ณ„๋œ ํšŒ๋กœ๋Š”65nm LP ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ, ์ „์ฒด ๋ฉด์ ์€ 0.0834mm2 ์ด๋‹ค. ์ œ์•ˆ๋œ ๋…ผ๋ฌธ์€ ๋„“์€ ๋™์ž‘ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง€๋ฉฐ 0.6V ์ž…๋ ฅ ์ „์••์—์„œ ์ตœ๋Œ€ 30mA์˜ ์ถœ๋ ฅ ์ „๋ฅ˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๋Œ€๊ธฐ ์ „๋ฅ˜๋Š” 1MHz์˜ ํด๋Ÿญ์—์„œ 0.1ฮผA์„ ์‚ฌ์šฉํ•˜๋ฉฐ ์ด์ „ ์ตœ์‹  ๋…ผ๋ฌธ๋ณด๋‹ค 14๋ฐฐ ํ–ฅ์ƒ๋œ FOM์„ ์–ป์—ˆ๋‹ค.Recently, the design of the on-chip power management circuit of the System-on-Chip (SoC) becomes important as the system which operates in IoT and mobile environment emerges. To maximize power efficiency, modern SoCs need power management block in each block of the SoC to provide the proper supply voltage. Low Dropout Voltage Regulator (LDO) is widely used as power management circuits in SoCs because it suitable to be integrated in SoC with fast response time and low die area. However, there is a need to reduce the printed circuit board (PCB) area in order to miniaturize the product therefore, there is a growing in growing interest in output capacitor-less LDOs that eliminate the large external output capacitors. Recent SoCs operate in near threshold voltage region for battery life in mobile environment, as a result digital LDOs (DLDO) which have feasibility in near threshold voltage has been reported. In this paper, we propose a dynamic LDO that operates in near threshold voltage region and supports an output capacitor-less operation that can eliminate external capacitors and pads. Unlike DLDO, which operate in near threshold voltage region, the proposed LDO uses a single power transistor like an analog LDO. Voltage Difference to Time Converter (VDTC) is proposed substituting op-amp to enable operation in near threshold voltage region. Through the proposed VDTC, the proposed LDO have a ripple-less output. In addition, output impedance reduction loop is proposed to mitigate output voltage droop when sharp load transient occurs. The proposed LDO was fabricated with 65nm LP CMOS process and its total area is 0.0834mm2. The proposed paper has a wide operating range and provides up to 30mA of output current at 0.6V input voltage. The proposed LDO consumes quiescent current of 0.1ฮผA at 1MHz clock and achieves 0.364fs FOM, improving prior art by 14x.์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 1.2 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 2 ์ œ 2 ์žฅ Basics of LDO 4 2.1 Analog LDO 4 2.2 Digital LDO 6 2.3 Performance Metrics 7 2.3.1 Quiescent Current 7 2.3.2 Current Efficiency 8 2.3.3 Transient Response 8 2.3.4 Load Regulation 9 2.3.5 Line Regulation 9 ์ œ 3 ์žฅ Design of proposed LDO 10 3.1 Design Consideration 10 3.2 Overall Architecture 11 3.3 Small Signal and Loop sta 14 3.4 Output Impedance Reduction Loop 16 3.5 Circuit Implementation 20 3.5.1 Voltage Differenc to Time Converter 20 3.5.2 Charge Pump and Power Transistor 23 3.5.3 Load Test Circuit 25 ์ œ 4 ์žฅ Measurement 26 4.1 Measurement Setup 26 4.2 Die Photomicrograph 27 4.3 Load Transient Measurement 29 4.4 VREF Transient Measurement 31 4.5 Load and Line Regulation Measurement 32 4.6 Current Efficiency 34 4.7 Performance Summary 35 ์ œ 5 ์žฅ Conclusion 37 ์ฐธ๊ณ ๋ฌธํ—Œ 38 Abstract 41Maste

    ๋…์ผ๋ฐ”ํ€ด ์ฃผ ์•Œ๋ ˆ๋ฅด๊ฒ, Bla g4์˜ ์„œ์—ด ๋‹คํ˜•์„ฑ ๋ฐ ํŽฉํ‹ฐ๋“œ ๋‹จํŽธ๋“ค์˜ IgE ๋ฐ˜์‘์„ฑ

    No full text
    Dept. of Medical Science/์„์‚ฌ[ํ•œ๊ธ€] ๋ฐ”ํ€ด๋Š” ์ฒœ์‹์ด๋‚˜ ์—ฌ๋Ÿฌ ํ˜ธํก๊ธฐ ์•Œ๋ ˆ๋ฅด๊ธฐ ์งˆํ™˜์„ ์ผ์œผํ‚ค๋ฉฐ, IgE์™€ ๊ฒฐํ•ฉํ•˜๋Š” ํ•ญ์›์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์•Œ๋ ˆ๋ฅด๊ฒ์€ ํ™˜๊ฒฝ์ , ์œ ์ „์  ์š”์ธ์— ๋”ฐ๋ฅธ ์ง€์—ญ์ ์ธ ์ฐจ์ด์— ๋”ฐ๋ผ ๋‹จ๋ฐฑ์งˆ ์„œ์—ด์— ๋‹ค์–‘ํ•œ ๋ณ€์ด๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ง€์—ญ์  ์ฐจ์ด์—๋Š” ์šฐ์„ธํ•œ ๋ณ€์ด์ฒด๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์†Œ์ˆ˜์˜ ์•„๋ฏธ๋…ธ์‚ฐ ์น˜ํ™˜์ด๋ผ๋„ ๋ฉด์—ญ๋ฐ˜์‘์— ์ƒ๋‹นํ•œ ์˜ํ–ฅ์„ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์—, ์šฐ์„ธํ•œ ๋ณ€์ด์ฒด์˜ ์•Œ๋ ˆ๋ฅด๊ธฐ ํ•ญ์›์„ฑ์„ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์€ ๋Œ€๋‹จํžˆ ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํ•œ๊ตญ์—์„œ ์šฐ์„ธํ•œ Bla g 4์˜ ๋ณ€์ด์ฒด๋ฅผ ์ฐพ์•„์„œ ์•„๋ฏธ๋…ธ์‚ฐ ์„œ์—ด์„ ๋ถ„์„ํ•˜๊ณ , E.coli ์—์„œ ์žฌ์กฐํ•ฉ ๋‹จ๋ฐฑ์งˆ์„ ์ƒ์‚ฐํ•˜์—ฌ ๋ฐ”ํ€ด์— ๊ฐ์ž‘๋œ ํ™˜์ž ํ˜ˆ์ฒญ์œผ๋กœ๋ถ€ํ„ฐ IgE ๊ฒฐํ•ฉ๋Šฅ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ฉด์—ญ์น˜๋ฃŒ์— ์ค‘์š”ํ•œ IgE binding epitope๋ฅผ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด Bla g 4์˜ ํŽฉํ‹ฐ๋“œ ๋‹จํŽธ๋“ค์„ ํ•ฉ์„ฑํ•˜์—ฌ ELISA (Enzyme-linked immunosorbent assay)๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋…์ผ๋ฐ”ํ€ด์˜ ์ˆ˜์ปท ์„ฑ์ถฉ์œผ๋กœ๋ถ€ํ„ฐ RT-PCR (reverse transcriptase polymerase chain reaction)์„ ์ด์šฉํ•ด Bla g 4 ์œ ์ „์ž๋ฅผ ํด๋กœ๋‹ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ Bla g 4 DNA์„œ์—ด (U40767)๊ณผ ๋‹ค๋ฅธ ๋ณ€์ด์ฒด(EF202172)๊ฐ€ ์กฐ์‚ฌ๋˜์–ด ์•„๋ฏธ๋…ธ์‚ฐ ์„œ์—ด์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋‹ค์Œ๊ณผ ๊ฐ™์ด 13๊ฐœ์˜ ์•„๋ฏธ๋…ธ์‚ฐ ์„œ์—ด์ด ์น˜ํ™˜๋˜์–ด ์žˆ์—ˆ๋‹ค: 8 (Tโ†’S), 13 (Nโ†’M), 62 (Vโ†’Y), 64 (Kโ†’T), 69 (Kโ†’Q), 71 (Kโ†’N), 73 (Kโ†’R), 75 (Tโ†’A), 110 (Eโ†’D), 131 (Iโ†’L), 133 (Fโ†’L), 134 (Sโ†’T), and 135 (Vโ†’W). 51๊ฐœ์˜ ํด๋ก ์ค‘์— ์ด 27๊ฐœ์˜ ๋ณ€์ด์ฒด๊ฐ€ ์กฐ์‚ฌ๋˜์—ˆ์œผ๋ฉฐ, ๊ฐ€์žฅ ๋นˆ๋„์ˆ˜๊ฐ€ ๋†’์€ ๋ณ€์ด์ฒด(14/51; 92.9%)๋ฅผ ํ•œ๊ตญ์—์„œ ์šฐ์„ธํ•œ ๋ณ€์ด์ฒด(EF202172)๋กœ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ์ด๋ฅผ E.coli (DE3)์—์„œ ๋ฐœํ˜„์‹œ์ผœ ์žฌ์กฐํ•ฉ ๋‹จ๋ฐฑ์งˆ์„ ์ƒ์‚ฐํ•˜๊ณ , ์„ธ๋ธŒ๋ž€์Šค ๋ณ‘์›์˜ ์•Œ๋ ˆ๋ฅด๊ธฐ ํด๋ฆฌ๋‹‰์„ ์ฐพ์€ ๋ฐ”ํ€ด์•Œ๋ ˆ๋ฅด๊ธฐ ํ™˜์ž 32๋ช…์˜ ํ˜ˆ์ฒญ์„ ์—ฐ๊ตฌ์— ์ด์šฉํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ด 32๋ช…์˜ ํ™˜์ž๋“ค ์ค‘ 8๋ช…์ด ์žฌ์กฐํ•ฉ Bla g 4์— ๊ฐ•ํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜์—ฌ IgE ๊ฒฐํ•ฉ๋Šฅ์€ 25%์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ํด๋กœ๋‹ํ•œ Bla g 4๋ฅผ ๊ฐ๊ฐ 5๊ฐœ์˜ ๋‹จํŽธ์œผ๋กœ ๋‚˜๋ˆ„์–ด ๋ฐœํ˜„ํ•˜๊ณ  ์žฌ์กฐํ•ฉ ๋‹จ๋ฐฑ์งˆ์„ ์ƒ์‚ฐํ•˜์˜€๋‹ค. Bla g 4์— ๊ฐ•ํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” 4๋ช…์˜ ํ™˜์žํ˜ˆ์ฒญ์„ ์ด์šฉํ•˜์—ฌ ์ด๋“ค์˜ IgE ๊ฒฐํ•ฉ๋Šฅ์„ ์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ, ๋‹จํŽธ1์€ 0๋ช…(0%), ๋‹จํŽธ2๋Š”2๋ช…(50%), ๋‹จํŽธ3์€1๋ช…(25%), ๋‹จํŽธ4๋Š” 4๋ช…(100%), ๋‹จํŽธ5๋Š” 0๋ช…(0%)์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ IgE-binding epitopes ๋ถ€์œ„๋Š” ์•„๋ฏธ๋…ธ์‚ฐ ์„œ์—ด์œ„์น˜ 34~73, 78~113์ด๋ฉฐ, ์ฃผ ๊ฒฐํ•ฉ๋ถ€์œ„๋Š” 118~152์— ์œ„์น˜ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.์žฌ์กฐํ•ฉ ์•Œ๋ ˆ๋ฅด๊ฒ์„ ์ด์šฉํ•œ Bla g 4์˜ linear B cell epitope์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ณธ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ฒ˜์Œ์œผ๋กœ ๋ณด๊ณ ๋œ ๊ฒƒ์ด๋ฉฐ, ์ด๋Š” ์•Œ๋ ˆ๋ฅด๊ธฐ ํ™˜์ž์˜ ์ •ํ™•ํ•œ ์ง„๋‹จ๊ณผ ๋ฉด์—ญ์น˜๋ฃŒ์— ๋Œ€ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋  ๊ฒƒ์ด๋‹ค. [์˜๋ฌธ]Cockroaches are a major cause of asthma. Recombinant cockroach allergens have been identified and characterized, and different polymorphisms of major allergens have been described in various geographical regions. A change in the amino acid sequence of cockroach allergens could affect IgE binding capacities and T cell responses. In this study, reverse transcriptase-PCR was carried out to examine the sequence variations of the major German cockroach allergen Bla g 4, a member of the calycin protein family. A total of 27 different variants of Bla g 4 were identified by analysis of 51 clones obtained by RT-PCR. A Bla g 4 variant sequence appeared in 14 of the 51 clones (27.5%), indicating that it is a dominant form (EF202172). Differences between the dominant form (27.5%) obtained in this study and previously reported Bla g 4 (U40767) forms were found at 13 amino acid positions: amino acid position 8 (T to S), 13 (N to M), 62 (V to Y), 64 (K to T), 69 (K to Q), 71 (K to N), 73 (K to N), 75 (T to A), 110 (E to D), 131 (I to L), 133 (F to L), 134 (S to T), and 135 (V to W). Of note, the amino acid residues at 51-75 and 132-155 showed a high degree of sequence variation. These data suggest that Bla g 4 is highly polymorphic. A multiple amino acid sequence alignment with eight allergenic lipocalin family proteins was carried out by using the Clustal X program. Despite the probable structural similarity, the identity between the sequences was very low, showing only the two identical residues, Gly33 and Trp35 to the main conserved segment of the lipocalin family. Their influence on IgE-binding capacity and T cell responsiveness will be investigated in order to better understand immune responses to Bla g 4. The aim of this study was to investigate IgE reactivity to recombinant Bla g 4 (rBla g 4) in the sera of allergic patients and identify linear IgE binding epitopes. For protein expression, full-length Bla g 4 (EF202172) was divided into five overlapping peptide fragments (E1~E5; E1: aa 1-100, E2: aa 34-77, E3: aa 74-117, E4: aa 114-156, E5: aa 153-182). The full-length and five peptide fragments of Bla g 4 were generated by PCR and over-expressed in E. coli BL21 (DE3). The IgE binding reactivities of the full-length and peptide fragments were measured by enzyme linked immunosorbent assay (ELISA) using 32 serum samples of from patients with cockroach allergies. The sera of 8 patients (25%) reacted with rBla g 4, a prevalence significantly lower than the 40~60% reported previously by Arruda et al (1996). Four sera (100%) showed IgE-binding reactivity to full-length and peptide fragment 4, 3 sera (80%) reacted with peptide fragment 2, one (20%) serum sample reacted with peptide fragment 3. The ELISA results from the overlapping recombinant fragments localized the epitope region to amino acids 34~73 and 78~113, with the major IgE epitope of Bla g 4 localized to amino acid residues 118~152 of the C-terminus. Heterogeneity in IgE responses to Bla g 4 in individual patients was also observed, correlating with the finding that the most allergens have multiple IgE-binding sites which are at least partly due to the polyclonal nature of the immune response to protein allergens. Out results may provide fundamental bases for developing effective diagnostics and therapeutics for treating cockroach allergies.ope

    A Study on the Effects of Emotional Intelligence of Social Welfare Workers on Their Happiness : With Focus on the Mediating Effects of Customer Orientation and Job Satisfaction

    No full text
    corecore