28 research outputs found
Quantifying Body-Regional Clothing Pressure and Psycho-Physiological Responses by Clothing Pressure
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์ํ๊ณผํ๋ํ ์๋ฅํ๊ณผ, 2022. 8. ์ด์ฃผ์.The purpose of this study was to analyze the effects of clothing pressure, optical clothing pressure range, and psycho-physiological responses according to the clothing pressure level for each pressed body part in various environmental temperatures. Specifically, first, when low, medium, and high clothing pressure was applied to the human body in a cool, comfortable, and warm environmental temperature, the clothing pressure for each body part was quantified. Second, the optical range of clothing pressure for each body part was analyzed from the subjective tightness sensation. Third, psycho-physiological responses according to the clothing pressure for each compression area was analyzed.
For this purpose, five adult females in their 20s (age 23.4 ยฑ 3.0 y, height 161.7 ยฑ 5.2 cm, body surface area 1.56 ยฑ 0.03 ใก) participated as subjects. All subjects were subjected to three environmental temperature conditions (21oC, 27oC, 34oC; humidity 50 ยฑ 5%RH), three-body part compression conditions (waist, thigh, calf), and three-level compression conditions (level 0_body circumference 100%, level 1_body circumference decreased by about 6โผ8%, and level 2_body circumference decreased by about 12โผ17%) (27 conditions in total; 5 subjects ร 27 conditions = 135 times). Individually customized compression bands (outer material: nylon/polyurethane 80/20, inner: nylon/polyurethane 91/9) were made for compression according to the body part. The experiment was conducted in an artificial climate room for a total of 60 minutes (50 minutes in a sitting position, then 10 minutes in a standing position). Clothing pressure was measured at 10-minute intervals in the waist, thighs, and calves using a load cell type sensor (pressure measuring range 0 to 500 g). Rectal temperature, skin temperature in nine areas (forehead, abdomen, forearm, back of hand, thigh, calf, foot, finger, skin temperature in the compression band), temperature and relative humidity in the compression band, and heart rate were continuously measured at 1-minute intervals. Blood pressure and body weight were measured before and after the experiment. The mean skin temperature was calculated using the 7-point method by applying the equation of Hardy & Dubois. A subjective sensation responses were self-responses every 10 minutes (thermal, himidity, Sweating & shivering, Tightness, workload were scored on a 7-point scale, thermal comfort was scored on a 4-point scale). The results are as follow.
First, the clothing pressure according to the clothing pressure level was significantly higher in level 2 than level 0 and level 1 in all postures while pressing the waist and calves (P<0.01). In the sitting position, the clothing pressure increased as the clothin pressure level increased (P<0.05), and in the standing position, there was no significant difference in the clothing pressure between the level 1 and level 2, which was significantly higher than the level 0 (P<0.001). For each pressed body part, the thigh was higher than the other two body parts in the sitting position (P<0.001). However, in the standing position, there was no significant difference by body part during the level 0, and the level 1 and level 2 clothing pressure showed a high level in the order of the thigh, calf, and waist (P<0.01), showing a difference according to the posture. There was no difference according to the environmental temperature in the clothing pressure by body part.
Second, through the scatter plot and confidence interval, the optical clothing pressure range for each posture was derived through the tightness sensation โbetween -0.5 and 0.5 for the pressure score. The optical clothing pressure ranges of 4.5โผ13.8 mmHg in sitting, 5.2โผ11.6 mmHg in standing position during pressing the waist, 10.7โผ24.9 mmHg in sitting, 6.7โผ22.1 mmHg in standing positiong during the thighs, 4.9โผ17.2 mmHg in sitting, and 3.3โผ15.1 mmHg in standing position during pressing the calves were obtained. The optical clothing pressure range on the thigh was relatively higher than that of the waist and calf.
Third, Clothing pressure and psycho-physiological responses showed a high correlation at 21oC and when the thigh was pressed. The mean skin temperature decreased as the clothing pressure increased at 27oC(P<0.01), and the weight loss decreased at 34oC (P<0.05) during press the waist. The finger temperature and the humidity in the compression band increased at 21oC(P<0.05), and the mean skin temperature(P<0.05) and the skin temperature in the compression band decreased at 27oC(P<0.01) as the clothing pressure increased during press the thigh(P<0.05). When the waist, thigh, and calf were pressed, the higher the clothing pressure, the drier the part inside the compression band and the tighter was felt(P<0.05). In particular, the higher the clothing pressure, the more thermally uncomfortable(P<0.05) and harder(P<0.05) during press the waist and thigh. However, there was no significant correlation between clothing pressure and rectal temperature, heart rate, thermal sensation.
Through this study, the optical clothing pressure range was derived during pressing the waist, thigh, and calf. Since the optical clothing pressure range of the thigh was higher than that of the waist and calf, this is applicable to the selection of patterns and materials when making compression undergarments. Even when the same clothing pressure level is applied to the same body part, differences are observed depending on the posture, and the clothing pressure varies according to the subcutaneous fat level. Therefore, it is necessary to analyze the clothing pressure in more diverse postures and motions for subjects with more diverse body types in the future.๋ค์ํ ํ๊ฒฝ์จ๋์์ ์ธ์ฒด๋ถ์๋ณ ์๋ฐ์์ค์ ๋ฐ๋ฅธ ์๋ณต์, ์ฃผ๊ด์ ์๋ฐ๊ฐ์ ์ํ ์ ์ ์๋ณต์ ๋ฐ ์๋ณต์์ด ์ฐฉ์ฉ์์ ์๋ฆฌยท์ฌ๋ฆฌ๋ฐ์์ ๋ฏธ์น ์ํฅ์ ๋ถ์ํ๊ณ ์ ํ์๋ค.
๊ตฌ์ฒด์ ์ผ๋ก๋ ์ฒซ์งธ, ์๋, ์พ์ , ๋ฐ๋ปํ ํ๊ฒฝ์จ๋์์ ์ธ์ฒด์ ์ , ์ค, ๊ณ ๋์ ์๋ฐ์ ๊ฐํ์ ๋ ์ธ์ฒด ๋ถ์๋ณ ์๋ณต์์ ์ ๋ํํ์๋ค. ๋์งธ, ํผํ์๊ฐ ์๋ตํ ์๋ฐ๊ฐ์ผ๋ก๋ถํฐ ์ธ์ฒด ๋ถ์๋ณ ์ ์ ์๋ณต์ ๋ฒ์๋ฅผ ๋ถ์ํ์๋ค. ์
์งธ, ์๋ฐ ๋ถ์๋ณ ์๋ณต์์ ๋ฐ๋ฅธ ์ธ์ฒด ์๋ฆฌยท์ฌ๋ฆฌ์ ๋ถ๋ด ์ ๋๋ฅผ ๋ถ์ํ์๋ค.
์ด๋ฅผ ์ํด 20๋ ์ฑ์ธ ์ฌ์ฑ 5์ธ(๋์ด 23.4 ยฑ 3.0 y, ์ ์ฅ 161.7 ยฑ 5.2 ใ, ์ฒดํ๋ฉด์ 1.56 ยฑ 0.03 ใก)์ด ํผํ์๋ก ์ฐธ์ฌํ์๋ค. ๋ชจ๋ ํผํ์๋ ์ธ ๊ฐ์ง ํ๊ฒฝ์จ ์กฐ๊ฑด (21oC, 27oC, 34oC; ์ต๋ 50 ยฑ 5%RH)๊ณผ ์ธ ๋ถ์ ์๋ฐ ์กฐ๊ฑด (ํ๋ฆฌ, ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ), ์ธ ๋จ๊ณ ์๋ฐ ์กฐ๊ฑด (0๋จ๊ณ_์ธ์ฒด ๋๋ 100%, 1๋จ๊ณ_์ธ์ฒด ๋๋ ์ฝ 6โผ8% ๊ฐ์, 2๋จ๊ณ_์ธ์ฒด ๋๋ ์ฝ 12โผ17% ๊ฐ์)์ ์ฐธ์ฌํ์๋ค(์ด 27 ์กฐ๊ฑด; ํผํ์ 5์ธ ร 27 ์กฐ๊ฑด = 135ํ). ์ธ์ฒด ๋ถ์๋ณ ์๋ฐ์ ์ํด ๊ฐ๋ณ ๋ง์ถค ์๋ฐ๋ฐด๋(๊ฒ๊ฐ: ๋์ผ๋ก /ํด๋ฆฌ์ฐ๋ ํ 80/20, ์๊ฐ: ๋์ผ๋ก /ํด๋ฆฌ์ฐ๋ ํ 91/9)๋ฅผ ์ ์ํ์๋ค. ์คํ์ ์ด 60๋ถ(์์ ์์ธ 50๋ถ ํ ์ ์์ธ 10๋ถ ์ ์ง)์ผ๋ก ์ธ๊ณต๊ธฐํ์ค์์ ์ค์๋์๋ค. ์๋ณต์์ ์๋ณต์ ์ธก์ ๊ธฐ(load cell type ์ผ์, ์๋ ฅ์ธก์ ๋ฒ์ 0โผ500 g)๋ฅผ ์ด์ฉํ์ฌ ํ๋ฆฌ, ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ ๋ถ์์์ 10๋ถ ๊ฐ๊ฒฉ์ผ๋ก ์ธก์ ํ์๋ค. ์ง์ฅ์จ, ์ํ ๋ถ์ ํผ๋ถ์จ(์ด๋ง, ๋ฐฐ, ์๋ํ, ์๋ฑ, ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ, ๋ฐ๋ฑ, ์๊ฐ๋ฝ ์จ๋, ์๋ฐ๋ฐด๋๋ด ํผ๋ถ์จ), ์๋ฐ๋ฐด๋๋ด ์จยท์ต๋, ์ฌ๋ฐ์๋ 1๋ถ ๊ฐ๊ฒฉ์ผ๋ก ์ฐ์ ์ธก์ ํ์๋ค. ํ์๊ณผ ์ฒด์ค์ ์คํ ์ ๊ณผ ํ์ ์ธก์ ํ์๋ค. ํ๊ท ํผ๋ถ์จ์ Hardy & Dubois์ ์์ ์์ฉํ์ฌ 7์ ๋ฒ์ผ๋ก ๊ณ์ฐํ์๋ค. ํ์๊ฐ, ์ต์ค๊ฐ, ๋ฐํ๊ฐ, ์๋ฐ๊ฐ, ์ฃผ๊ด์ ํ๋ค๊ธฐ๋ 7์ ์ฒ๋๋ก, ์จ์ด ์พ์ ๊ฐ์ 4์ ์ฒ๋๋ฅผ ์ด์ฉํ์ฌ 10๋ถ ๊ฐ๊ฒฉ์ผ๋ก ์๊ฐ ์๋ตํ๊ฒ ํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ๋ ๋ค์๊ณผ ๊ฐ๋ค.
๋ค์ํ ํ๊ฒฝ์จ๋์์ ์ธ์ฒด๋ถ์๋ณ ์๋ฐ์์ค์ ๋ฐ๋ฅธ ์๋ณต์, ์ฃผ๊ด์ ์๋ฐ๊ฐ์ ์ํ ์ ์ ์๋ณต์ ๋ฐ ์๋ณต์์ด ์ฐฉ์ฉ์์ ์๋ฆฌยท์ฌ๋ฆฌ๋ฐ์์ ๋ฏธ์น ์ํฅ์ ๋ถ์ํ๊ณ ์ ํ์๋ค.
๊ตฌ์ฒด์ ์ผ๋ก๋ ์ฒซ์งธ, ์๋, ์พ์ , ๋ฐ๋ปํ ํ๊ฒฝ์จ๋์์ ์ธ์ฒด์ ์ , ์ค, ๊ณ ๋์ ์๋ฐ์ ๊ฐํ์ ๋ ์ธ์ฒด ๋ถ์๋ณ ์๋ณต์์ ์ ๋ํํ์๋ค. ๋์งธ, ํผํ์๊ฐ ์๋ตํ ์๋ฐ๊ฐ์ผ๋ก๋ถํฐ ์ธ์ฒด ๋ถ์๋ณ ์ ์ ์๋ณต์ ๋ฒ์๋ฅผ ๋ถ์ํ์๋ค. ์
์งธ, ์๋ฐ ๋ถ์๋ณ ์๋ณต์์ ๋ฐ๋ฅธ ์ธ์ฒด ์๋ฆฌยท์ฌ๋ฆฌ์ ๋ถ๋ด ์ ๋๋ฅผ ๋ถ์ํ์๋ค.
์ด๋ฅผ ์ํด 20๋ ์ฑ์ธ ์ฌ์ฑ 5์ธ(๋์ด 23.4 ยฑ 3.0 y, ์ ์ฅ 161.7 ยฑ 5.2 ใ, ์ฒดํ๋ฉด์ 1.56 ยฑ 0.03 ใก)์ด ํผํ์๋ก ์ฐธ์ฌํ์๋ค. ๋ชจ๋ ํผํ์๋ ์ธ ๊ฐ์ง ํ๊ฒฝ์จ ์กฐ๊ฑด(21oC, 27oC, 34oC; ์ต๋ 50 ยฑ 5%RH)๊ณผ ์ธ ๋ถ์ ์๋ฐ ์กฐ๊ฑด(ํ๋ฆฌ, ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ), ์ธ ๋จ๊ณ ์๋ฐ ์กฐ๊ฑด(0๋จ๊ณ_์ธ์ฒด ๋๋ 100%, 1๋จ๊ณ_์ธ์ฒด ๋๋ ์ฝ 6โผ8% ๊ฐ์, 2๋จ๊ณ_์ธ์ฒด ๋๋ ์ฝ 12โผ17% ๊ฐ์)์ ์ฐธ์ฌํ์๋ค(์ด 27 ์กฐ๊ฑด; ํผํ์ 5์ธ ร 27 ์กฐ๊ฑด = 135ํ). ์ธ์ฒด ๋ถ์๋ณ ์๋ฐ์ ์ํด ๊ฐ๋ณ ๋ง์ถค ์๋ฐ๋ฐด๋(๊ฒ๊ฐ: ๋์ผ๋ก /ํด๋ฆฌ์ฐ๋ ํ 80/20, ์๊ฐ: ๋์ผ๋ก /ํด๋ฆฌ์ฐ๋ ํ 91/9)๋ฅผ ์ ์ํ์๋ค. ์คํ์ ์ด 60๋ถ(์์ ์์ธ 50๋ถ ํ ์ ์์ธ 10๋ถ ์ ์ง)์ผ๋ก ์ธ๊ณต๊ธฐํ์ค์์ ์ค์๋์๋ค. ์๋ณต์์ ์๋ณต์ ์ธก์ ๊ธฐ(load cell type ์ผ์, ์๋ ฅ์ธก์ ๋ฒ์ 0โผ500 g)๋ฅผ ์ด์ฉํ์ฌ ํ๋ฆฌ, ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ ๋ถ์์์ 10๋ถ ๊ฐ๊ฒฉ์ผ๋ก ์ธก์ ํ์๋ค. ์ง์ฅ์จ, ์ํ ๋ถ์ ํผ๋ถ์จ(์ด๋ง, ๋ฐฐ, ์๋ํ, ์๋ฑ, ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ, ๋ฐ๋ฑ, ์๊ฐ๋ฝ ์จ๋, ์๋ฐ๋ฐด๋๋ด ํผ๋ถ์จ), ์๋ฐ๋ฐด๋๋ด ์จยท์ต๋, ์ฌ๋ฐ์๋ 1๋ถ ๊ฐ๊ฒฉ์ผ๋ก ์ฐ์ ์ธก์ ํ์๋ค. ํ์๊ณผ ์ฒด์ค์ ์คํ ์ ๊ณผ ํ์ ์ธก์ ํ์๋ค. ํ๊ท ํผ๋ถ์จ์ Hardy & Dubois์ ์์ ์์ฉํ์ฌ 7์ ๋ฒ์ผ๋ก ๊ณ์ฐํ์๋ค. ํ์๊ฐ, ์ต์ค๊ฐ, ๋ฐํ๊ฐ, ์๋ฐ๊ฐ, ์ฃผ๊ด์ ํ๋ค๊ธฐ๋ 7์ ์ฒ๋๋ก, ์จ์ด ์พ์ ๊ฐ์ 4์ ์ฒ๋๋ฅผ ์ด์ฉํ์ฌ 10๋ถ ๊ฐ๊ฒฉ์ผ๋ก ์๊ฐ ์๋ตํ๊ฒ ํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ๋ ๋ค์๊ณผ ๊ฐ๋ค.
์ฒซ์งธ, ์๋ฐ์์ค๋ณ ์๋ณต์์ ํ๋ฆฌ์ ์ข
์๋ฆฌ ๊ฐ์์ ๋ชจ๋ ์์ธ์์ 2๋จ๊ณ๊ฐ 0๋จ๊ณ์ 1๋จ๊ณ ๋ณด๋ค ์ ์ํ๊ฒ ๋์๋ค(P<0.01). ๋์ ๋ค๋ฆฌ๋ ์์ ์์ธ์์๋ ์๋ฐ์์ค์ด ๋์์๋ก ์๋ณต์์ด ์ฆ๊ฐํ๊ณ (P<0.05), ์ ์์ธ์์๋ 1๋จ๊ณ์ 2๋จ๊ณ ๊ฐ ์๋ณต์ ์ฐจ์ด ์์ด 0๋จ๊ณ๋ณด๋ค ์ ์ํ๊ฒ ๋๊ฒ ๋ํ๋ฌ๋ค(P<0.001). ์๋ฐ๋ถ์๋ณ ์๋ณต์์ ์์ ์์ธ์์๋ ๋์ ๋ค๋ฆฌ๊ฐ ๋ค๋ฅธ ๋ ๋ถ์์ ๋นํด ๋์๋ค(P<0.001). ๊ทธ๋ฌ๋ ์ ์์ธ์์๋ 0๋จ๊ณ ๊ฐ์์์๋ ๋ถ์๋ณ ์ ์ํ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง ์์๊ณ , 1๋จ๊ณ์ 2๋จ๊ณ ๊ฐ์์์๋ ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ, ํ๋ฆฌ ๋ถ์ ์์ผ๋ก ๋๊ฒ ๋ํ๋(P<0.01) ์์ธ์ ๋ฐ๋ฅธ ์ฐจ์ด๋ฅผ ๋ณด์๋ค. ๋ถ์๋ณ ํน์ ์๋ฐ ์์ค๋ณ ์๋ณต์์์ ํ๊ฒฝ์จ๋์ ๋ฐ๋ฅธ ์ฐจ์ด๋ ๋ฐ๊ฒฌ๋์ง ์์๋ค.
๋์งธ, ์ฐ์ ๋์ ์ ๋ขฐ๊ตฌ๊ฐ์ ํตํ์ฌ ํผํ์๊ฐ ์๋ตํ ์๋ฐ๊ฐ ์ ์ โ0.5์ 0.5 ์ฌ์ด์ ํด๋นํ๋ ์๋ณต์ ๊ฐ์ ํตํด ์์ธ๋ณ ์ต์ ์๋ณต์ ๋ฒ์๋ฅผ ๋์ถํ ๊ฒฐ๊ณผ, ํ๋ฆฌ ๊ฐ์์ ์์ ์์ธ์์ 4.5โผ13.8 mmHg, ์ ์์ธ์์ 5.2โผ11.6 mmHg, ๋์ ๋ค๋ฆฌ ๊ฐ์์ ์์ ์์ธ์์ 10.7โผ24.9 mmHg, ์ ์์ธ์์ 6.7โผ22.1 mmHg, ์ข
์๋ฆฌ ๊ฐ์์ ์์ ์์ธ์์ 4.9โผ17.2 mmHg, ์ ์์ธ์์ 3.3โผ15.1 mmHg ๋ฒ์๊ฐ ์ป์ด์ก์ผ๋ฉฐ, ๋์ ๋ค๋ฆฌ๊ฐ ํ๋ฆฌ์ ์ข
์๋ฆฌ๋ณด๋ค ๋น๊ต์ ๋์ ์์ค์ด์๋ค.
์
์งธ, ์๋ณต์๊ณผ ์๋ฆฌยท์ฌ๋ฆฌ๋ฐ์๊ณผ์ ์๊ด๊ด๊ณ๋ฅผ ๋ณธ ๊ฒฐ๊ณผ ํ๊ฒฝ์จ๋์ ๋ฐ๋ผ์๋ 21oC์์, ์ธ์ฒด ๋ถ์์ ๋ฐ๋ผ์๋ ๋์ ๋ค๋ฆฌ๋ฅผ ๊ฐ์ํ์ ๋๊ฐ ๋ ๋์ ์๊ด๋๋ฅผ ๋ณด์๋ค. ์๋ฆฌ๋ฐ์์ 21oC์์ ๋์ ๋ค๋ฆฌ ๊ฐ์์ ์๋ณต์์ด ๋์์๋ก ์๊ฐ๋ฝ์จ๋์ ์๋ฐ๋ฐด๋๋ด ์ต๋๊ฐ ์์นํ๋ ๊ฒฝํฅ์(P<0.05), 27oC์์ ํ๋ฆฌ(P<0.01)์ ๋์ ๋ค๋ฆฌ(P<0.05) ๊ฐ์์ ํ๊ท ํผ๋ถ์จ์ด ๊ฐํํ๋ ๊ฒฝํฅ์, ๋์ ๋ค๋ฆฌ ๊ฐ์์ ์๋ฐ๋ฐด๋๋ด ํผ๋ถ์จ์ด ๊ฐํํ๋ ๊ฒฝํฅ์(P<0.01), 34oC์์ ํ๋ฆฌ๊ฐ์์ ์ฒด์ค๊ฐ์๋์ด ๊ฐ์ํ๋ ๊ฒฝํฅ์ ๋ณด์๋ค(P<0.05). ์ธ์ฒด ๊ฐ์์ ์ฌ๋ฆฌ๋ฐ์์ ์๋ณต์์ด ๋์์๋ก ์๋ฐ๋ฐด๋๋ด ๋ถ์๋ฅผ ๋ ๊ฑด์กฐํ๊ฒ ๋๋ผ๋ ๊ฒ์ผ๋ก ๋ํ๋ฌ์ผ๋ฉฐ(P<0.05), ๋ ์กฐ์ธ๋ค๊ณ ์๋ตํ์๋ค(P<0.05). ํนํ, ํ๋ฆฌ์ ๋์ ๋ค๋ฆฌ ๊ฐ์์ ์๋ณต์์ด ๋์์๋ก ์จ์ด์ ์ผ๋ก ๋ ๋ถ์พํ๊ฒ(P<0.05), ๋ ํ๋ค๊ฒ ๋๋ผ๋ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค(P<0.05). ๊ทธ๋ฌ๋, ์ง์ฅ์จ, ์ฌ๋ฐ์ ๋ฐ ํ์๊ฐ ๋ฐ์์์ ์๋ฐ์์ค์ ๋ฐ๋ฅธ ์ ์ํ ์ฐจ์ด๋ ๋ฐ๊ฒฌ๋์ง ์์๋ค.
๋ณธ ์ฐ๊ตฌ๋ฅผ ํตํด ํ๋ฆฌ์ ๋์ ๋ค๋ฆฌ, ์ข
์๋ฆฌ ์๋ฐ ์ ์ ์ ์๋ฐ ์์ค์ด ๋์ถ๋์๋ค. ๋์ ๋ค๋ฆฌ์ ์ ์ ์๋ฐ์์ค์ด ํ๋ฆฌ์ ์ข
์๋ฆฌ์ ๋นํด ๋์๊ธฐ ๋๋ฌธ์, ์ด๋ ์๋ฐ ํ์๋ฅ ์ ์ ์ ํจํด ๋ฐ ์์ฌ ์ ํ์ ์ ์ฉ ๊ฐ๋ฅํ๋ค. ๋์ผํ ์ธ์ฒด ๋ถ์์ ๋์ผํ ์์ค์ ์๋ฐ์ด ๊ฐํด์ ธ๋ ์์ธ์ ๋ฐ๋ฅธ ์ฐจ์ด๊ฐ ๊ด์ฐฐ๋๋ฉฐ, ํผํ์ง๋ฐฉ ์์ค์ ๋ฐ๋ผ ์๋ ฅ์ด ๋ฌ๋ผ์ง๊ธฐ ๋๋ฌธ์ ํธ์ํ๊ณ ๊ธฐ๋ฅ์ ์ธ ์๋ฐ๋ณต ์ ์์ ์ํด์๋ ์ถํ ๋ณด๋ค ๋ค์ํ ์ฒดํ์ ํผํ์๋ฅผ ๋์์ผ๋ก ์ฒดํ๋ณ ๋ถ๋ฅ๋ฅผ ํตํ ๋ณด๋ค ๋ค์ํ ์์ธ์ ๋์์์์ ์๋ณต์์ ๋ถ์ํ ํ์๊ฐ ์๋ค.์ 1 ์ฅ ์๋ก 1
์ 2 ์ฅ ์ด๋ก ์ ๋ฐฐ๊ฒฝ 5
์ 1 ์ ์๋ณต์ 5
1. ์๋ณต์๊ณผ ์๋ฆฌ๋ฐ์ 5
2. ์๋ณต์๊ณผ ์ฃผ๊ด์ ๋ฐ์ 11
์ 2 ์ ํ๊ฒฝ์จ๋์ ์๋ฆฌ๋ฐ์ 14
1. ์ ์จํ๊ฒฝ์์์ ์๋ฆฌ๋ฐ์ 16
2. ๊ณ ์จํ๊ฒฝ์์์ ์๋ฆฌ๋ฐ์ 19
์ 3 ์ฅ ์ฐ๊ตฌ๋ฐฉ๋ฒ 23
์ 1 ์ ํผํ์ 24
์ 2 ์ ํ๊ฒฝ์กฐ๊ฑด 25
์ 3 ์ ์คํ์๋ณต 25
์ 4 ์ ์๋ฐ๋ฐด๋ ์ ์ ๋ฐ ์๋ฐ๋ฐฉ๋ฒ 27
1. ์๋ฐ๋ฐด๋ ์ ์ 27
2. ์๋ฐ๋ฐฉ๋ฒ 29
3. ์๋ณต์ ์ธก์ 31
์ 5 ์ ์คํ์์ 32
์ 6 ์ ์ธก์ ํญ๋ชฉ 33
1. ์ธ์ฒด์๋ฆฌ๋ฐ์ 33
2. ์ฃผ๊ด์ ๊ฐ๊ฐ 35
์ 7 ์ ํต๊ณ๋ถ์ 36
์ 4 ์ฅ ์ฐ๊ตฌ ๊ฒฐ๊ณผ 37
์ 1 ์ ์๋ณต์๊ณผ ์ ์ ์๋ณต์ ๋ฒ์ 37
1. ์๋ฐ๋จ๊ณ๋ณ ์๋ณต์ 37
2. ์๋ฐ๋ถ์๋ณ ์๋ณต์ 46
3. ๋ถ์๋ณ ์ ์ ์๋ณต์ ๋ฒ์ 53
์ 2 ์ ์๋ฐ๋จ๊ณ๋ณ ์๋ฆฌยท์ฌ๋ฆฌ๋ฐ์ 55
1. ์๋ฐ๋จ๊ณ๋ณ ์๋ฆฌ๋ฐ์ 55
2. ์๋ฐ๋จ๊ณ๋ณ ์ฃผ๊ด๊ฐ 70
3. ์๋ณต์๊ณผ ์๋ฆฌยท์ฌ๋ฆฌ๋ฐ์๊ณผ์ ์๊ด๊ด๊ณ 84
์ 3 ์ ์๋ฐ๋ถ์๋ณ ์๋ณต์๊ณผ ์๋ฆฌยท์ฌ๋ฆฌ๋ฐ์ 88
1. ์๋ฐ๋ถ์๋ณ ์๋ฆฌ๋ฐ์ 88
2. ์๋ฐ๋ถ์๋ณ ์ฃผ๊ด๊ฐ 108
์ 5 ์ฅ ๊ณ ์ฐฐ 122
์ 1 ์ ์๋ณต์๊ณผ ์ ์ ์๋ณต์ ๋ฒ์ 122
์ 2 ์ ์๋ณต์๊ณผ ์๋ฆฌยท์ฌ๋ฆฌ๋ฐ์ 127
์ 6 ์ฅ ๊ฒฐ๋ก ๋ฐ ์ ์ธ 132๋ฐ
- A cast study of cinnamon industry in Karandeniya and Matale, Sri Lanka-
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ฌ๋ฒ๋ํ ์ฌํ๊ต์ก๊ณผ(์ง๋ฆฌ์ ๊ณต), 2019. 2. Macรญas, Douglas Roger.๋ณธ ์ฐ๊ตฌ๋ ๊ธ๋ก๋ฒ์์ฐ๋คํธ์ํฌ(Global Production Networks, GPN) ์ด๋ก ์ ๊ด์ ์์ ์ค๋ฆฌ๋์นด ์นด๋๋ฐ๋์ ๋ฐ ๋งํ๋ ์ง์ญ์ ์๋๋ชฌ ์ฐ์
์ ์ฃผ๋ชฉํ๋ค.
์ฐ๊ตฌ์ ์ ๋ฐ๋ถ์์๋ ์ง์ญ ๋ฐ์ ์ ์ธก๋ฉด์์ GPN ๋
ผ์๋ฅผ ์๊ฐํ๊ณ , ๋ ๋์๊ฐ ๊ธฐ์กด ๊ฒฝ์ ์ง๋ฆฌํ ๋
ผ์์ ํ๊ณ๋ฅผ ์ง์ ํ๋ค. ๊ธฐ์กด ๊ฒฝ์ ์ง๋ฆฌํ ๋
ผ์๋ ์ ์ง๊ตญ ์์ฃผ๋ก ์ด๋ฃจ์ด์ ธ ์์ผ๋ฉฐ, ์ฃผ๋ก ์ ์กฐ์
๊ณผ ๊ฐ์ด ์ํ์ ์์ฐ ๋ฐ ๋ถ๋ฐฐ ๊ณผ์ ์ ์์ด์์ downstream ํ๋์ ์ด์ ์ ๋ง์ถฐ์๋ค. ์ง์ญ ์ค์ผ์ผ์์๋ ๊ฒฝ์ ์ ์ฑ์ฅ์ผ๋ก์์ ์ง์ญ๋ฐ์ ์๋ง ์ด์ ์ ๋๋ ๊ฒฝํฅ์ด ์์ด์๋ค. ๋ฐ๋ผ์ ์ด ์ฐ๊ตฌ๋ global South์ ๋์ด ์ง์ญ์์ ์ด๋ฃจ์ด์ง๋ ์ํ์ ์์ฐ ๋ฐ ๋ถ๋ฐฐ ๊ณผ์ ์์์ upstream ํ๋์ ์ด์ ์ ๋๊ณ , ์ง์ญ๋ฐ์ ์ ์์ด์ ๋ถ๋ฐฐ์ ๊ด์ ์ ๋์
ํจ์ผ๋ก์จ ๊ธฐ์กด ๋
ผ์์ ํ๊ณ๋ฅผ ๊ทน๋ณตํ๊ณ ์ ํ๋ค. ์ธ๋ฒ์งธ ์ฅ์์๋ ๋ค์ค ์ค์ผ์ผ์์์ ์๋๋ชฌ ์ฐ์
๊ณผ ์ฌ๋ก ์ฐ๊ตฌ ๋์ ์ง์ญ์ธ ์นด๋๋ฐ๋์ ๋ฐ ๋งํ๋ ์ง์ญ์ ๊ธฐ๋ณธ ํํฉ ๋ฑ ์ฐ๊ตฌ ์ฃผ์ ์ ๊ด๋ จํ์ฌ ๋ฐฐ๊ฒฝ์ด ๋๋ ์ ๋ณด๋ค์ ์ ์ํ๋ค. ๋ค๋ฒ์งธ ์ฅ์์๋ GPN ์ด๋ก ํ๊ณผ ์ง์ญ ๋ฐ์ ์ ๊ด์ ์์ ์นด๋๋ฐ๋์์ ๋งํ๋ ์ง์ญ์ ์๋๋ชฌ ์ฐ์
์ ํ๊ตฌํ๋ค. ์ด๋ฅผ ํตํด ์ง์ญ ํ๊ฒฝ, ํ์์๊ฐ ์ํธ์์ฉ ๊ทธ๋ฆฌ๊ณ ์ด๋ฅผ ํตํด ๋ํ๋๋ ๊ตฌ์กฐ์ ๊ฒฐ๊ณผ๋ค์ ๋ถ์ํ๋ค. ๋ ๋์๊ฐ ๋ ์ง์ญ์์ ์๋๋ชฌ ์ฐ์
๊ณผ ๊ด๋ จํ์ฌ ์ด๋ ํ ๊ณต๊ฐ์ ์ ํ(spatial switching)์ด ๋ํ๋ฌ๋์ง, ์ด๋ ์ด๋ป๊ฒ ์ง์ญ์ ํ์์๋ค๊ณผ ์ง์ญ๋ฐ์ ์ ์ํฅ์ ๋ฏธ์ณค๋์ง ๋ฐํ๋ค.
์๋๋ชฌ ์ฐ์
์์๋ ๋๋ถ, ๊ฐ๊ณต์(peeler), ์ค๊ฐ ์์ธ(Collector), ์์ถ ํ์ฌ์ ๊ฐ์ด ํฌ๊ฒ ๋ค ๊ฐ์ง ์ ํ์ ํ์์๋ค์ด ์ฃผ๋ ์ญํ ์ ์ํํ๋ค. ์ด๋, ๋ค์๋ฅผ ์ฐจ์งํ๋ ๋๋ถ์ ๊ฐ๊ณต์๊ฐ ๋๋ถ๋ถ์ ๊ฐ์น๋ฅผ ์ฐฝ์ถํ๋๋ฐ ๋ฐํด, ์์์ ์ค๊ฐ ์์ธ๊ณผ ์์ถ ํ์ฌ๊ฐ ๋๋ถ๋ถ์ ๊ฐ์น๋ฅผ ํฌํํ๋ค. ๊ณต๊ฐ์ ์ธ ๊ด์ ์์ ๋ณด๋ฉด, ๊ณผ๊ฑฐ์๋ ๊ฐ ์ง์ญ์์ ์ฐฝ์ถ๋ ๊ฐ์น๊ฐ ์์ถํ์ฌ๊ฐ ์์นํ ์ฝ๋กฌ๋ณด ์ง์ญ์ผ๋ก ์ ์ถ๋์๋ค. ํ์ง๋ง, ์ต๊ทผ ๋ช ๋
๊ฐ, ์ฝ๋กฌ๋ณด์ ์์นํ ์์ถํ์ฌ์์ ์ ๋ต์ ๋ถ๋ฆฌ(strategic decoupling), ๋ค๋ฅธ ์ง์ญ์ ์์นํ ํ์์์์ ์ ๋ต์ ์ฌ๊ฒนํฉ(strategic recoupling)๊ณผ ๊ฐ์ ์ผ๋ จ์ ๋ณํ๊ฐ ์์๊ณ , ์ด๋ฅผ ํตํด ๊ฐ ์ง์ญ์ ์๋ก ๋ค๋ฅธ ๋ชจ์ต์ ์์ฐ ๋คํธ์ํฌ๋ฅผ ๊ฐ์ง๊ฒ ๋์๋ค. ๊ฒฝ์ ์ ์ฑ์ฅ์ผ๋ก์์ ์ง์ญ๋ฐ์ ์ ์ด์ ์ ๋๋ ๊ธฐ์กด GPN ๋
ผ์์์๋, ์ฐฝ์ถ๋ ๊ฐ์น๊ฐ ์ง์ญ ๋ด์ ๋ชจ๋ ํฌํ๋๋ ์นด๋๋ฐ๋์๊ฐ ์ฑ๊ณต์ ์ธ ์ฌ๋ก์ธ ๊ฒ์ฒ๋ผ ๋น์ถฐ์ง๋ค. ํ์ง๋ง, ๋ถ๋ฐฐ์ ๊ด์ ์์ ๋ณด๋ฉด, ์ง์ญ ๋ด ํ์์ ๊ฐ์ ๊ฐ์น ๋ถ๋ฐฐ๊ฐ ์ ์ ์นด๋๋ฐ๋์์ ๋นํด, ๋น๋ก ์ด๋ ์ ๋์ ๊ฐ์น ์ ์ถ์ด ์์ง๋ง, ์ง์ญ ๋ด ํ์์ ๊ฐ ๊ฐ์น ๋ถ๋ฐฐ๊ฐ ๋ง์ ๋งํ๋ ์ง์ญ์์์ ํ์์๋ค์ ๋ง์กฑ๋๊ฐ ๋ ํฌ๊ฒ ๋ํ๋ฌ๋ค. ์ด๋ ๊ฒฝ์ ์ ์ฑ์ฅ์๋ง ์ด์ ์ ๋๋ ๊ธฐ์กด GPN์ ์ง์ญ ๋ฐ์ ๋
ผ์์ ์๋ฌธ์ ์ ๊ธฐํ๋ค. ๋ฐ๋ผ์ ์ด ๋
ผ๋ฌธ์์๋ ์ง์ญ๋ด์ ํ์์ ๊ฐ์ ๊ฐ์น ๋ถ๋ฐฐ๋ฅผ ๊ณ ๋ คํ ํ์๊ฐ ์์์ ์ฃผ์ฅํ๋ค.This research analyzes the case of the cinnamon industry in the Karandeniya and Matale regions of Sri Lanka deploying a Global Production Networks (GPN) framework inclusive of regional development considerations.
The thesis begins with a presentation of theoretical background related to GPNs and some limitations related to the perspective in the existing economic geographical literature, namely an emphasis on downstream manufacturing activity in more developed countries, and a regional scale, economic growth oriented view of development. The argument presented is that analyses of upstream activity in agricultural regions in the global South deploying a distributional view of regional development may help to overcome these limitations. The third chapter, provides background information related to the research topic, including multi-spatial information about the cinnamon industry (global, national, and regional), as a well as regional background on the target regions for the case study, Karandeniya and Matale. The fourth chapter explores the cinnamon industries in the Karandeniya and Matale region vis-ร -vis the GPN framework and regional development considerations. This unpacks the local environment, actor interaction, and resulting structural outcomes. Further, it unearths evidence of spatial switching in the cinnamon industry and its influence on both local actors and regional development.
Field observation found four prime actors in the cinnamon industry, namely farmers, peelers, collectors and exporting firms. While the farmers and peelers create most to the value, collectors and exporting firms, actors in the minority, capture the most value. In the past, in both Karandeniya and Matale, the value created in the region leaked to another region because the exporters were located in Colombo. However, there were a series of cases of strategic decoupling with the exporting firms in Colombo and subsequent strategic recoupling with other actors. According to the existing view of regional development in the GPN literature, one based on economic growth measured at the regional scale, Karandeniya represents a typical successful case. However, the extent of value distribution within the region is different from that experienced in Matale, which is more equitable. This raises a pertinent question about the view of regional development as growth. Therefore, more in line with the distributional view, this thesis argues for regional development as well-being, and a consideration of value distribution and equity for all actors within a given (agricultural) region resulting from strategic decoupling and recoupling.Table of Contents
โ
. Introduction
1. Research Relevance and Purpose
2. Thesis Outline
โ
ก. Theoretical Background
1. Global Production Networks
1) Past Debates and GPNs: What is in a Word?
2) Regional Development and Strategic Coupling
3) Value and Power Relationships
4) Embeddedness and Institutions
5) Adding a Distributional View to GPNs
2. Agriculture and the Global South
1) The Increased Dynamics of the Global South
2) The Global South in Economic Geography
3) The Dynamics of the Global South through a GPN Lens
3. Summary and Implications for the Thesis
โ
ข. Research Background
1. The Cinnamon Industry
1) The Global Cinnamon Market
2) The Cinnamon Industry in Sri Lanka
2. Introduction of Regions Targeted for Analysis
1) Karandeniya
2) Matale
โ
ฃ. Case Study Comprising the Research
1. Research Questions
2. Methodology and Data
1) Interview
2) Data
3) Participant Observation
3. Results and Discussions
4. Summary
โ
ค. Conclusion
ReferencesMaste
Association of HLA genes with aplastic anemia in Koreans
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ๊ฒ์ฌ์ํ,2007.Docto
A Study on Visual Expression of Illusory Space and Contemporaries Possessiveness
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๋์ํ๊ณผ, 2017. 2. ์ฐจ๋ํ.์ด ๋
ผ๋ฌธ์ 2013๋
๋ถํฐ 2016๋
์ฌ์ด์ ํ์์ ๊ณต๊ฐ๊ณผ ํ๋์ธ์ ์๋ง์ด๋ผ๋ ์ฃผ์ ๋ก ์งํ๋ ํ์์ ์์
์ ๋์์ผ๋ก ํ๋ค. ๋จผ์ ์์
์ ์ด๋ก ์ ๋ฐฐ๊ฒฝ๊ณผ ์ฐฝ์ ๊ณผ์ ์ ์ดํด๋ณด๊ณ , ์ํ์ ์ฃผ์ ์ ํ์์ ์ฐ๊ตฌํ์ฌ ํ์ฌ๊น์ง ์งํ๋ ์์
์ ์ ๋ฆฌํ๊ณ ์์ผ๋ก ๋์๊ฐ ๋ฐฉํฅ์ ๋ชจ์ํด๋ณด๊ณ ์ ํ๋ค.
ํ์๋ ํ๋ ์ฌํ๊ฐ ๊ณผ๋ํ ์์ ์์ผ๋ก ์ธํ ๋ฌธ์ ์ ์ด ๋ง๋ค๋ ๋ฌธ์ ์์์ ๊ฐ์ง๊ฒ ๋์๋ค. ๊ทธ๋ฆฌ๊ณ ์ด๋ฌํ ์์ ๋ ๋๋ถ๋ถ ํ์์ ์ด๋ผ๊ณ ์๊ฐํ๋ค. ์ฐ๋ฆฌ๋ ์ค์ฒด๊ฐ ์๋ ์ด๋ฏธ์ง์ ๋๋ฌ์ธ์ฌ ์๊ณ , ๊ทธ ์์์ ์ด๋ฏธ์ง๋ฅผ ์๋นํ๋ฉฐ ์ํํ๋ค. ์ค์ ์ ์ธ๊ณ๊ฐ ์๋ ํ์์ ์ธ๊ณ ์์์ ์ง๋ด๋ฉด์ ๊ทธ ๊ณณ์ ์ค์ ๋ผ๊ณ ๋ฏฟ๊ธฐ๋ ํ๋ค. ์ค์ ๊ฐ ์๋ ๊ฒ์ ์ต์ํด์ง ์ฐ๋ฆฌ๋ ๋์์ ์ค์ฒด๊ฐ ์์ด๋ ๊ทธ๊ฒ์ ์ฝ๊ฒ ํ์ค๋ก ๋ฐ์๋ค์ธ๋ค. ์ด ๋
ผ๋ฌธ์ ์ด๋ฌํ ๋ฌธ์ ์์์ ์์์ผ๋ก ํ ์ํ์ ์ด๋ก ์ ๋ฐฐ๊ฒฝ์ ์ฐ๊ตฌํ๊ณ , ์ํ์ ํํ ๋ฐฉ์์ ๋ถ์ํ์ฌ ํ์์ ๊ณต๊ฐ์์์ ์์ ์ ํ๋์ธ์ ์๋ง์ ๊ดํ ๋ฌธ์ ๋ฅผ ์ด๋ป๊ฒ ์์
์ผ๋ก ํํํ๋์ง ์ ์ํ๋ค. ์ด ๊ณผ์ ์ ํตํด ๋ถ์ฐ๋์ด ์๋ ์์
์ ๋ฐฉํฅ์ ํตํฉ์ํค๊ณ , ์ด๋ก ์ ์ธก๋ฉด์ ๊ฐํํ์ฌ ์์ผ๋ก ๋ฐ์ ์ ์ธ ์์
์ ๋ชจ์ํ ์ ์๋๋ก ํ๋ ๊ฒ์ด ์ด ์ฐ๊ตฌ์ ๋ชฉ์ ์ด๋ค.
โ
์ฅ์์๋ ํ์์ ๊ณต๊ฐ๊ณผ ํ๋์ธ์ ์๋ง์ ๊ดํ ๋ฌธ์ ์ ๊ธฐ๋ฅผ ํ๊ณ ์ฐ๊ตฌ๋ด์ฉ๊ณผ ๋ฐฉ๋ฒ์ ๊ฐ๋ตํ๊ฒ ์์ ํ๋ค.
โ
ก์ฅ์์๋ ์ํ์ ๋ถ์ํ๊ธฐ์ ์์ ์์
์ ์ฃผ์ ์ธ ํ์์ ๊ณต๊ฐ์์์ ์์ ์ ํ๋์ธ์ ์๋ง์ด๋ผ๋ ๊ฐ๋
์ ๋ํด ์์๋ณธ๋ค. โ
ก์ฅ 1์ ์์๋ ํ์์ ๊ณต๊ฐ์ ๋ํด ์์ ํ๋ค. ํ์์ ์์
์ ๋ฑ์ฅํ๋ ํ์์ ๊ณต๊ฐ์ ํ์์ ๋์ด ๊ณต๊ฐ๊ณผ ํ๋ฉด ์ ํ์ ๊ณต๊ฐ์ผ๋ก ๋๋์ด ์ดํด๋ณธ๋ค. โ
ก์ฅ 2์ ์์๋ ํ๋์ฌํ์์์ ์์ ์๋ง์ ๋ํด ์์ ํ๋ค. ์์ ์ค์ฌ์ผ๋ก ์ด์๊ฐ๋ ํ๋์ธ์ ์ถ์ ๋ํด ์์๋ณด๊ณ , ํ์๊ฐ ์ด๋ ํ ๊ฒฝํ์ ํตํด ํ๋์ธ์ ์๋ง์ ๊ด์ฌ์ ๊ฐ์ง๊ณ ํํํ๊ฒ ๋์๋์ง ์์ ํ๋ค. ํ๋ ์ฌํ์ ์๋ง์ ๊ดํ ์ฐ๊ตฌ๋ฅผ ํตํด ํ์์ ์์
๊ณผ ์ด ๊ฐ๋
๋ค์ด ๊ฐ์ง๋ ์ฐ๊ด์ ์ฐพ๋๋ค.
โ
ข์ฅ์์๋ ํ์์ ๊ณต๊ฐ์์์ ์์ ์ ํ๋์ธ์ ์๋ง์ด ์์
์์ ์ด๋ป๊ฒ ํํ๋์๋์ง ์ดํด๋ณธ๋ค. โ
ข์ฅ 1์ ์์๋ ๋์ด ๊ณต๊ฐ์ด๋ผ๋ ํ์์ ๊ณต๊ฐ์ ์์ ํ๊ณ ์ ํ๋ ๋์ด-๋
๋ฐ๋จน๊ธฐ์์
์ ๋ํด์ ๋ถ์ํ์๋ค. ๋จผ์ โ
ก์ฅ์ ํ์์ ๋์ด ๊ณต๊ฐ์์ ์์ ํ ๋์ด์ ํน์ฑ์ ๋ฐํ์ผ๋ก ์งํ๋ ๋
๋ฐ๋จน๊ธฐ ๋์ด์ ๊ณผ์ ๊ณผ ๊ท์น์ ์ค๋ช
ํ์๋ค. ๋ค์์ผ๋ก๋ ๊ฐ๋ณ ์ํ๋ค์ ์ ๊ฐ๊ณผ์ ๊ณผ ๋ฐ๋ฌ๊ณผ์ ์ ์์ ํ์๋ค. โ
ข์ฅ 2์ ์์๋ ํ์์ ์ฌ๋ฌผ๊ณผ ๊ณต๊ฐ์ ์์ ์ ๊ดํ ์์
์ ๋ณด์ฌ์ค๋ค. ๋ฐ์ ๋ ์ฌ๋ฌผ ์์
์์ ์ด๋ฏธ์ง์ ๋ฐ์ ๋ฅผ ํตํด ์ด๋ ํ ๋ฐฉ์์ผ๋ก ์ฌ๋ฌผ๊ณผ ๊ณต๊ฐ์ ์์ ํ๊ณ ์ ํ๋์ง ์์ ํ์๋ค. ์ด์ด์ ๋น๋์ ์ด์ฉํ ์์
์ ๋งค์ฒด์ ํน์ฑ์ ์ดํด๋ณด๊ณ ๊ทธ์ ๊ด๋ จํ ์ค์น ์์
์ ๋ํด ๋ถ์ํ์๋ค. โ
ข์ฅ 3์ ์์ ์์ ํ๊ณ ์๋ ๋ณธ์ธ์ ๋ํ๋ด๋ ์์น์ ๋ํ ์ค๋ฌธ์์๋ ์์์ ์์ ํ ํ์์ ์์ ์ ๊ดํ ๋ณดํธ์ ์ธ๊ฐ์ ์์ฑ์ด ์๋๋ผ ์กฐ๊ธ ๋ ๊ตฌ์ฒดํ๋ ์ธ๊ฐ์์ ํํํ๊ณ ์๋ค. ๊ฐ๊ฐ์ธ์ด ์ด๋ ํ ๋ฐฉ์์ผ๋ก ์์น๋ฅผ ๊ตฌ์ถํด ๊ฐ๊ณ ์ถ์์ ์์ ์๋ง์ ํ์ถํ๋์ง ์์ ํ ํ, ์ค๋ฌธ์กฐ์ฌ์ ๋ฐฉ๋ฒ์ ๋ํด ์ด์ผ๊ธฐํ๊ณ ๊ตฌ์ฒด์ ์ธ ์ํ์ ๋ด์ฉ์ ๋ํด ์ค๋ช
ํ๋ค.
โ
ฃ์ฅ์ ๋งบ์๋ง์์๋ ๋ณธ๋ก ์ ๋ด์ฉ์ ์์ฝํ๊ณ ์์
์ ๋ถ์ํ์ฌ ์ป์ ๊ฒฐ๊ณผ๋ฅผ ์์ ํ๋ค. ํ์์ ๊ณต๊ฐ์ ์์ ํ๋ ค๋ ํ์์ ์๋ง์ ์๋ฏธ๋ฅผ ์ดํด๋ณด๊ณ , ํ์์ ์์
์ด ๊ฐ์ง๋ ์์์ ํ๊ณ ๋ํ ์ดํด๋ณธ๋ค. ์ด์ด์ ์์ผ๋ก ์งํ๋ ์์
์ ๋ฐ์ ๋ฐฉํฅ์ ๋ชจ์ํด๋ณธ๋ค.โ
. ๋จธ๋ฆฌ๋ง 1
โ
ก. ์์ ์ ํํ ๋ฐฉ๋ฒ๊ณผ ํ๋์ธ์ ์์ ์๋ง 5
1. ํ์์ ๊ณต๊ฐ์์์ ์์ 6
1) ํ์์ ๋์ด ๊ณต๊ฐ 7
2) ํ๋ฉด ์ ํ์ ๊ณต๊ฐ 10
2. ํ๋์ธ์ ์์ ์๋ง 12
โ
ข. ํ์์ ์์ ์๋ง์ ํํ 20
1. ๋์ด๋ก ํํํ ์์ญ ๋๋๊ธฐ 21
1) ๋
๋ฐ๋จน๊ธฐ ๋์ด 23
2) ์์
์ ์ ๊ฐ 30
2. ์ฌ๋ฌผ๊ณผ ๊ณต๊ฐ์ ์ ์ 40
1) ๋น๋์ ์ด์ฉํ ๋ฐ์ 42
2) ๋ฐํฌ๋ช
ํ ๊ณต๊ฐ 47
3. ์์นํ๋ ์๋ง 51
1) ํ๋์ธ์ ์์นํ 54
2) ์์น์ ํํ 57
โ
ฃ. ๋งบ์๋ง 62
์ฐธ๊ณ ๋ฌธํ 64
์ํ๋ํ 67
Abstract 88Maste
Analysis of determinants of capital flows in Korea using SVAR model
ํ์๋
ผ๋ฌธ (์์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ์ฌํ๊ณผํ๋ํ ๊ฒฝ์ ํ๋ถ, 2021. 2. ๊น์์.๋ณธ ์ฐ๊ตฌ๋ ์๋ณธ์ ์ถ์
๊ฒฐ์ ์์ธ์ ๋์ธ ๋ฐ ๋๋ด ์ค๋ฌผ๋ณ์, ๊ธ๋ฆฌ๋ณ์, ๋ถํ์ค์ฑ ๋ณ์๋ก ๋๋๊ณ SVAR ๋ฐฉ๋ฒ๋ก ์ ์ด์ฉํ์ฌ ๊ฐ๊ฐ์ ๋ณ์์ ๋ํ ์ถฉ๊ฒฉ์ด ๋ฐ์ํ ๊ฒฝ์ฐ ์ฐ๋ฆฌ๋๋ผ ์๋ณธ์ ์ถ์
์ ์ด๋ ํ ์ํฅ์ ๋ฏธ์น๋์ง๋ฅผ ๋ถ์ํ์๋ค. ๋ถ์๋์์ ๊ธฐ์กด์ ์ฐ๊ตฌ์์ ์ฃผ๋ก ๋ค๋ฃจ์๋ ์ธ๊ตญ์ธ ์ฆ๊ถํฌ์์๊ธ ์ธ์๋ ๋ด๊ตญ์ธ ์ฆ๊ถํฌ์์๊ธ, ํด์ธ์ฐจ์
๋ฐ ๋์ถ์ ๋ํ ๋ถ์๋ ์ถ๊ฐํจ์ ๋ฐ๋ผ ๊ฐ ์๊ธ๋ณ ์ ์ถ์
๊ฒฐ์ ์์ธ๊ณผ ์๊ธ ๊ฐ ์ํธ์์ฉ ๋ฑ์ ๋ํด์๋ ํ์ธํ ์ ์์๋ค. ๋ถ์ ๊ฒฐ๊ณผ ์ฒซ์งธ, ์ ์ฒด ์ฆ๊ถํฌ์์๊ธ ์์ ์
์ ๊ฒฐ์ ์์ธ์ ์ฃผ๋ก ๋์ธ์์ธ์ด๋ ์ฆ๊ถํฌ์์๊ธ์ ํฌ์์ฃผ์ฒด๋ณ, ํฌ์์ํ๋ณ ์๊ธ์ผ๋ก ์ธ๋ถํํ ๊ฒฝ์ฐ์๋ ๋๋ถ๋ถ์ ์๊ธ์์ ๋๋ด์์ธ์ ์ํฅ์ด ๋์ธ์์ธ๋ณด๋ค ๋ ์ค์ํจ์ ํ์ธํ ์ ์์๋ค. ์ธ๊ตญ์ธ ์ฃผ์โค์ฑ๊ถ ์๊ธ, ๋ด๊ตญ์ธ ์ฃผ์โค์ฑ๊ถ ์๊ธ ๊ฐ๊ฐ์ ๋ํด์๋ ๋๋ด์์ธ์ ์ํฅ์ด ํฐ๋ฐ๋ ๋ถ๊ตฌํ๊ณ ์ธ๊ตญ์ธ ์๊ธ ๋ฐ ์ ์ฒด ์ฆ๊ถํฌ์์๊ธ ์์ ์
์์๋ ๋๋ด์์ธ์ ์ค์์ฑ์ด ๋ฎ์์ง ์ด์ ๋ ๊ฐ ์๊ธ๊ฐ์ ์ํธ์์ฉ ๋๋ฌธ์ธ ๊ฒ์ผ๋ก ํ๋จ๋์๋ค. ์ธ๊ตญ์ธ ์ฆ๊ถํฌ์์๊ธ์ ๊ฒฝ์ฐ ๊ตญ๋ด ์ค๋ฌผ ๋ฐ ๊ธ๋ฆฌ์ ์ (+)์ ์ถฉ๊ฒฉ์ด ๋ฐ์ํ์ ๋ ์ฃผ์์๊ธ์๋ ์ ์ถ์์ธ์ผ๋ก, ์ฑ๊ถ์๊ธ์๋ ์ ์
์์ธ์ผ๋ก ์์ดํ๊ฒ ์์ฉํจ์ ๋ฐ๋ผ ์ถฉ๊ฒฉ์ ์ํฅ์ด ์์๋์๋ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค. ์ํ์๊ธ์ ๊ฒฝ์ฐ ํด์ธ์ฐจ์
๊ณผ ํด์ธ๋์ถ, ์์ ์
๋ชจ๋ ๋๋ด์์ธ์ ์ํฅ์ด ํฐ ๊ฒ์ผ๋ก ํ์ธ๋์๋ค. ๋์งธ๋ก ์ถฉ๊ฒฉ์ ํฌ๊ธฐ๋ฅผ ์ดํด๋ณด๋ฉด ๋์ธ์์ธ์ ๊ฒฝ์ฐ ๋์ฒด๋ก ๋ถํ์ค์ฑ ์ถฉ๊ฒฉ, ์ค๋ฌผ์ถฉ๊ฒฉ์ ์ํฅ์ด ํฐ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ํนํ ๋ฏธ๊ตญ ๊ธ๋ฆฌ์ถฉ๊ฒฉ์ ์ธ๊ตญ์ธ ์ฑ๊ถ์๊ธ ์ด์ธ์ ์๊ธ์๋ ์ ์ํ์ง ์์ ๊ฒ์ผ๋ก ๋ํ๋ ๊ทธ ์ํฅ์ด ํฌ์ง ์์์ ์ ์ ์์๋ค. ๋๋ด์์ธ์ ๊ฒฝ์ฐ ๊ธ๋ฆฌ์ถฉ๊ฒฉ, ๊ตญ๊ฐ๋ฆฌ์คํฌ ์ถฉ๊ฒฉ, ์ค๋ฌผ์ถฉ๊ฒฉ์ ์์ผ๋ก ๋ํ๋ฌ๋ค. ๊ธ๋ฆฌ์ถฉ๊ฒฉ์ ๊ฒฝ์ฐ ์ธ๊ตญ์ธ ์ฑ๊ถ์๊ธ์ ์ ์ธํ ๋๋ถ๋ถ์ ์๊ธ์์ ๊ทธ ์ํฅ์ด ์๋์ ์ด์๋ค. ์ธ๊ตญ์ธ ์ฑ๊ถ์๊ธ์์๋ ์ค๋ฌผ์ถฉ๊ฒฉ๊ณผ ๊ตญ๊ฐ๋ฆฌ์คํฌ ์ถฉ๊ฒฉ์ ์ํฅ์ด ๋ ํฐ ๊ฒ์ผ๋ก ํ์ธ๋์๋ค. ๋ง์ง๋ง์ผ๋ก๋ ๋๋ดโง์ธ ๋ถํ์ค์ฑ ์ถฉ๊ฒฉ ๋ฐ์ ์ ์ฆ๊ถํฌ์์๊ธ์ ์ธ๊ตญ์ธ ๋ฐ ๋ด๊ตญ์ธ ์๊ธ์ด ๋์์ ์ค์ด๋ค์ด ๊ทธ ์ถฉ๊ฒฉ์ด ์์๋๋ ๊ฒ์ผ๋ก ๋ถ์๋์๋ค. ๋ฐ๋ฉด, ์ํ์๊ธ์ ํด์ธ์ฐจ์
๊ณผ ํด์ธ๋์ถ ๊ฐ์ ์์ํจ๊ณผ๊ฐ ๊ฑฐ์ ์์ด ๋จ๊ธฐ๊ฐ ์ ์ถ์๋ ฅ์ด ํฐ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ์ด๋ ์ํ์๊ธ์ ์ฆ๊ถํฌ์์๊ธ๊ณผ๋ ๋ฌ๋ฆฌ ๊ธ์ต์์ฅ์์์ ์ฆ๊ฐ์ ์ธ ์กฐ์ ์ด ์ด๋ ค์ด๋ฐ๋ค ํด์ธ์ฐจ์
๊ณผ ํด์ธ๋์ถ๊ฐ์ ๋ง๊ธฐ๋ถ์ผ์น ๋ฌธ์ ๊ฐ ์๊ธฐ ๋๋ฌธ์ธ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค. ๋ฐ๋ผ์ ๋ถํ์ค์ฑ ์ถฉ๊ฒฉ ๋ฐ์ ์ ์ํ์๊ธ์ ๋ํ ๊ด๋ฆฌ๋ฅผ ๊ฐํํ๋๊ฒ ์ค์ํ๋ค๊ณ ํ ์ ์๋ค. ๋ณธ๊ณ ์ ๋ถ์๊ฒฐ๊ณผ์ ๋ฐ๋ฅด๋ฉด ๋๋ดโค์ธ ์์ธ์ ๋ํ ์ถฉ๊ฒฉ์ ์ํฅ์ ํฌ์์ฃผ์ฒด๋ณ, ์๊ธ์ฑ๊ฒฉ๋ณ๋ก ๋ค๋ฅผ ์ ์์ผ๋ฉฐ ์ํฅ์ ํฌ๊ธฐ๋ ์๊ธ๊ฐ์ ์ํธ์์ฉ์ ์ํด ์ค์ด๋ค๊ฑฐ๋ ํ๋๋ ์ ์๋ค. ๋ฐ๋ผ์ ์๊ธ์ ์ถ์
๊ฒฐ์ ์์ธ์ ์ ํํ ํ์
ํ๊ธฐ ์ํด์๋ ์๊ธ๋ณ ์ ์ถ์
์์ธ์ ์ ํํ ๋ถ์ํ๋ ๋์์ ์๊ธ ๊ฐ ์ํธ์์ฉ์ ๊ณ ๋ คํ๋ ๊ฒ์ด ์ค์ํ๋ค๊ณ ํ ์ ์๋ค.In this study, the determinants of capital inflow and outflow were divided into global(push factor) and domestic(pull factor) real variables, interest rate variables, and uncertainty variables, and the SVAR methodology was used to analyze how the impact of each variable affects Korea's capital outflow and inflow. In addition to foreign portfolio investment, which were mainly covered in the previous study, analysis of domestic portfolio investment, lend inflow and loan outflow was also added to confirm the determinants of inflow and outflow of each fund and the interaction between funds. As a result of the analysis, first, it was confirmed that the determinants of the net portfolio investment are mainly push factors, but in the case of subdividing portfolio investment funds into funds by investment entity and investment product, the influence of pull factors in most funds is more important than push factors. Despite the large influence of pull factors for foreign stocks and debt securities inflow, and for domestic stocks and securities outflow, the reason of reduce importance of the pull factors in the foreign portfolio investment and net portfolio investment was judged to be due to the interaction between the funds. In the case of foreign portfolio investment, when a positive shock occurred on domestic real and interest rates, the impact of the shock was offset by acting differently as an outflow factor for stocks and an inflow factor for debt securities. In the case of bank funds, it was confirmed that both lend inflow, loan outflow, and net inflow were affected by pull factors. Second, looking at the magnitude of the impact, it was found that in the case of push factors, the impact of uncertainty impact and real impact is large. In particular, the US interest rate shock was not significant for funds other than foreign debt securities, indicating that the impact was not significant. In the case of pull factors, interest rate shock, national risk shock, and real shock were in order. In the case of domestic interest rate shock, the impact was overwhelming in most of the funds excluding foreign debt securities. It was confirmed that the impact of domestic real shock and national risk shock was greater in foreign debt securities. Lastly, it was analyzed that in the event of a shock of global or domestic uncertainty, the shock is offset by the reduction of foreign and domestic funds for debt securities investment at the same time. On the other hand, bank funds have little offset effect between lend inflow and loan outflow, and the short-term outflow pressure is high. This seems to be because bank funds are difficult to adjust immediately in the financial market, unlike portfolio investment and there is a maturity mismatch between lend inflow and loan outflow. Therefore, it can be said that it is important to strengthen the management of bank funds in the event of an uncertainty shock. According to the analysis results of this paper, the impact of the impact on push and pull factors may vary by investing entity and by the nature of the fund, and the magnitude of the impact may be reduced or enlarged by the interaction between funds. Therefore, in order to accurately identify the factors that determine the inflow and outflow of funds, it can be said that it is important to accurately analyze the inflow and outflow factors for each fund and consider the interaction between funds.โ
. ์๋ก 1
โ
ก. ์ ํ์ฐ๊ตฌ ๊ฒํ 2
โ
ข. ๋ชจํ์ค์ 4
1. ๋ณ์์ ๊ตฌ์ฑ 5
2. ๋ถ์๋ชจํ์ ๊ฐ์ 6
3. ์ฃผ์๋ณ์ ์ถ์ด 8
โ
ฃ. ์ค์ฆ๋ถ์๊ฒฐ๊ณผ 10
1. ์ฆ๊ถํฌ์์๊ธ 10
2. ํด์ธ์ฐจ์
๋ฐ ๋์ถ 17
โ
ค. ๊ฒฐ๋ก 21
์ฐธ๊ณ ๋ฌธํ 23
๋ถ๋ก 1. ํ์จ์ ์ถ๊ฐํ VAR ์ถ์ ๊ฒฐ๊ณผ 25
๋ถ๋ก 2. ์ค๋ช
๋ณ์ ์์ฐจ๋ฅผ ๋ณ๊ฒฝํ VARใ์ถ์ ๊ฒฐ๊ณผ 28
๋ถ๋ก 3. ๊ธ์ต์๊ธฐ ๊ธฐ๊ฐ์ ๊ตฌ๋ถํ VAR ์ถ์ ๊ฒฐ๊ณผ 31Maste
ํ๊ตญ์ธ์์ HLA-DR2 ์ํ ๋ถํฌ์ DRB5 ์ ์ ์์์ ์ฐ๊ด์ฑ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ์์๋ณ๋ฆฌํ์ ๊ณต,2000.Maste
์ผ๊ฐํจ์ ๊ฐ๋ ์ ์ง๋์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ต์ก๊ณผ,2008.2Maste