8 research outputs found

    Ido1 knock-out ๋งˆ์šฐ์Šค๋ฅผ ์ด์šฉํ•œ Dextran Sulfate Sodium ์œ ๋„ ๋Œ€์žฅ์—ผ ๋ชจ๋ธ์—์„œ์˜ ์ „์‚ฌ์ฒด ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‹ํ’ˆ์˜์–‘ํ•™๊ณผ, 2014. 8. ์‹ ๋™๋ฏธ.Tryptophan involves in a range of biological processes including protein and biogenic nitrogen-compounds synthesis. It is metabolized to kynurenine by indoleamine 2,3-dioxygenase 1 (IDO1) that is the first rate limiting enzyme. IDO1 expresses ubiquitously in the body with heightened expressions in intestinal tissues. To examine the function of IDO1 in colon, transcriptome analysis using microarray was performed in both Ido1 knock-out (Ido1-/-) mice and wild type (Ido1+/+) mice. Differentially expressed genes in comparison of Ido1-/- and Ido1+/+ mice were categorized based upon their biological functions. Gene set enrichment analysis showed that inflammatory response was the most significant category which was modulated by IDO1 gene. This observation prompted us to study the function of IDO1 in inflammatory bowel disease mouse model. In DSS-induced ulcerative colitis model, the disease was more severely developed in Ido1+/+ mice compared with Ido1-/- mice. Total RNAs of inflamed colon tissues from both Ido1+/+ and Ido1-/- mice were applied to microarray in order to find the significant signaling pathways affected by Ido1 deficiency. TLR signaling and NF-kB signaling were turned out to be responsible for generating the difference in disease progression between those two genotypes. Dramatic changes in TLR signaling and NF-kB signaling resulted in substantial changes in expressions of many pro- and anti- inflammatory cytokines and chemokines. These findings suggest that IDO1 play roles in producing inflammatory responses and modulating transcriptional networks during colitis development.Contents Abstract โ…ฐ Contents โ…ฒ List of Figures โ…ค List of Tables โ…ถ List of Abbreviations โ…ท โ… . Introduction 1 Aim of this study 5 โ…ก. Materials and Methods 1. Animals 6 2. Induction of Colitis 7 3. Tissue Collection 9 4. Histological Analysis of Colitis 10 5. Microarray Hybridization and Scanning 11 6. Identification of Significant Genes 12 7. Functional Enrichment and Clustering Analysis 13 8. Statistical Analysis 14 โ…ข. Results 1. Identification of Differentially Expressed Genes in Ido1-/- Mice 15 2. IDO1 Leads to Increased Susceptibility to Experimental DSS-induced Colitis 23 3. IDO1 Regulates the Expression of Multiple Inflammatory Genes in DSS-induced Colitis 31 4. Absence of IDO1 Resulted in Suppression of TLR Signaling 36 5. MUC1 Suppresses TLR Signaling 42 6. Inflammatory Cytokines and Chemokines Production in Colon is Affected by IDO1 45 7. Inflammation and Tryptophan Metabolism 49 โ…ฃ. Discussion 54 โ…ค. References 60 ๊ตญ๋ฌธ์ดˆ๋ก 69Maste

    ์‹์ด ์œ ๋„ ๋Œ€์žฅ์—ผ ๋ฐœ๋ณ‘๊ณผ์ •์—์„œ์˜ ๋ฏธ๊ฐ ์ˆ˜์šฉ์ฒด TAS1R3 ์—ญํ•  ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒํ™œ๊ณผํ•™๋Œ€ํ•™ ์‹ํ’ˆ์˜์–‘ํ•™๊ณผ, 2021. 2. ์‹ ๋™๋ฏธ.Background Inflammatory bowel disease (IBD), including ulcerative colitis and Crohnโ€™s disease, is a chronic inflammatory disorder of the gastrointestinal tract. IBD pathogenesis is complex, but the emergence of rapid increase in the incidence of IBD over the past several decades in low incidence parts of the Asian countries, such as China, South Korea, Japan, and India, clearly suggests that environmental factors play an important role in disease development. Specifically, the introduction of the western diet (which is high in fat and sugar-sweeten beverage) has been proposed as an explanation for the increase in IBD incidence. Although recent clinical and experimental studies demonstrate that high-fat diet (HFD) can be a trigger for IBD, the roles and mechanisms of action of sugar-beverage in IBD pathogenesis are yet to be fully understood. Taste receptors are G-protein coupled receptors (GPCRs) that detect sweet (TAS1R2/TAS1R3 heterodimer), umami (TAS1R1/TAS1R3 heterodimer), and bitter (TAS2Rs) compounds. Importantly, expression of a functional taste receptor has been reported in numerous extra-oral tissues, with especially high expression in the epithelium of the GI tract. The function of taste receptors in taste buds is well established; however, their potential importance in tissues outside the oral cavity remain unknown. In particular, little is known regarding their roles in intestinal tissues. Objectives The aim of Study 1 was to investigate the impact of consumption of sugar drink on intestinal inflammation. Interestingly, the consumption of sugary drink did not generate pathological gut damage by itself, but when combined with high-fat diet, it had synergistic effects to manifest and aggravate intestinal inflammation. In particular, the expression of the Tas1r3 gene was significantly increased in inflamed intestinal tissue caused by sugary drink and high-fat diet. Taste 1 receptor member 3 (TAS1R3) detects nutrient molecules, with highly expression in the epithelium of the GI tract; therefore, I next hypothesized that TAS1R3 might have a critical role in promoting intestinal inflammation. In Study 2, I investigated the role of the gut-expressed TAS1R3 in the development of intestinal inflammation using Tas1r3 knock-out (Tas1r3-/-) mouse model with dextran sodium sulfate (DSS)-induced colitis. Finally, in Study 3, I tried to find out the role of TAS1R3, which is strongly activated by dietary ligands, in a sugar-beverage and high fat diet-induced colitis model. Methods In Study 1, 30% sugar solution or plain water was given to 6-week-old male mice for 10-weeks ad libitum with or without 60% HFD and intestinal inflammation was evaluated by pathological examination and leukocyte infiltration in the mucosal layer. In addition, I investigate transcriptional changes in the intestinal tissues by RNA-sequencing analysis and 16S rRNA target gene sequencing were performed to assess changes in gut microbiota. Importantly, to identify the role of gut microbiota in host immune responses, fecal microbiota transplantation (FMT) experiments were conducted. In Study 2, Tas1r3-knockout (Tas1r3-/-) and wild-type (Tas1r3+/+) mice were supplied with 2% DSS drinking water to induce experimental colitis, and disease progression was monitored daily by changes in body weight and disease activity index score. I performed histologic examination for colonic inflammation and immune-histochemical analysis for immune-cell infiltration, as well as compared levels of pro-inflammatory cytokines between Tas1r3-/- and Tas1r3+/+ mice. For in vitro assays, enteroendocrine cells (EECs) were treated with TAS1R3 ligands, including glucose, fructose, and sucrose, and the induction of pro-inflammatory markers, including interleukin (IL)-1B, IL-6, IL-18, tumor necrosis factor (TNF)-ฮฑ, and monocyte chemoattractant protein (MCP)-1 was measured. In Study 3, 6-10 week old Tas1r3-/- and Tas1r3+/+ mice were fed either a normal diet (ND) or a 60% high-fat diet (HFD) + 30% sugar drink for 10-week ad libitum. I performed histological examination for intestinal inflammation and immune-histochemical analysis for immune cell infiltration including CD45+ pan-leukocytes, CD4+ T cells, CD8+ T cells, and CD11b+ dendritic cells to confirm the extent of intestinal inflammation. In addition, I assessed the gut microbiota profiling of Tas1r3-/- and Tas1r3+/+ mice fed either a ND or HFD + sugar drink using 16S pyrosequencing. Lastly, intestinal transcriptome profiling was performed using RNA sequencing to investigate how the altered gut microbiota resulting from TAS1R3 deficiency affects the hostโ€™s intestinal tissue and confers intestinal inflammation resistance. Results In Study 1, my study showed that overconsumptions of sugary drink alone did not induce gut inflammation, however when combined with HFD, it dramatically increased intestinal inflammation score, submucosal edema, and CD45+ infiltration via calorie-independent manner. The level of intestinal inflammation was as follows- HFD + Sugar >> HFD > Sugar = Control. RNA sequencing and flow cytometric analyses showed that sugary drink with HFD promote inflammatory signatures including pro-inflammatory cytokines and chemokines and expansion of inflammatory DCs and activated CD4+ T cells. These host inflammatory signatures were due to the combination of sugar drink and HFD reshape the communities of pro-inflammatory gut microbiome associated with pathogenic bacterium such as Enterobacteriaceae and Prevotellaceae, and enhanced intestinal inflammation was correlated with the favored colonization of pathobionts. Importantly, the disease can be transferable via fecal transplantation of dysbiotic gut microbiome. This suggests that gut microbiome from mice fed HFD + Sugar played a key role in triggering IBD. Our findings may uncover roles of sugary drink played in shifting gut miciobiome to pathobiome and therefore developing IBD and provide helpful information on development of strategies to prevent the disease. In Study 2, TAS1R3 deficiency attenuated the acute inflammatory phase of colitis in mice. Additionally, I detected progressive weight loss, increased DAI (i.e., severe diarrhea and intestinal bleeding), and greater shortening of colon length in Tas1r3+/+ mice relative to Tas1r3โˆ’/โˆ’ mice. Concurrently, Tas1r3โˆ’/โˆ’ mice showed less histological tissue damage and less inflammatory cell infiltration than Tas1r3+/+ mice according to numbers of CD45+ cells and Ly6G+ cell staining. Moreover, levels of interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-ฮฑ in inflamed tissues were lower in Tas1r3โˆ’/โˆ’ mice than in Tas1r3+/+ mice. Consistent with these in vivo studies, in vitro experiments using EECs showed that receptor activation of TAS1R3 by dietary ligand treatment significantly upregulated levels of pro-inflammatory cytokines and chemokines, including IL-1B, IL-6, IL-18, TNF-ฮฑ, and MCP-1. In summary, the taste receptor TAS1R3 might play a critical role in promoting gut inflammation, suggesting that dietary intervention targeting TAS1R3 as a potentially effective strategy to reduce IBD symptoms. In Study 3, it was confirmed that TAS1R3, which is very well known to be activated by sweet-molecule ligand, is activated most strongly when combined with fat than sugar alone. In addition, the expression of pro-inflammatory markers was significantly increased by luminal fat and sugar via TAS1R3-dependent manner, suggesting that activation of TAS1R3 upregulates pro-inflammatory markers. In vivo, Tas1r3โˆ’/โˆ’ mice were protective against disease severity, intestinal tissue damage, and inflammatory markers even after a HFD and sugar-beverage intake. Microbiome analyses demonstrate that butyrate-producing bacterial taxa such as Faecalibacterium and Roseburia are increased in abundance in Tas1r3โˆ’/โˆ’ mice fed HFD and sugar-beverage. Further, global transcriptome analyses demonstrate showed that significantly enhanced PPARฮณ Signaling Pathway, Tight Junction Signaling Pathway, and Mucosal Antimicrobial Defense Response in ileum of a HFD and sugar beverage-fed Tas1r3โˆ’/โˆ’ mice compared to Tas1r3+/+ mice. To verify whether the TAS1R3 deficiency mediates the host gut-microbiome interaction, an integrative analysis between the gut microbes and the host ileum transcriptome was performed. As a result, there was a significant positive correlation between the butyrate-producing bacteria enriched in Tas1r3โˆ’/โˆ’ mice and PPARฮณ metabolic pathway-related host genes. Notably, the effects of TAS1R3 deficiency have been identified as upstream regulators of PPARฮณ in ileal tissues with or without diet intake. Increased PPARฮณ with TAS1R3 deficiency may reduce intestinal inflammation and disease severity as follow: Activation of PPARฮณ โ…ฐ) drives energy metabolism of intestinal epithelial cells (enterocytes) towards ฮฒ-oxidation, limiting the bioavailability of luminal oxygen, creating an environment in which obligate anaerobic bacteria such as butyrate-producing bacteria (i.e. Faecalibacterium and Roseburia) can live well. Obligate anaerobic bacteria prevent dysbiotic expansion of facultative anaerobic, in part by limiting the generation of host-derived oxygen; โ…ฑ) upregulates the expression of tight junction protein- and antimicrobial peptide production-related genes. In addition, โ…ฒ) decreases the luminal nitrate level by reducing the expression of Nos2, the gene encoding inducible nitric oxide synthase, and โ…ณ) downregulates the inflammatory Nf-kB signaling pathway molecule to reduce inflammation. In summary, it suggests that intestinal TAS1R3 may act as a candidate modulator for the interactions between mucosal inflammation, metabolism, and gut microbiota during diet-induced IBD. Conclusion To the best of my knowledge, this is the first report to provide a novel mechanism for the roles of gut-expressed taste receptor TAS1R3 in the intestinal inflammation. Consumption of western diet lead to intestinal inflammation by altering the pathogenic bacteria in the gut. However, TAS1R3 deficiency regulates the expression of PPARฮณ signaling pathway, which reduces the bioavailability of respiratory electron acceptors to pathobionts in the lumen, thereby maintaining the homeostatic pathway that potentially prevents western diet-induced dysbiotic expansion of pathogenic bacteria. In conclusion, it suggests that intestinal TAS1R3 may act as a modulator for the interactions between mucosal inflammation, metabolism, and gut microbiota during diet-induced IBD. These observations highlight a new aspect of cross-talk between gut microbe and host and suggest that TAS1R3 deficiency is an important regulator to inflammation in the gut in response to nutrient-ligand exposure, resulting directly in protection of IBD-associated inflammation. A comprehensive understanding of the roles and mechanisms of these chemosensory taste receptor TAS1R3 pathways in IBD might lead to novel treatment strategies targeting the illness.์„œ๋ก  ์—ผ์ฆ์„ฑ ์žฅ ์งˆํ™˜(IBD)์€ ์žฅ๊ด€ ๋‚ด ๋น„์ •์ƒ์ ์ธ ๋งŒ์„ฑ ์—ผ์ฆ์ด ํ˜ธ์ „๊ณผ ์žฌ๋ฐœ์„ ๋ฐ˜๋ณตํ•˜๋Š” ์งˆํ™˜์œผ๋กœ, ๊ถค์–‘์„ฑ๋Œ€์žฅ์—ผ๊ณผ ํฌ๋ก ๋ณ‘์ด ๋Œ€ํ‘œ์ ์ด๋‹ค. ์—ผ์ฆ์„ฑ ์žฅ ์งˆํ™˜์˜ ๋ฐœ๋ณ‘ ๊ธฐ์ „์€ ๋งค์šฐ ๋ณต์žกํ•˜์ง€๋งŒ, ์ค‘๊ตญ, ํ•œ๊ตญ, ์ผ๋ณธ, ์ธ๋„์™€ ๊ฐ™์€ ์•„์‹œ์•„ ๊ตญ๊ฐ€์˜ ๋‚ฎ์•˜๋˜ IBD ๋ฐœ๋ณ‘๋ฅ ์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ ๊ฒƒ์€ ์งˆ๋ณ‘ ๋ฐœ๋‹ฌ์— ์žˆ์–ด์„œ ํ™˜๊ฒฝ์  ์š”์ธ์ด ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ช…๋ฐฑํžˆ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ, ์—ผ์ฆ์„ฑ์žฅ์งˆํ™˜์˜ ๋ฐœ๋ณ‘๋ฅ  ์ฆ๊ฐ€์— ๋Œ€ํ•œ ์›์ธ์œผ๋กœ ์„œ๊ตฌํ™”๋œ ์‹์‚ฌ(์ง€๋ฐฉ์ด ๋งŽ์€ ์Œ์‹ ๋ฐ ์„คํƒ•์ด ์ฒจ๊ฐ€๋œ ์Œ๋ฃŒ)์˜ ๋„์ž…์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ตœ๊ทผ ์ž„์ƒ ๋ฐ ์‹คํ—˜ ์—ฐ๊ตฌ์—์„œ ๊ณ ์ง€๋ฐฉ์‹์ด์™€ ์—ผ์ฆ์„ฑ์žฅ์งˆํ™˜ ๋ฐœ๋ณ‘๋ฅ  ๊ฐ„ ์ƒ๊ด€์„ฑ ์—ฐ๊ตฌ๊ฐ€ ๋ณด๊ณ ๋œ ๋ฐ” ์žˆ์ง€๋งŒ, ์ด์— ๋Œ€ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ฐํžŒ ์—ฐ๊ตฌ๋Š” ๋ณด๊ณ ๋œ ๋ฐ” ์—†์œผ๋ฉฐ, ์„คํƒ• ์Œ๋ฃŒ์˜ ์„ญ์ทจ์™€ ์—ผ์ฆ์„ฑ ์žฅ ์งˆํ™˜์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ „๋ฌดํ•œ ์‹ค์ •์ด๋‹ค. ์—ฐ๊ตฌ ๋ชฉ์  ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ 1์—์„œ๋Š” ์„คํƒ• ์Œ๋ฃŒ์˜ ์„ญ์ทจ๊ฐ€ ์žฅ ์—ผ์ฆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ์„คํƒ• ์Œ๋ฃŒ์˜ ์„ญ์ทจ๋Š” ๊ทธ ์ž์ฒด๋งŒ์œผ๋กœ๋Š” ์žฅ ์กฐ์ง์˜ ์†์ƒ์„ ์ผ์œผํ‚ค์ง€๋Š” ์•Š์•˜์ง€๋งŒ, ๊ณ ์ง€๋ฐฉ ์‹๋‹จ๊ณผ ํ•จ๊ป˜ ์„ญ์ทจํ•˜์˜€์„ ๋•Œ ์žฅ ์—ผ์ฆ์„ ๊ฐ€์žฅ ์‹ฌ๊ฐํ•˜๊ฒŒ ์œ ๋„ํ•˜๊ณ  ์—ผ์ฆ์˜ ์ •๋„๋ฅผ ๋” ์•…ํ™”์‹œํ‚ค๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด, ์„คํƒ• ์Œ๋ฃŒ์™€ ๊ณ ์ง€๋ฐฉ์‹์ด๋กœ ์œ ๋ฐœ๋œ ์—ผ์ฆ์„ฑ ์žฅ ์กฐ์ง์—์„œ ๋ฐœํ˜„์ด ๊ฐ€์žฅ ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•œ ์œ ์ „์ž๋Š” Tas1r3๋กœ ๋ฐํ˜€์กŒ๋‹ค. Taste 1 receptor member 3 (TAS1R3)์€ ์œ„ยท์žฅ๊ด€์˜ ์ƒํ”ผ์—์„œ ๊ณ ๋„๋กœ ๋ฐœํ˜„๋˜๋ฉฐ, ์˜์–‘ ๋ถ„์ž (nutrient molecules)๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ๋ฏธ๊ฐ์ˆ˜์šฉ์ฒด์ด๋‹ค. ๋”ฐ๋ผ์„œ, ์šฐ๋ฆฌ๋Š” ์žฅ ๋ฐœํ˜„ TAS1R3๊ฐ€ ์žฅ ์—ผ์ฆ์„ ์ด‰์ง„ํ•˜๋Š”๋ฐ ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ–ˆ์„ ๊ฒƒ์ด๋ผ๋Š” ๊ฐ€์„ค์„ ์„ธ์› ๋‹ค. ์—ฐ๊ตฌ 2์—์„œ๋Š”, ๋ฑ์ŠคํŠธ๋ž€ ํ™ฉ์‚ฐ ๋‚˜ํŠธ๋ฅจ ์œ ๋„ ๋Œ€์žฅ์—ผ์ด ์žˆ๋Š” Tas1r3 ๋…น์•„์›ƒ (Tas1r3-/-) ๋งˆ์šฐ์Šค ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์žฅ ์—ผ์ฆ ๋ฐœ์ƒ์—์„œ ์žฅ ๋ฐœํ˜„ TAS1R3์˜ ์—ญํ• ์„ ์กฐ์‚ฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์—ฐ๊ตฌ 3์—์„œ๋Š” ์‹์ด ๋ฆฌ๊ฐ„๋“œ์— ์˜ํ•ด ๊ฐ•๋ ฅํ•˜๊ฒŒ ํ™œ์„ฑํ™”๋˜๋Š” TAS1R3๊ฐ€ ์žฅ ์—ผ์ฆ์— ๋ฏธ์น˜๋Š” ์—ญํ•  ๋ฐ ๋ถ„์ž์ƒ๋ฌผํ•™์  ๊ธฐ์ „์„ ์„คํƒ• ์Œ๋ฃŒ ๋ฐ ๊ณ ์ง€๋ฐฉ ์‹์ด ์œ ๋„ ๋Œ€์žฅ์—ผ ๋ชจ๋ธ์—์„œ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• ์—ฐ๊ตฌ 1์—์„œ๋Š” 6์ฃผ๋ น ์ˆ˜์ปท ์ƒ์ฅ์—๊ฒŒ ์ •์ƒ์‹์ด(normal diet) ๋˜๋Š” 60% ๊ณ ์ง€๋ฐฉ์‹์ด(high-fat diet)์— 30% ์„คํƒ• ์šฉ์•ก์„ 10์ฃผ ๋™์•ˆ ์ž์œ  ๊ธ‰์—ฌ ํ•˜์˜€๋‹ค. ์„คํƒ• ์šฉ์•ก์„ ๊ณต๊ธ‰ํ•˜์ง€ ์•Š์€ ๊ทธ๋ฃน์€ ์ผ๋ฐ˜ ๋ฌผ(plain water)์„ ๊ณต๊ธ‰ํ•˜์˜€๋‹ค. ๋ณ‘๋ฆฌํ•™์  ๊ฒ€์‚ฌ ๋ฐ ์žฅ ์ ๋ง‰์ธต์˜ ๋ฐฑํ˜ˆ๊ตฌ ์นจ์œค์ •๋„๋ฅผ ํ†ตํ•ด ์žฅ ์—ผ์ฆ์„ ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, RNA ์‹œํ€€์‹ฑ ๋ถ„์„์„ ํ†ตํ•ด ์žฅ ์กฐ์ง์˜ ์ „์‚ฌ์ฒด ๋ณ€ํ™”๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋˜ํ•œ, 16S rRNA ์‹œํ€€์‹ฑ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์žฅ๋‚ด๋ฏธ์ƒ๋ฌผ์˜ ๋ณ€ํ™”๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ˆ™์ฃผ(Seyedian et al.)์˜ ์—ผ์ฆ ๋ฐ˜์‘์— ์žฅ๋‚ด๋ฏธ์ƒ๋ฌผ๊ตฐ์ด ์ค‘์š”ํ•˜๊ฒŒ ์—ญํ• ์„ ํ–ˆ๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์„คํƒ• ์Œ๋ฃŒ ๋ฐ ๊ณ ์ง€๋ฐฉ์‹์ด ๋งˆ์šฐ์Šค์˜ ๋Œ€๋ณ€์— ์žˆ๋Š” ์žฅ๋‚ด๋ฏธ์ƒ๋ฌผ์„ ์ •์ƒ ๋งˆ์šฐ์Šค์—๊ฒŒ ์ด์‹ํ•˜๋Š” ๋ถ„๋ณ€ ์ด์‹ (FMT: fecal microbiota transplantation) ์‹œ์ˆ ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ 2์—์„œ๋Š”, Tas1r3 ๋…น์•„์›ƒ (Tas1r3-/-) ๋ฐ ์•ผ์ƒํ˜• (Tas1r3+/+) ๋งˆ์šฐ์Šค์— 2% ๋ฑ์ŠคํŠธ๋ž€ ํ™ฉ์‚ฐ ๋‚˜ํŠธ๋ฅจ (DSS) ์‹์ˆ˜๋ฅผ ๊ณต๊ธ‰ํ•˜์—ฌ ์‹คํ—˜์  ๋Œ€์žฅ์—ผ์„ ์œ ๋„ํ•˜๊ณ , ์ฒด์ค‘ ๋ฐ ์งˆ๋ณ‘ ์ง€ํ‘œ์˜ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ์งˆ๋ณ‘ ์ง„ํ–‰ ์ •๋„๋ฅผ ๋งค์ผ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์žฅ ์—ผ์ฆ์— ๋Œ€ํ•œ ์กฐ์งํ•™์  ๊ฒ€์‚ฌ์™€ ๋ฉด์—ญ ์„ธํฌ ์นจ์œค์— ๋Œ€ํ•œ ๋ฉด์—ญ ์กฐ์ง ํ™”ํ•™ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ณ , Tas1r3 ๋…น์•„์›ƒ (Tas1r3-/-) ๋ฐ ์•ผ์ƒํ˜• (Tas1r3+/+) ๋งˆ์šฐ์Šค ์‚ฌ์ด์— ์—ผ์ฆ์„ฑ ์‚ฌ์ดํ† ์นด์ธ ์ˆ˜์ค€์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์‹œํ—˜๊ด€ ๋‚ด ๋ถ„์„(in vitro)์„ ์œ„ํ•ด, Tas1r3์˜ ๋ฐœํ˜„์ด ๋งŽ์€ ์žฅ ๋‚ด๋ถ„๋น„ ์„ธํฌ(Enteroendocrine cell)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํฌ๋„๋‹น, ๊ณผ๋‹น ๋ฐ ์„คํƒ•์„ ํฌํ•จํ•œ Tas1r3์˜ ๋ฆฌ๊ฐ„๋“œ๋ฅผ ์ฒ˜๋ฆฌํ•œ ํ›„ IL-1B, IL-6, IL-18, TNF-ฮฑ ๋ฐ MCP-1์™€ ๊ฐ™์€ ์—ผ์ฆ์ง€ํ‘œ๋“ค์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ 3์—์„œ๋Š”, 6-10์ฃผ๋ น Tas1r3 ๋…น์•„์›ƒ (Tas1r3-/-) ๋ฐ ์•ผ์ƒํ˜• (Tas1r3+/+) ๋งˆ์šฐ์Šค์—๊ฒŒ ์ผ๋ฐ˜ ์‹๋‹จ (ND) ๋˜๋Š” 60% ๊ณ ์ง€๋ฐฉ ์‹๋‹จ (HFD) + 30% ์„คํƒ• ์Œ๋ฃŒ๋ฅผ 10์ฃผ๊ฐ„ ๋ฌด์ œํ•œ์œผ๋กœ ๋จน์˜€๋‹ค. ๋‹ค์ด์–ดํŠธ ์œ ๋„ ํ›„, ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์žฅ ์—ผ์ฆ ์ •๋„๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด, CD45+ ๋ฐฑํ˜ˆ๊ตฌ, CD4+ T ์„ธํฌ, CD8+ T ์„ธํฌ, ๋ฐ CD11b+ ์ˆ˜์ง€์ƒ ์„ธํฌ๋ฅผ ํฌํ•จํ•œ ๋ฉด์—ญ ์„ธํฌ ์นจ์œค์— ๋Œ€ํ•œ ๋ฉด์—ญ ์กฐ์ง ํ™”ํ•™์  ๋ถ„์„ ๋ฐ ์กฐ์งํ•™์  ๊ฒ€์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. 16S ํŒŒ์ด๋กœ ์‹œํ€€์‹ฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ์žฅ๋‚ด๋ฏธ์ƒ๋ฌผ ํ”„๋กœํŒŒ์ผ๋ง์„ ํ‰๊ฐ€ํ•˜์˜€๊ณ , ๋งˆ์ง€๋ง‰์œผ๋กœ RNA ์‹œํ€€์‹ฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ์žฅ ์ „์‚ฌ์ฒด ํ”„๋กœํŒŒ์ผ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ, TAS1R3 ๊ฒฐํ•์œผ๋กœ ์ธํ•ด ๋ณ€ํ™”๋œ ์žฅ ๋ฏธ์ƒ๋ฌผ ์ด์ด ์ˆ™์ฃผ์˜ ์žฅ ์กฐ์ง์— ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žฅ ์—ผ์ฆ์— ๋Œ€ํ•œ ์ €ํ•ญ์„ฑ์„ ๋ถ€์—ฌํ•˜๋Š” ์ง€๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์—ฐ๊ตฌ 1์˜ ๊ฒฐ๊ณผ, ์„คํƒ• ์Œ๋ฃŒ์˜ ๊ณผ๋‹ค ์„ญ์ทจ๋งŒ์œผ๋กœ๋Š” ์žฅ ์—ผ์ฆ์„ ์œ ๋ฐœํ•˜์ง€ ์•Š์•˜์ง€๋งŒ, ๊ณ ์ง€๋ฐฉ์‹์ด์™€ ํ•จ๊ป˜ ์„ญ์ทจํ•˜์˜€์„ ๋•Œ, ์นผ๋กœ๋ฆฌ์™€๋Š” ๋…๋ฆฝ์ ์œผ๋กœ ์žฅ ์—ผ์ฆ ์ ์ˆ˜, ์žฅ ์ ๋ง‰ ํ•˜ ๋ถ€์ข… ๋ฐ CD45+ ๋ฐฑํ˜ˆ๊ตฌ ์นจ์œค์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์žฅ๋‚ด ์—ผ์ฆ์˜ ์ •๋„๋Š” ๊ณ ์ง€๋ฐฉ์‹์ด +์„คํƒ• ์Œ๋ฃŒ >> ๊ณ ์ง€๋ฐฉ ์‹์ด ๋‹จ๋… ์„ญ์ทจ > ์„คํƒ• ์Œ๋ฃŒ ๋‹จ๋… ์„ญ์ทจ = ์ •์ƒ ์‹์ด ์ˆœ ์ด์—ˆ๋‹ค. RNA์‹œํ€€์‹ฑ ๋ฐ FACS ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ณ ์ง€๋ฐฉ์‹์ด์™€ ์„คํƒ• ์Œ๋ฃŒ์˜ ๋™๋ฐ˜ ์„ญ์ทจ๋Š” ์žฅ ๋‚ด ์—ผ์ฆ์„ฑ ์‚ฌ์ดํ† ์นด์ธ ๋ฐ ์ผ€๋ชจ์นด์ธ์„ ํฌํ•จํ•œ ์—ผ์ฆ์„ฑ ์‹œ๊ทธ๋‹ˆ์ฒ˜์™€ ์—ผ์ฆ์„ฑ CD11b+ ์ˆ˜์ง€์ƒ ์„ธํฌ ๋ฐ CD4+ T์„ธํฌ์˜ ์นจ์œค์„ ๋งค์šฐ ์œ ์˜์ ์œผ๋กœ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ์ˆ™์ฃผ์˜ ์—ผ์ฆ ์ง•ํ›„๋Š” ์„คํƒ• ์Œ๋ฃŒ์™€ ๊ณ ์ง€๋ฐฉ์‹์ด์˜ ์กฐํ•ฉ์œผ๋กœ ์ธํ•ด ์žฅ ๋‚ด Enterobacteriaceae ๋ฐ Prevotellaceae์™€ ๊ฐ™์€ ๋ณ‘์›์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„์˜ ์žฅ๋‚ด ๋ฏธ์ƒ๋ฌผ ๊ตฐ์ง‘์œผ๋กœ ์žฌ๊ตฌ์„ฑ๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ฉฐ, ์ˆ™์ฃผ์˜ ์žฅ ์—ผ์ฆ phenotype๊ณผ ์„คํƒ• ์Œ๋ฃŒ+๊ณ ์ง€๋ฐฉ์‹์ด์—์„œ ๊ฐ•ํ™”๋œ ๋ณ‘์›์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ„์˜ ์œ ์˜ํ•œ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ์ค‘์š”ํ•˜๊ฒŒ๋„, ์ด๋Ÿฌํ•œ ์žฅ ์—ผ์ฆ์˜ phenotype์€ ์ •์ƒ ๋งˆ์šฐ์Šค์—๊ฒŒ ์„คํƒ• ์Œ๋ฃŒ+๊ณ ์ง€๋ฐฉ์‹์ด๋กœ๋ถ€ํ„ฐ ์œ ๋„๋œ dysbiotic ์žฅ๋‚ด ๋ฏธ์ƒ๋ฌผ ๊ตฐ์ง‘ ๋Œ€๋ณ€์„ ์ด์‹ํ–ˆ์„ ๋•Œ, ๋™์ผํ•œ ์—ผ์ฆ์˜ phenotype์ด ์ „์ด๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๊ฒƒ์€ ์„คํƒ•์Œ๋ฃŒ+๊ณ ์ง€๋ฐฉ์‹์ด๋ฅผ ์„ญ์ทจํ•˜์—ฌ ๋ณ€ํ™”๋œ ์žฅ๋‚ด ๋ฏธ์ƒ๋ฌผ ๊ตฐ์ง‘์ด ์žฅ ์—ผ์ฆ์„ ์œ ๋ฐœํ•˜๋Š”๋ฐ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ–ˆ์Œ์„ ์‹œ์‚ฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ์„คํƒ• ์Œ๋ฃŒ๊ฐ€ ๊ณ ์ง€๋ฐฉ์‹์ด์™€ ํ•จ๊ป˜ ์„ญ์ทจ๋˜์—ˆ์„ ๋•Œ, ์ •์ƒ์ ์ธ ์žฅ๋‚ด๋ฏธ์ƒ๋ฌผ์˜ ๊ตฌ์„ฑ์„ ๋ณ‘์›์„ฑ ๋ฏธ์ƒ๋ฌผ์˜ ๊ตฐ์ง‘์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•˜์—ฌ ์žฅ ์—ผ์ฆ์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์„คํƒ• ์Œ๋ฃŒ์˜ ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋ฐํžˆ๊ณ , ์žฅ ์—ผ์ฆ๊ณผ ๊ด€๋ จ๋œ ์งˆ๋ณ‘์— ๋Œ€ํ•œ ์˜ˆ๋ฐฉ ์ „๋žต์„ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ์—ฐ๊ตฌ 2์—์„œ, ์šฐ๋ฆฌ๋Š” ์žฅ ๋‚ด TAS1R3์˜ ๊ฒฐํ•์ด ๋Œ€์žฅ์—ผ์˜ ๊ธ‰์„ฑ ์—ผ์ฆ ๋‹จ๊ณ„๋ฅผ ์•ฝํ™”์‹œ์ผฐ์Œ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” Tas1r3-/-์— ๋น„ํ•ด Tas1r3+/+ ๋งˆ์šฐ์Šค์—์„œ ์ ์ง„์ ์ธ ์ฒด์ค‘ ๊ฐ์†Œ, ์ฆ๊ฐ€๋œ ์งˆ๋ณ‘ ์ง€ํ‘œ ์ ์ˆ˜(์‹ฌํ•œ ์„ค์‚ฌ ๋ฐ ์žฅ ์ถœํ˜ˆ) ๋ฐ ์žฅ ๊ธธ์ด์˜ ๋‹จ์ถ•์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋™์‹œ์—, Tas1r3-/- ๋งˆ์šฐ์Šค๋Š” ์žฅ ๋‚ด ์กฐ์งํ•™์  ์†์ƒ์ด ์ ๊ณ , CD45+ ๋ฐ Ly6G+ ์—ผ์ฆ์„ธํฌ์˜ ์นจ์œค์ด ์œ ์˜ํ•˜๊ฒŒ ์ ์—ˆ๋‹ค. ๋˜ํ•œ, ์—ผ์ฆ์กฐ์ง์—์„œ IL-1b, IL-6, ๋ฐ TNF-ฮฑ์˜ ์ˆ˜์ค€ ๋˜ํ•œ Tas1r3+/+ ๋งˆ์šฐ์Šค ๋ณด๋‹ค Tas1r3-/- ๋งˆ์šฐ์Šค์—์„œ ํ˜„์ €ํ•˜๊ฒŒ ๋” ๋‚ฎ์•˜๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” in vitro ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•˜์˜€๋‹ค. EEC๋ฅผ ์‚ฌ์šฉํ•œ ์‹œํ—˜๊ด€ ๋‚ด ์‹คํ—˜์€ ์‹์ด ๋ฆฌ๊ฐ„๋“œ ์ฒ˜๋ฆฌ์— ์˜ํ•œ TAS1R3์˜ ์ˆ˜์šฉ์ฒด ํ™œ์„ฑํ™”๊ฐ€ IL-1B, IL-6, IL-18, TNF-ฮฑ ๋ฐ MCP-1์„ ํฌํ•จํ•œ ์—ผ์ฆ์„ฑ ์‚ฌ์ดํ† ์นด์ธ ๋ฐ ์ผ€๋ชจ์นด์ธ์˜ ์ˆ˜์ค€์„ ์ƒ๋‹นํžˆ ์ƒํ–ฅ ์กฐ์ ˆ ํ–ˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด, ์žฅ ๋‚ด ๋ฏธ๊ฐ ์ˆ˜์šฉ์ฒด TAS1R3์€ ์žฅ ์—ผ์ฆ์„ ์ด‰์ง„ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์กฐ์ ˆ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” TAS1R3์„ target์œผ๋กœ ํ•˜๋Š” ์‹์ด ์ค‘์žฌ(dietary intervention)๊ฐ€ IBD ์ฆ์ƒ์„ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ์ „๋žต์ž„์„ ์‹œ์‚ฌํ•œ๋‹ค. ์—ฐ๊ตฌ 3์—์„œ Tas1r3-/- ๋งˆ์šฐ์Šค๋Š” ์„คํƒ•์Œ๋ฃŒ ๋ฐ ๊ณ ์ง€๋ฐฉ ์‹์ด๋ฅผ ํ•จ๊ป˜ ์„ญ์ทจํ•œ ํ›„์—๋„ ์žฅ ์กฐ์ง์˜ ์†์ƒ, ์งˆ๋ณ‘์˜ ์ค‘์ฆ๋„ ๋ฐ ์—ผ์ฆ์„ฑ ์ง€ํ‘œ๋“ค์ด Tas1r3+/+ ๋งˆ์šฐ์Šค์—์„œ ๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋ณดํ˜ธ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฏธ์ƒ๋ฌผ ํ”„๋กœํŒŒ์ผ๋ง ๊ฒฐ๊ณผ๋Š” Faecalibacterium ๋ฐ Roseburia์™€ ๊ฐ™์€ ๋ถ€ํ‹ฐ๋ ˆ์ดํŠธ ์ƒ์„ฑ ์œ ์šฉ ๋ฐ•ํ…Œ๋ฆฌ์•„ ๋ถ„๋ฅ˜๊ตฐ์ด ์„คํƒ• ์Œ๋ฃŒ ๋ฐ ๊ณ ์ง€๋ฐฉ์‹์ด๋ฅผ ์„ญ์ทจํ•œ Tas1r3-/- ๋งˆ์šฐ์Šค์—์„œ ์œ ์˜์ ์œผ๋กœ ํ’๋ถ€ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, ๊ธ€๋กœ๋ฒŒ ์ „์‚ฌ์ฒด ๋ถ„์„์€ Tas1r3+/+ ๋งˆ์šฐ์Šค์™€ ๋น„๊ตํ•˜์—ฌ ์„คํƒ• ์Œ๋ฃŒ ๋ฐ ๊ณ ์ง€๋ฐฉ ์‹์ด๋ฅผ ๋จน์€ Tas1r3-/- ๋งˆ์šฐ์Šค ํšŒ์žฅ์—์„œ PPAR-ฮณ ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ, Tight junction ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ ๋ฐ ์ ๋ง‰ ํ•ญ๊ท  ๋ฐฉ์–ด ๋ฐ˜์‘ (Mucosal antimicrobial peptide response) ๊ฒฝ๋กœ๊ฐ€ ๋งค์šฐ ์œ ์˜์ ์œผ๋กœ ์ฆ๊ฐ€๋˜์–ด ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. TAS1R3 ๊ฒฐํ•์ด ๋ณ€ํ™”๋œ ์ˆ™์ฃผ์˜ ์žฅ๋‚ด ์ „์‚ฌ์ฒด์™€ โ€“ ์žฅ๋‚ด๋ฏธ์ƒ๋ฌผ๊ตฐ ์œ ์ „์ฒด์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋งค๊ฐœํ•˜๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์žฅ๋‚ด๋ฏธ์ƒ๋ฌผ๊ณผ ์ˆ™์ฃผ์˜ ํšŒ์žฅ ์ „์‚ฌ์ฒด ๋ฐ์ดํ„ฐ ๊ฐ„ ํ†ตํ•ฉ ๋ถ„์„(Integrative analysis)์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, Tas1r3-/- ๋งˆ์šฐ์Šค์—์„œ ํ’๋ถ€ํ•œ ๋ถ€ํ‹ฐ๋ ˆ์ดํŠธ ์ƒ์‚ฐ ๋ฐ•ํ…Œ๋ฆฌ์•„๋“ค๊ณผ PPAR-ฮณ๋Œ€์‚ฌ๊ฒฝ๋กœ ๊ด€๋ จ ์ˆ™์ฃผ ์œ ์ „์ž ์‚ฌ์ด์— ์œ ์˜ํ•œ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ํŠนํžˆ, TAS1R3 ๊ฒฐํ•์€ ์‹์ด ์„ญ์ทจ์˜ ์œ ๋ฌด์— ๊ด€๊ณ„์—†์ด ํšŒ์žฅ ์กฐ์ง์—์„œ์˜ PPARฮณ์˜ ์ƒ๋ฅ˜์กฐ์ ˆ์ž(up-regulator)๋กœ ํ™•์ธ์ด ๋˜์—ˆ๋‹ค. TAS1R3 ๊ฒฐํ•์œผ๋กœ ์ฆ๊ฐ€๋œ PPARฮณ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์žฅ ์—ผ์ฆ ๋ฐ ์งˆ๋ณ‘์˜ ์‹ฌ๊ฐ์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ธก๋œ๋‹ค. PPARฮณ์˜ ํ™œ์„ฑํ™”๋Š” 1) ์žฅ ์„ธํฌ(enterocyte)์˜ ์—๋„ˆ์ง€ ๋Œ€์‚ฌ๋ฅผ ฮฒ-์‚ฐํ™”๋กœ ์œ ๋„ํ•˜์—ฌ, ๋‚ด๊ฐ• ์‚ฐ์†Œ์˜ ์ƒ์ฒด์ด์šฉ๋ฅ ์„ ์ œํ•œ(hypoxia, ์ €์‚ฐ์†Œ์ƒํƒœ)ํ•จ์œผ๋กœ์จ ๋ถ€ํ‹ฐ๋ ˆ์ดํŠธ ์ƒ์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„ (์˜ˆ: Faecalibacterium ๋ฐ Roseburia)์™€ ๊ฐ™์€ ์ ˆ๋Œ€ ํ˜๊ธฐ์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„๊ฐ€ ์ž˜ ์‚ด ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜๊ธฐ์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„์˜ ํ™•์žฅ์€ ์ˆ™์ฃผ ์œ ๋ž˜ ์‚ฐ์†Œ์˜ ์ƒ์„ฑ์„ ์ œํ•œํ•จ์œผ๋กœ์จ ํ†ต์„ฑ ํ˜๊ธฐ์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„(์ฃผ๋กœ ๋ณ‘์›์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„)์˜ ํ™•์žฅ์„ ๋ฐฉ์ง€ํ•œ๋‹ค. 2) Tight junction ๋‹จ๋ฐฑ์งˆ ๋ฐ Antimicrobial peptide ์ƒ์„ฑ ๊ด€๋ จ ์œ ์ „์ž์˜ ๋ฐœํ˜„์„ ์ƒํ–ฅ ์กฐ์ ˆํ•œ๋‹ค. ๋˜ํ•œ 3) ์œ ๋„์„ฑ ์‚ฐํ™”์งˆ์†Œ ํ•ฉ์„ฑ ํšจ์†Œ๋ฅผ ์ฝ”๋”ฉํ•˜๋Š” ์œ ์ „์ž์ธ Nos2์˜ ๋ฐœํ˜„์„ ๊ฐ์†Œ์‹œ์ผœ ์žฅ ๋‚ด๊ฐ•์˜ ์งˆ์‚ฐ ์ˆ˜์ค€์„ ๊ฐ์†Œ์‹œํ‚ค๊ณ , 4) ์—ผ์ฆ์„ฑ Nf-kB ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ ๋ถ„์ž๋ฅผ ํ•˜ํ–ฅ ์กฐ์ ˆํ•จ์œผ๋กœ์จ, ์—ผ์ฆ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์š”์•ฝํ•˜๋ฉด, ์žฅ ๋‚ด TAS1R3์€ ์žฅ ์—ผ์ฆ์— ์žˆ์–ด์„œ ์ ๋ง‰ ์—ผ์ฆ, ์žฅ ์„ธํฌ์˜ ๋Œ€์‚ฌ ๋ฐ ์žฅ ๋‚ด ๋ฏธ์ƒ๋ฌผ ๊ตฐ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์— ์žˆ์–ด ์ฃผ์š” ์กฐ์ ˆ์ž ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๊ฒฐ๋ก  ๋ณธ ์—ฐ๊ตฌ๋Š” ์žฅ ์—ผ์ฆ์—์„œ ์žฅ ๋ฐœํ˜„ ๋ฏธ๊ฐ ์ˆ˜์šฉ์ฒด TAS1R3์˜ ์—ญํ• ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ๊ณตํ•˜๋Š” ์ตœ์ดˆ์˜ ๋ณด๊ณ ์„œ์ด๋‹ค. ์„œ๊ตฌํ™”๋œ ์‹๋‹จ(์„คํƒ• ์Œ๋ฃŒ ๋ฐ ๊ณ ์ง€๋ฐฉ ์‹์ด)์„ ์„ญ์ทจํ•˜๋ฉด ๊ฑด๊ฐ•ํ•œ ์žฅ๋‚ด ๋ฏธ์ƒ๋ฌผ์˜ ๊ตฐ์ง‘์„ ์—ผ์ฆ์„ ์ผ์œผํ‚ค๋Š” ๋ณ‘์›์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„๋“ค์˜ ๊ตฐ์ง‘์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ ์žฅ ์—ผ์ฆ์ด ์œ ๋ฐœ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์žฅ ๋ฏธ๊ฐ ์ˆ˜์šฉ์ฒด์ธ TAS1R3์˜ ๊ฒฐํ•์€ PPARฮณ ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ์˜ ๋ฐœํ˜„์„ ์กฐ์ ˆํ•˜์—ฌ, ์žฅ ๋‚ด๊ฐ• ์‚ฐ์†Œ์˜ ์ƒ์ฒด ์ด์šฉ๋ฅ ์„ ๊ฐ์†Œ์‹œํ‚ค๊ณ  ๋ณ‘์›์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„์˜ ํ™•์žฅ์„ ๋ฐฉ์ง€ํ•˜๋Š” ํ•ญ์ƒ์„ฑ ๊ฒฝ๋กœ๋ฅผ ์œ ์ง€ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ฐฐ์€ ์žฅ๋‚ด ๋ฏธ์ƒ๋ฌผ๊ณผ ์ˆ™์ฃผ ์‚ฌ์ด์˜ ํ™œ๋ฐœํ•œ ์ƒํ˜ธ์ž‘์šฉ(cross-talk)์—์„œ TAS1R3๊ฐ€ ์žฅ๋‚ด ์—ผ์ฆ์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹ค. ํŠนํžˆ, IBD์—์„œ ์ด๋Ÿฌํ•œ ํ™”ํ•™ ๊ฐ๊ฐ ๋ฏธ๊ฐ ์ˆ˜์šฉ์ฒด TAS1R3์˜ ์—ญํ•  ๋ฐ ์ด์™€ ๊ด€๋ จ๋œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์ดํ•ด๋Š” ์žฅ ์งˆํ™˜์„ ํ‘œ์ ์œผ๋กœ ํ•˜๋Š” ์ƒˆ๋กœ์šด ์น˜๋ฃŒ ์ „๋žต์œผ๋กœ ์ด์–ด์งˆ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋˜๋Š” ๋ฐ”์ด๋‹ค.Contents Abstract i Contents viii List of Tables xii List of Figures xiii List of Abbreviations xvi โ… . Introduction 1 1. Background 2 2. Objective 5 โ…ก. Literature review 7 1.1. Changing epidemiological trends of inflammatory bowel disease 8 1.2. Diet intake and risk of developing inflammatory bowel disease 10 1.3. Diet and alteration of gut microbiota in inflammatory bowel disease 23 2.1. Taste receptors and signal transduction 28 2.2. Type of taste receptors 30 2.3. Expression of taste receptors in extra-oral tissues 33 โ…ข. Study 1. Effects of western diet (which is high in sugar-sweeten beverage and/or high-fat diet) on intestinal inflammation 38 1. Introduction 39 2. Materials and Methods 42 2.1. Animals and study design 42 2.2. Histology 44 2.3. Isolation of intestinal cells and FACS profiling 45 2.4. Gut microbiome analysis by 16S rRNA sequencing 47 2.5. RNA-next generation sequencing 48 2.6. Bioinformatics analysis of RNA sequences 50 2.7. Fecal microbiome transplantation (FMT) 51 2.8. Statistical Analysis 52 3. Results 53 3.1. Sugary drink dramatically exacerbates high fat diet-induced intestinal inflammation in mice. 53 3.2. Sugar drink with high-fat diet modulates intestinal transcriptomic signature of innate-adaptive immune responses. 58 3.3. Addition of sugary drink to high-fat diet harmfully alters the gut microbiome. 63 3.4. Fecal transplantation of gut microbiota reshaped by sugary drink with HF diet induces intestinal inflammation in recipient mice. 70 4. Discussion 75 โ…ฃ. Study 2. Roles of gut-taste receptor TAS1R3 on intestinal inflammation in mice with dextran sodium sulfate-induced colitis 80 1. Introduction 81 2. Materials and Methods 83 2.1. Animals 83 2.2. Colitis induction and disease evaluation 84 2.3. Histological analysis 85 2.4. Immunohistochemistry 86 2.5. Culture of NCI-H716 cells 87 2.6. RNA isolation and quantitative RT-PCR 88 2.7. Statistical analyses 90 3. Results 91 3.1. TAS1R3 is highly expressed in the colon and increased further by inflammation 91 3.2. TAS1R3 deficiency reduces the severity of DSS-induced colitis 93 3.3. Tas1r3/ mice display reduced infiltration of immune cells and cytokine expression during colitis 96 3.4. Activation of TAS1R3 in vitro upregulates levels of pro-inflammatory cytokines and chemokines 100 4. Discussion 103 โ…ค. Study 3. Roles of gut-taste receptor TAS1R3 on intestinal inflammation in mice with western diet-induced colitis 106 1. Introduction 107 2. Materials and Methods 110 2.1. Animals and study design 110 2.2. Histological analysis 112 2.3. Immunohistochemistry and Immunofluorescence 113 2.4. Gut microbiome analysis by 16S sequencing 114 2.5. RNA-next generation sequencing 115 2.6. Bioinformatics analysis of RNA sequences 117 2.7. Quantitative RT-PCR 118 2.8. Statistical analyses 119 3. Results 120 3.1. TAS1R3 is highly activated by luminal fat and sugar and upregulates pro-inflammatory markers 120 3.2. Loss of TAS1R3 protects against high-fat diet and sugar drink-induced intestinal inflammation 123 3.3. High-fat diet and sugar beverage-fed Tas1r3/ mice display reduced infiltration of immune cells 129 3.4. TAS1R3 deficiency alters gut microbiome that protect against western diet-induced colitis. 132 3.5. TAS1R3 deficiency regulates gut transcriptome 140 3.6. Interactions between intestinal PPARฮณ Signaling Pathway-related host genes and butyrate-producing gut microbes 148 4. Discussion 153 โ…ฅ. Summary and conclusion 159 References 164 ๊ตญ๋ฌธ์ดˆ๋ก 183Docto

    Investigating newspaper articles on the underachievers from the perspectives of community of practice theory

    No full text
    corecore