38 research outputs found
Anesthetic Efficacy of Dexmedetomidine versus Midazolam When Combined with Remifentanil for Percutaneous Transluminal Angioplasty in Patients with Peripheral Artery Disease
Anesthesia for percutaneous transluminal angioplasty (PTA) involves a high-risk population having a broad spectrum of pain character and intensity. This study delved the anesthetic efficacy of dexmedetomidine versus midazolam, when used with remifentanil. Seventy patients scheduled for femoropopliteal PTA were randomized into two groups receiving either intermittent midazolam boluses (0.03⁻0.05 mg/kg) (MR group) or dexmedetomidine 0.2⁻0.7 μg/kg/h after a loading dose of 1.0 μg/kg for 10 min (DR group), both with remifentanil. The primary endpoint was the patients' satisfaction (1⁻5, 5; extremely satisfied). Secondary endpoints included postprocedural pain scores (0⁻10, 10; worst imaginable pain) and adverse events. The satisfaction level of patients was significantly greater in the DR group compared with the MR group (4.0 [3.0, 5.0] versus 4.0 [2.0, 5.0] p = 0.021). The number of patients having a postprocedural pain score of at least 3 was significantly greater in the MR group compared with the DR group (10 [29%] versus 2 [6%], p = 0.013). The number of patients with hypotensive episodes was higher in the DR group (5 [14.7%] versus 0, p = 0.025), which could all be restored with ephedrine. The use of dexmedetomidine in conjunction with remifentanil may be a safe option that provides excellent patient satisfaction while potentially attenuating postprocedural pain.ope
Monitored Anesthesia Care for Cardiovascular Interventions
The interventional cardiology is growing and evolving. Many complex procedures are now performed outside the operating room to manage cardiovascular pathologies which had been traditionally treated with cardiac surgery. Appropriate sedation strategy is crucial for improved patient comfort and successful procedure while ensuring safety. Sedation for cardiovascular intervention is frequently challenging, especially in critically-ill, high-risk patients. This review addresses pre-procedure evaluation and preparation of patients, proper monitoring, commonly used sedatives and analgesics, and considerations for specific procedures. Appropriate depth of sedation and analgesia should be balanced with patient, procedural and institutional factors. Understanding of the pharmacology of sedatives/analgesics, vigilant monitoring, ability and proper preparation for management of potential complications may improve outcomes in patients undergoing sedation for cardiovascular procedures.ope
Combination of Static Echocardiographic Indices for the Prediction of Fluid Responsiveness in Patients Undergoing Coronary Surgery: A Pilot Study
We investigated the role of echocardiographic indices consisting of left ventricular end-diastolic area (LVEDA) in combination with Doppler-derived surrogates of diastolic compliance and filling (E/E', E'/S', E'/A'; early transmitral flow velocity (E), tissue Doppler-derived early (E') diastolic, late (A') diastolic, or peak systolic (S') velocity of the mitral annulus) in predicting fluid responsiveness in off-pump coronary surgery. Hemodynamic and echocardiographic variables were prospectively assessed under general anesthesia before and after a fluid challenge of 6 mL/kg during apnea at atmospheric pressure in 64 patients with LV ejection fraction ≥40%. Forty patients (63%) were fluid responders (≥15% increase in stroke volume index). E/E' and E'/S' could predict fluid responsiveness with area under the receiver operating characteristic curve (AUROC) of 0.71 (95% confidence interval [CI], 0.56-0.85; p = 0.006) and 0.68 (95% CI, 0.54-0.82; p = 0.017), respectively. The combination of LVEDA and E/E' showed incremental predictive ability for fluid responsiveness compared with LVEDA (AUROC, 0.60; p = 0.170) or pulse pressure variation (AUROC, 0.70; p = 0.002), yielding the highest AUROC of 0.78 (95% CI, 0.66-0.90; p < 0.001). The combined index of echocardiographic variables reflecting LV dimension (LVEDA) and diastolic compliance and filling (E/E') is a potentially useful predictor of fluid responsiveness.ope
Dual antiplatelet therapy and non-cardiac surgery: evolving issues and anesthetic implications
Dual antiplatelet therapy (DAPT) consisting of aspirin plus a P2Y12 inhibitor (clopidogrel, prasugrel, or ticagrelor) is imperative for the treatment of acute coronary syndrome, particularly during the re-endothelialization period after percutaneous coronary intervention (PCI). When patients undergo surgery during this period, the consequences of stent thrombosis are far more serious than those of bleeding complications, except in cases of intracranial surgery. The recommendations for perioperative DAPT have changed with emerging evidence regarding the improved efficacy of non-first-generation drug (everolimus, zotarolimus)-eluting stents (DES). The mandatory interval of 1 year for elective surgery after DES implantation was shortened to 6 months (3 months if surgery cannot be further delayed). After this period, it is generally recommended that the P2Y12 inhibitor be stopped for the amount of time necessary for platelet function recovery (clopidogrel 5-7 days, prasugrel 7-10 days, ticagrelor 3-5 days), and that aspirin be continued during the perioperative period. In emergent or urgent surgeries that cannot be delayed beyond the recommended period after PCI, proceeding to surgery with continued DAPT should be considered. For intracranial procedures or other selected surgeries in which increased bleeding risk may also be fatal, cessation of DAPT (possibly with continuation or minimized interruption [3-4 days] of aspirin) with bridge therapy using short-acting, reversible intravenous antiplatelet agents such as cangrelor (P2Y12 inhibitor) or glycoprotein IIb/IIIa inhibitors (tirofiban, eptifibatide) may be contemplated. Such a critical decision should be individually tailored based on consensus among the anesthesiologist, cardiologist, surgeon, and patient to minimize both ischemic and bleeding risks.ope
Anesthetic-induced myocardial protection in cardiac surgery: relevant mechanisms and clinical translation
Cardiac surgery is still associated with complications such as adverse perioperative cardiovascular events. Over the past two decades, many studies have shown that volatile anesthetics and opioids provide myocardial protection against ischemia-reperfusion injury in a similar manner as ischemic conditioning. First (1–2 hours) and second (24–72 hours) windows of protection are provided, the underlying mechanisms for which involve activation of G-protein-coupled receptors, protein kinases, and the opening of adenosine triphosphate-sensitive potassium channels. These processes ultimately result in inhibition of the mitochondrial permeability transition pore. Post-conditioning can also be effective when treatment is applied in the proximity of reperfusion. Although propofol lacks these conditioning effects, it acts as a strong antioxidant and protects the myocardium by attenuating oxidative stress related to reperfusion injury. Clinical evidence favors the use of volatile anesthetics over propofol in terms of reduced cardiac enzyme release, length of hospital stay, and mortality. However, the existing evidence level is insufficient to draw a definite conclusion regarding the mortality benefit of one anesthetic over the others. In addition, many common clinical conditions, such as advanced age, hyperglycemia/diabetes, and hypertrophy, have been shown to mitigate the protective efficacy of the anesthetics, although this effect also lacks clinical validation. Propofol may also abolish the protective effects of volatile anesthetics and opioids by scavenging reactive oxygen species, an essential trigger for pre-conditioning. The following review addresses these issues from a clinical perspective.ope
Association Between Cerebral Oxygen Saturation With Outcome in Cardiac Surgery: Brain as an Index Organ
While both baseline regional cerebral oxygen saturation (rSO2) and intraoperative rSO2 decreases have prognostic importance in cardiac surgery, evidence is limited in patients who received interventions to correct rSO2 decreases. The primary aim was to examine the association between rSO2 values (both baseline rSO2 and intraoperative decrease in rSO2) with the composite of morbidity endpoints. We retrospectively analyzed 356 cardiac surgical patients having continuously recorded data of intraoperative rSO2 values. Per institutional guidelines, patients received interventions to restore the rSO2 value to ≥80% of the baseline value. Analyzed rSO2 variables included baseline value, and area under the threshold below an absolute value of 50% (AUT50). Their association with outcome was analyzed with multivariable logistic regression. AUT50 (odds ratio, 1.05; 95% confidence interval; 1.01-1.08; p = 0.015) was shown to be an independent risk factor (along with age, chronic kidney disease, and cardiopulmonary bypass time) of adverse outcomes. In cardiac surgical patients who received interventions to correct decreases in rSO2, increased severity of intraoperative decrease in rSO2 as reflected by AUT below an absolute value of 50% was associated with a composite of adverse outcomes, implicating the importance of cerebral oximetry to monitor the brain as an index organ.ope
High Preoperative Serum Syndecan-1, a Marker of Endothelial Glycocalyx Degradation, and Severe Acute Kidney Injury after Valvular Heart Surgery
Degradation of endothelial glycocalyx (EG) is associated with inflammation and endothelial dysfunction, which may contribute to the development of acute kidney injury (AKI). We investigated the association between a marker of EG degradation and AKI after valvular heart surgery. Serum syndecan-1 concentrations were measured at induction of anesthesia and discontinuation of cardiopulmonary bypass in 250 patients. Severe AKI was defined as Kidney Disease: Improving Global Outcomes Criteria Stage 2 or 3. Severe AKI occurred in 13 patients (5%). Receiver operating characteristic analysis of preoperative syndecan-1 to predict severe AKI showed area under curve of 0.714 (95% confidence interval (CI), 0.575-0.853; p = 0.009). The optimal cut-off value was 90 ng/mL, with a sensitivity of 61.5% and specificity of 78.5%. In multivariable analysis, both preoperative syndecan-1 ≥ 90 ng/mL and Cleveland Clinic Foundation score independently predicted severe AKI. Severe tricuspid regurgitation was more frequent (42.4% vs. 17.8%, p < 0.001), and baseline right ventricular systolic pressure (41 (33-51) mmHg vs. 33 (27-43) mmHg, p = 0.001) and TNF-α (1.85 (1.37-2.43) pg/mL vs. 1.45 (1.14-1.92) pg/mL, p <0.001) were higher in patients with high preoperative syndecan-1. Patients with high preoperative syndecan-1 had longer hospital stay (16 (12-24) days vs. 13 (11-17) days, p = 0.001). In conclusion, a high preoperative syndecan-1 concentration greater than 90 ng/mL was able to predict severe AKI after valvular heart surgery and was associated with prolonged hospitalization.ope
Percutaneous cardiopulmonary support to treat suspected venous air embolism with cardiac arrest during open eye surgery: a case report
We report a case of possible venous air embolism (VAE) during trans pars plana vitrectomy with air-fluid exchange of the vitreous cavity. Shortly after initiation of air-fluid exchange, decreases in end-tidal CO2, oxygen saturation, and blood pressure were observed. The patient rapidly progressed to cardiac arrest unresponsive to cardiopulmonary resuscitation, and recovered after the application of percutaneous cardiopulmonary support. Prompt termination of air infusion is needed when VAE is suspected during air-fluid exchange, and extracorporeal life support should be considered in fatal cases. Although the incidence is rare the possibility of VAE during ophthalmic surgery clearly exists, and therefore awareness and vigilant monitoring seem critical.ope
Comparisons of Pressure-controlled Ventilation with Volume Guarantee and Volume-controlled 1:1 Equal Ratio Ventilation on Oxygenation and Respiratory Mechanics during Robot-assisted Laparoscopic Radical Prostatectomy: a Randomized-controlled Trial
Background: During robot-assisted laparoscopic radical prostatectomy (RALP), steep Trendelenburg position and carbon dioxide pneumoperitoneum are inevitable for surgical exposure, both of which can impair cardiopulmonary function. This study was aimed to compare the effects of pressure-controlled ventilation with volume guarantee (PCV with VG) and 1:1 equal ratio ventilation (ERV) on oxygenation, respiratory mechanics and hemodynamics during RALP.
Methods: Eighty patients scheduled for RALP were randomly allocated to either the PCV with VG or ERV group. After anesthesia induction, volume-controlled ventilation (VCV) was applied with an inspiratory to expiratory (I/E) ratio of 1:2. Immediately after pneumoperitoneum and Trendelenburg positioning, VCV with I/E ratio of 1:1 (ERV group) or PCV with VG using Autoflow mode (PCV with VG group) was initiated. At the end of Trendelenburg position, VCV with I/E ratio of 1:2 was resumed. Analysis of arterial blood gases, respiratory mechanics, and hemodynamics were compared between groups at four times: 10 min after anesthesia induction (T1), 30 and 60 min after pneumoperitoneum and Trendelenburg positioning (T2 and T3), and 10 min after desufflation and resuming the supine position (T4).
Results: There were no significant differences in arterial blood gas analyses including arterial oxygen tension (PaO2) between groups throughout the study period. Mean airway pressure (Pmean) were significantly higher in the ERV group than in the PCV with VG group T2 (p<0.001) and T3 (p=0.002). Peak airway pressure and hemodynamic data were comparable in both groups.
Conclusion: PCV with VG was an acceptable alternative to ERV during RALP producing similar PaO2 values. The lower Pmean with PCV with VG suggests that it may be preferable in patients with reduced cardiovascular function.ope
Low Intraoperative Cerebral Oxygen Saturation Is Associated with Acute kidney Injury after Off-Pump Coronary Artery Bypass
By monitoring the brain as the index organ of global oxygen supply-demand balance including major organs, regional cerebral oxygen saturation (rScO2) may indicate adequacy of renal perfusion. The aim of this study was to investigate the relationship between perioperative rScO2 and acute kidney injury (AKI) after off-pump coronary artery bypass (OPCAB). AKI was diagnosed according to the Kidney Disease: Improving Global Outcomes criteria. Collected rScO2 variables were baseline, mean, and lowest value during surgery, maximal percentage decrease from baseline, and areas under the threshold below an absolute value of 50% (AUT50) and of 80% of baseline (AUT80%base). Among 580 patients, AKI developed in 143 (24.7%) patients. Patients with AKI had lower baseline, mean, and lowest rScO2 and higher AUT50 and AUT80%base than those without AKI despite routine efforts to restore the rScO2 values within 20% of the baseline. Among the rScO2 variables, the area under the receiver operating characteristic curve of mean rScO2 was the highest (0.636), which was used for the multivariable logistic regression. Multivariable logistic regression revealed mean rScO2 as an independent predictor of AKI (odds ratio, 0.964; 95% confidence interval, 0.937-0.990; p = 0.008), along with chronic kidney disease and emergency surgery. Low intraoperative mean rScO2 was independently associated with AKI after OPCAB, which may serve as an early marker of renal injury.ope
