44 research outputs found

    Reactive Oxygen Species are Involved in Y-27632-induced Neurite Outgrowth in PC12 Cells

    Get PDF
    Inhibition of Rho-associated coiled coil-containing kinase (ROCK) has been reported to promote differentiation of neuronal cells. Here, we examined the effect of Y-27632, a ROCK inhibitor, on the outgrowth of neurites in PC12 cells. Y-27632 caused a rapid induction of neurite outgrowth in PC12 cells in a time-dependent manner. The neurite outgrowth, triggered by Y-27632, was accompanied by Rac1 activation, and was attenuated by Rac1 inhibitor NSC23766, in a concentration-dependent manner. Y-27632 also induced an increase in the production of reactive oxygen species (ROS). Pretreatment with N-acetylcysteine, an ROS scavenger, inhibited the ROS generation and neurite outgrowth in response to Y-27632. These results indicate that the activation of Rac1 and the generation of ROS contribute to the neurite outgrowth triggered by Y-27632 in PC12 cells.ope

    Docosahexaenoic acid inhibits ethanol/palmitoleic acid-induced necroptosis in AR42J cells

    Get PDF
    Fatty acid ethyl esters (FAEEs), non-oxidative metabolites of ethanol, are the main causative agents of severe acute pancreatitis resulting from alcohol abuse. Pancreatic acinar cells exposed to ethanol in combination with the fatty acid palmitoleic acid (EtOH/POA) display increased levels of palmitoleic acid ethyl ester and cell death. Oxidative stress and acinar cell necroptosis are implicated in the pathology of severe acute pancreatitis. Docosahexaenoic acid (DHA) serves as a powerful anti-oxidant that reduces pancreatic inflammation and improves the outcomes of patients with acute pancreatitis. We investigated whether treatment of EtOH/POA, as an in vitro model of alcoholic pancreatitis, increases reactive oxygen species (ROS), necroptosis-regulating proteins, and cell death by increasing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and intracellular calcium. Also, we investigated whether DHA inhibits EtOH/POA-induced alterations in pancreatic acinar AR42J cells. As a result, EtOH/POA increased intracellular and mitochondrial ROS levels, NADPH oxidase activity, necroptosis-regulating proteins, and cell death, which was inhibited by NADPH oxidase inhibitor apocynin, the Ca2+ chelator BAPTA, and DHA. However, DHA did not reduce EtOH/POA-induced increases in Ca2+ oscillation or levels in AR42J cells. Furthermore, EtOH/POA induced mitochondrial dysfunction by reducing mitochondrial membrane polarization and hence, adenosine triphosphate (ATP) production. DHA treatment attenuated EtOH/POA-induced mitochondrial dysfunction. In conclusion, DHA inhibits EtOH/POA-induced necroptosis by suppressing NADPH oxidase activity, reducing ROS levels, preventing mitochondrial dysfunction, and inhibiting activation of necroptosis-regulating proteins in AR42J cells.ope

    Differential Roles of Tubby Family Proteins in Ciliary Formation and Trafficking

    Get PDF
    Cilia are highly specialized organelles that extend from the cell membrane and function as cellular signaling hubs. Thus, cilia formation and the trafficking of signaling molecules into cilia are essential cellular processes. TULP3 and Tubby (TUB) are members of the tubby-like protein (TULP) family that regulate the ciliary trafficking of G-protein coupled receptors, but the functions of the remaining TULPs (i.e., TULP1 and TULP2) remain unclear. Herein, we explore whether these four structurally similar TULPs share a molecular function in ciliary protein trafficking. We found that TULP3 and TUB, but not TULP1 or TULP2, can rescue the defective cilia formation observed in TULP3-knockout (KO) hTERT RPE-1 cells. TULP3 and TUB also fully rescue the defective ciliary localization of ARL13B, INPP5E, and GPR161 in TULP3 KO RPE-1 cells, while TULP1 and TULP2 only mediate partial rescues. Furthermore, loss of TULP3 results in abnormal IFT140 localization, which can be fully rescued by TUB and partially rescued by TULP1 and TULP2. TUB's capacity for binding IFT-A is essential for its role in cilia formation and ciliary protein trafficking in RPE-1 cells, whereas its capacity for PIP2 binding is required for proper cilia length and IFT140 localization. Finally, chimeric TULP1 containing the IFT-A binding domain of TULP3 fully rescues ciliary protein trafficking, but not cilia formation. Together, these two TULP domains play distinct roles in ciliary protein trafficking but are insufficient for cilia formation in RPE-1 cells. In addition, TULP1 and TULP2 play other unknown molecular roles that should be addressed in the future.ope

    Rottlerin, a specific inhibitor of protein kinase C-delta, impedes barrier repair response by increasing intracellular free calcium

    Get PDF
    Several signals have been suggested in maintaining skin barrier homeostasis, but epidermal calcium ions are currently thought to be a main signaling factor. It is not clear, however, exactly how an intracellular calcium level decreases in response to the loss of an extracellular calcium gradient. In this study, we investigated the effects of several broad-type and isozyme-specific protein kinase C (PKC) inhibitors on epidermal permeability barrier recovery. Topical application of chelerythrine chloride, a broad-type PKC inhibitor, and rottlerin, a PKCdelta-specific inhibitor, significantly impeded the barrier recovery rate at 3 and 6 hours after barrier disruption. A significant decrease in the number and secretion of lamellar bodies was also observed at the inhibitor-treated site. Calcium ion-capture cytochemistry showed that the epidermal calcium gradient was rapidly reformed in inhibitor-treated skin, though recovery of the corresponding barrier function was not observed. In cultured keratinocytes treated with either inhibitor, increased intracellular calcium did not return to the baseline concentration after extracellular calcium decreased. These results suggest that PKC inhibitors, especially a PKCdelta-specific inhibitor, delay barrier recovery by affecting the intracellular calcium concentration after a loss of the extracellular calcium gradient. Furthermore, PKCdelta is important in controlling a decrease in intracellular calcium concentration.ope

    Dual Effect of H2O2 on the Regulation of Cholecystokinin-induced Amylase Release in Rat Pancreatic Acinar Cells

    Get PDF
    [Hโ‚‚Oโ‚‚], a member of reactive oxygen species (ROS), is known to be involved in the mediation of physiological functions in a variety of cell types. However, little has been known about the physiological role of Hโ‚‚Oโ‚‚in exocrine cells. Therefore, in the present study, the effect of Hโ‚‚Oโ‚‚on cholecystokinin (CCK)-evoked Cฮฑยฒ+ mobilization and amylase release was investigated in rat pancreatic acinar cells. Stimulation of the acinar cells with sulfated octapeptide form of CCK (CCK-8S) induced biphasic increase in amylase release. Addition of 30ฮผM Hโ‚‚Oโ‚‚ enhanced amylase release caused by 10 pM CCK-8S, but inhibited the amylase release induced by CCK-8S at concentrations higher than 100 pM. An ROS scavenger, 10 ฮผM Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, increased amylase release caused by CCK-8S at concentrations higher than 100 pM, although lower concentrations of CCK-8S-induced amylase release was not affected. To examine whether the effect of Hโ‚‚Oโ‚‚on CCK-8S-induced amylase release was exerted via modulation of intracellular Cฮฑยฒ+ signaling, we measured the changes in intracellular Cฮฑยฒ+ concentration ([Cฮฑยฒ+]i) in fura-2 loaded acinar cells. Although 30 ฮผM Hโ‚‚Oโ‚‚did not induce any increase in([Cฮฑยฒ+]i by itself, it increased the frequency and amplitude of([Cฮฑยฒ+]i oscillations caused by 10 pM CCK-8S. However, 30ฮผM Hโ‚‚Oโ‚‚had little effect on 1 nM CCK-8S-induced increase in [Cฮฑยฒ+]i. ROS scavenger, 1 mM N-acetylcysteine, did not affect [Cฮฑยฒ+]i changes induced by 10 pM or 1 nM CCK-8S. Therefore, it was concluded that 30 ฮผM Hโ‚‚Oโ‚‚ enhanced low concentration of CCK-8S-induced amylase release probably by increasing Cฮฑยฒ+]i oscillations while it inhibited high concentration of CCK-8S-induced amylase release.ope

    The ERK pathway involves positive and negative regulations of HT-29 colorectal cancer cell growth by extracellular zinc

    Get PDF
    Dietary zinc is an important trace element in the body and is related to both cell proliferation and growth arrest. A recent study found that extracellular zinc-sensing receptors trigger intracellular signal transduction in HT-29 human colorectal cancer cells. However, the signaling mechanism causing this growth regulation by extracellular zinc is not clearly understood. At 10- and 100-microM levels of ZnCl2 treatment, HT-29 cell growth and proliferation increased and decreased, respectively, in a minimally serum-starved medium (MSSM). A lack of significant increase in intracellular zinc levels after zinc treatment suggested that this differential growth regulation of HT-29 cells by extracellular zinc is acquired by receptor-mediated signal transduction. Moreover, this zinc-induced growth regulation was differentially affected by PD-98059, suggesting the involvement of the ERK pathway. Transient ERK activation and subsequent cyclin D1 induction were observed on adding 10 microM ZnCl2 in MSSM in the presence of cell proliferation. On the other hand, prolonged ERK activity was observed with a subsequent increase of cyclin D1 and p21(Cip/WAF1) on adding 100 microM ZnCl2 in MSSM, and this was associated with nonproliferation. Moreover, this ERK activation and cyclin D1 and p21(Cip/WAF1) induction were abolished by PD-98059 pretreatment. The differential regulations of cell growth, ERK activities, and cyclin D1 and p21(Cip/WAF1) inductions were also observed in serum-enriched medium containing higher zinc concentrations. Therefore, differential cell cycle regulator induction occurs by a common ERK pathway in the differential growth regulation of HT-29 cells by extracellular zinc.ope

    Y-27632 Induces Neurite Outgrowth by Activating the NOX1-Mediated AKT and PAK1 Phosphorylation Cascades in PC12 Cells

    Get PDF
    Y-27632 is known as a selective Rho-associated coiled coil-forming kinase (ROCK) inhibitor. Y-27632 has been shown to induce neurite outgrowth in several neuronal cells. However, the precise molecular mechanisms linking neurite outgrowth to Y-27632 are not completely understood. In this study, we examined the ability of Y-27632 to induce neurite outgrowth in PC12 cells and evaluated the signaling cascade. The effect of Y-27632 on the neurite outgrowth was inhibited by reactive oxygen species (ROS) scavengers such as N-acetyl cysteine (NAC) and trolox. Furthermore, Y-27632-induced neurite outgrowth was not triggered by NADPH oxidase 1 (NOX1) knockdown or diphenyleneiodonium (DPI), a NOX inhibitor. Suppression of the Rho-family GTPase Rac1, which is under the negative control of ROCK, with expression of the dominant negative Rac1 mutant (Rac1N17) prevented Y-27632-induced neurite outgrowth. Moreover, the Rac1 inhibitor NSC23766 prevented Y-27632-induced AKT and p21-activated kinase 1 (PAK1) activation. AKT inhibition with MK2206 suppressed Y-27632-induced PAK1 phosphorylation and neurite outgrowth. In conclusion, our results suggest that Rac1/NOX1-dependent ROS generation and subsequent activation of the AKT/PAK1 cascade contribute to Y-27632-induced neurite outgrowth in PC12 cells.ope
    corecore