20 research outputs found

    ์žฌ์ƒ๋ถˆ๋Ÿ‰๋นˆํ˜ˆ์—์„œ ํ…”๋กœ๋ฏธ์–ด ๊ธธ์ด์™€ ์ฒด์„ธํฌ ๋Œ์—ฐ๋ณ€์ด์— ๋”ฐ๋ฅธ ๋ฉด์—ญ์–ต์ œ์ œ์น˜๋ฃŒ ๋ฐ˜์‘๊ณผ์˜ ์ƒ๊ด€๊ด€๊ณ„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2018. 2. ์ด๋™์ˆœ.We investigated the frequencies of cytogenetic aberrations and somatic mutations of prognostic relevance in 393 patients with aplastic anemia (AA). Clonality was determined by G-banding/fluorescence in situ hybridization (FISH) (n = 245), and targeted capture sequencing was performed for 88 hematopoiesis-related genes (n = 70). The telomere length (TL) of bone marrow nucleated cells was measured at the single cell level by FISH (n = 135). Eighteen (4.6%) patients showed disease progression, and monosomy 7 (50.0%) was the most predominant cytogenetic evolution at disease transformation. One third of patients (32.9%) presented at least 1 mutationthe most frequently mutated genes were NOTCH1, NF1, SCRIB, BCOR and DNMT3A. The patient group with clonal changes (30.7%) showed an adverse response to immunosuppressive treatment (IST), compared to the non-clonal group, but this finding did not show statistical significance. The TL of AA patients was significantly shorter than normal control and patients with clonal changes showed significantly shorter TLs. Patients with TL>5.9 showed a higher response rate to IST (P = 0.048). In conclusion, the patients with clonal changes or TL attrition showed a poor response to IST. Shorter TL can be used not only as a biomarker, but also as a predictive marker for treatment response to IST.1. Introduction. 1 2. Materials and Methods 5 2.1. Patients 5 2.2. BM histological examination 9 2.3. Cytogenetic analysis by G-banding 10 2.4. FISH for 5/5q-, -7/7q-, +8, -20/20q-, and +1/1q+. 11 2.5. Quantitative measurement of telomere length using interphase FISH (Q-FISH). 12 2.6. Targeted capture sequencing 13 2.7. Variant calling 14 2.8. Statistical analysis. 15 3. Results. 16 3.1. Abnormal cytogenetics detected by conventional G-banding and/or FISH 15 3.2. Quantitative size of clonal fraction in AA 20 3.3. Patients with disease progression. 22 3.4. Treatment response according to cytogenetic aberrations and/or somatic mutation 27 3.5. Targeted sequencing 30 3.6. Distribution of telomere lengths in AA 35 3.7. Treatment response to IST in correlation with telomere length in AA 36 3.8. The assessment of post-BMT endpoints in patients with AA 38 4. Discussion 42 References 45 Supplementary Table 50 Abstract in Korean. 52Docto

    Theoretical Studies on Electronic and Magnetic Properties of Graphene Nanoribbons

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™๋ถ€(๋ฌผ๋ฆฌํ™”ํ•™์ „๊ณต), 2014. 2. ์‹ ์„๋ฏผ.์ด ๋…ผ๋ฌธ์—์„œ, ์šฐ๋ฆฌ๋Š” ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์— ๋Œ€ํ•˜์—ฌ ์ด๋ก ์—ฐ๊ตฌ์™€ ๊ณ„์‚ฐ์—ฐ๊ตฌ๋ฅผ ํ–ˆ๋‹ค. ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ์ „์ž ๊ตฌ์กฐ๋Š” ๊ทธ๋ž˜ํ•€์˜ ์ „์ž๊ตฌ์กฐ์™€ ๋‹ค๋ฅด๋‹ค. ๊ฐ€์žฅ์ž๋ฆฌ ๊ตฌ์กฐ๊ฐ€ ๋งŒ๋“ค์–ด์ง€๋ฉด์„œ ๊ทธ๋ž˜ํ•€์˜ ํƒ„์†Œ ์›์ž๋“ค ๊ฐ„์˜ ๊ณต์œ ๊ฒฐํ•ฉ ๊ตฌ์กฐ๊ฐ€ ๊นจ์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ด์ฐจ์› ๊ตฌ์กฐ์—์„œ ์ผ์ฐจ์› ๊ตฌ์กฐ๋กœ ๋ณ€ํ•œ๋‹ค. ๋ ๊ฐ„๊ฒฉ์ด ์—†๋˜ ๊ทธ๋ž˜ํ•€์˜ ์ „์ž ๊ตฌ์กฐ๋Š” ๊ทธ๋ž˜ํ•€ ์ด์ฐจ์› ๊ตฌ์กฐ์˜ ๋Œ€์นญ์„ฑ์ด ๊นจ์ง€๋ฉด์„œ, ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ๋ ๊ฐ„๊ฒฉ์€ ์ƒ๊ธฐ๊ณ  ๋ฒŒ์–ด์ง„๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•œ ์ชฝ์˜ ๊ฐ€์žฅ์ž๋ฆฌ์— ํ•˜๋‚˜์˜ ์Šคํ•€ ์ƒํƒœ๊ฐ€ ๊ตญํ•œ๋˜์–ด ์–‘์ชฝ์˜ ์ƒํƒœ๋Š” ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ๋„ˆ๋น„์— ์˜ํ•ด ๊ณต๊ฐ„์ ์œผ๋กœ ๋–จ์–ด์ ธ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์–‘์ชฝ ๋ชจ์„œ๋ฆฌ์— ๊ตญํ•œ๋˜์–ด์„œ ์ด๊ณณ ์ „์ž์˜ ์Šคํ•€ ์ƒํƒœ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅด๋‹ค. ์šฐ๋ฆฌ๋Š” ์ œ์ผ์›๋ฆฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ™”ํ•™์ ์œผ๋กœ ์ˆ˜์ •๋œ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ๋ชจํ˜•๊ณ„๋ฅผ ๋งŒ๋“ค์–ด ์ „์ž๊ตฌ์กฐ์™€ ํ™”ํ•™๋ฐ˜์‘์„ ์—ฐ๊ตฌํ–ˆ๋‹ค. ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ ์œ„์— ํก์ฐฉ๋œ ๋ถ„์ž์˜ ์˜ํ–ฅ์— ์˜ํ•œ ์ „์ž๊ตฌ์กฐ๋ฅผ ์—ฐ๊ตฌํ•˜๋ฉด์„œ ์ด์™€ํ•จ๊ป˜ ์ „๊ธฐ์žฅ์— ๊ฐ€ํ•ด์กŒ์„ ๋•Œ ๋‹ฌ๋ผ์ง€๋Š” ํŠน์„ฑ๋“ค๋„ ์‚ดํŽด๋ณด์•˜๋‹ค. ์ œ 1 ์žฅ์—์„œ๋Š”, ๊ทธ๋ž˜ํ•€๊ณผ ๊ทธํŒจํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์ด ๊ฐ–๋Š” ์ „์ž๋  ๊ตฌ์กฐ์˜ ํŠน์ง•์„ ์†Œ๊ฐœํ–ˆ๋‹ค. ์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„ ์กฐ๊ฑด ์•ˆ์—์„œ ํŽ˜๋ฅด๋ฏธ ์—๋„ˆ์ง€ ๊ทผ์ฒ˜์˜ ์ „์ž๋  ๊ตฌ์กฐ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์˜ค๋น„ํƒˆ์˜ ์ƒ ๋ณ€ํ™”์™€ ํŒŒ์ˆ˜ ๋ฒกํ„ฐ์˜ ๊ด€๊ณ„๋ฅผ ๋…ผํ•˜๋ฉด์„œ ์›์ž๊ฐ€ ์‹ค๊ณต๊ฐ„์—์„œ ์œ„์น˜ํ•œ ๋ฐฐ์—ด๊ณผ ๊ทธ์— ๋”ฐ๋ผ์„œ ์—ญ๊ณต๊ฐ„์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ „์ž๋  ๊ตฌ์กฐ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ๋˜ํ•œ ๊ทธ๋ž˜ํ•€ ํ•ฉ์„ฑ๊ณผ ๊ด€๋ จ๋œ ์‹คํ—˜๋“ค์„ ์†Œ๊ฐœํ•˜๊ณ  ๊ทธ๋ž˜ํ•€๊ณผ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ํŒŒ์ƒ๋ฌผ์˜ ์„ฑ์งˆ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ์ด์ „์˜ ์—ฐ๊ตฌ๋“ค์€ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ ‘๊ทผํ•˜๋ฉด์„œ, ํŠน์ • ์„ฑ์งˆ์„ ๊ฐ–๋Š” ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์„ ํ•ฉ์„ฑํ•˜๋Š” ์ผ์€ ๋งŽ์€ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ œ 2 ์žฅ์—์„œ, ์šฐ๋ฆฌ๊ฐ€ ์ฃผ๋กœ ์‚ฌ์šฉํ•œ ๊ณ„์‚ฐ ๋ฒ™๋ฒ•์ธ ๋ฐ€๋„ ๋ฒ”ํ•จ์ˆ˜ ์ด๋ก ์— ๋Œ€ํ•ด ํ•˜ํŠธ๋ฆฌ-ํญ ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ตํ•˜๋ฉฐ ์„ค๋ช…ํ–ˆ๋‹ค. ํ™•์žฅ๋œ ๊ณ„์—์„œ, ํ‰๋ฉดํŒŒ๋™ ํŒŒ๋™ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ ๋ฐ€๋„ ๋ฒ”ํ•จ์ˆ˜ ์ด๋ก  ๊ณ„์‚ฐ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ k ์  ํ‘œ๋ณธ ์ถ”์ถœ์— ๊ด€ํ•˜์—ฌ ๋…ผํ–ˆ๋‹ค. ์ œ 3 ์žฅ์—์„œ, PBE (Perdew-Burke-Ernzerhof) ๋ฒ”ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ ๋ฐ€๋„ ๋ฒ”ํ•จ์ˆ˜ ์ด๋ก  ๋ฐฉ๋ฒ•์œผ๋กœ ๊นจ๋—ํ•œ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ํŠน์„ฑ๋ฅผ ์–ป๋Š” ๊ณผ์ •์„ ์„ค๋ช…ํ•˜๋ฉด์„œ ๋‹ค๋ฅธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ–ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์–ป์€ ๊นจ๋—ํ•œ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ํŠน์„ฑ๋“ค์€ ํ™”ํ•™์ ์œผ๋กœ ์กฐ์ •๋œ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ์ „์ž๋  ๊ตฌ์กฐ์™€ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์ค€์ด ๋˜์—ˆ๋‹ค. ์ง€๊ทธ์žฌ๊ทธ ๊ฐ€์žฅ์ž๋ฆฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์€ ์žฌ๋ฃŒ ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ ์žˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด, ์ง€๊ทธ์žฌ๊ทธ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ํŠน์ดํ•œ ์ „์ž์ , ์ž๊ธฐ์  ํŠน์„ฑ์œผ๋กœ ์‹คํ˜„ ๊ฐ€๋Šฅํ•œ ๋ฏธ๋ž˜ ์žฅ์น˜์˜ ์žฌ๋ฃŒ๋กœ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด ์ง€๊ทธ์žฌ๊ทธ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์€ ์ž‘์€ ๋ถ„์ž๋“ค์˜ ์ •๋ ฌ์ด๋‚˜ ์ „๊ธฐ์žฅ์— ์˜ํ–ฅ์„ ๋ฐ›์•„์„œ ์ „์ž๋  ๊ตฌ์กฐ๊ฐ€ ๋ฐ”๋€” ์ˆ˜ ์žˆ๋‹ค. ์ œ 4 ์žฅ์—์„œ, ํ”ผ๋ฆฌ๋”˜์˜ ํก์ฐฉ๊ณผ ์ ์šฉ๋œ ์ „๊ธฐ์žฅ์ด ์ „์ž๋  ๊ตฌ์กฐ์™€ ๊ธˆ์†์„ฑ์— ์ฃผ๋Š” ์˜ํ–ฅ์„ ๋ฐ€๋„ ๋ฒ”ํ•จ์ˆ˜ ์ด๋ก  ๋ฒ™๋ฒ•์œผ๋กœ ๋‹ค๋ฃจ๋ฉฐ ์—ฐ๊ตฌํ•œ ๋‚ด์šฉ์„ ์†Œ๊ฐœํ–ˆ๋‹ค. ํ”ผ๋ฆฌ๋”˜๊ณผ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ ์‚ฌ์ด์˜ ๊ณต์œ ๊ฒฐํ•ฉ ๋ฐฐ์œ„์— ๋”ฐ๋ผ์„œ ๋ฐ˜๋„์ฒด ์„ฑ์งˆ์„ ๊ฐ–๋˜ ์ง€๊ทธ์žฌ๊ทธ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์ด ๋ฐ˜์ชฝ ๊ธˆ์† ์„ฑ์งˆ์„ ๊ฐ–๊ฑฐ๋‚˜ ๋ฐ˜๋„์ฒด ์„ฑ์งˆ์„ ๊ทธ๋Œ€๋กœ ์œ ์ง€๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ๋‘ ฮฑ ์™€ ฮฒ ์Šคํ•€ ์ƒํƒœ์˜ ๋  ๊ฐ„๊ฒฉ์ด ๋น„๊ณต์œ ๊ฒฐํ•ฉ์œผ๋กœ ๊ฐ๊ฐ ์กฐ์ • ๋˜์—ˆ๋‹ค. ์ด ํšจ๊ณผ๋Š” ๋‹ค๋ฅธ ๋‚˜๋จธ์ง€ ๊ฐ€์žฅ์ž๋ฆฌ์— BF3 ๋ฅผ ํ”ผ๋ฆฌ๋”˜๊ณผ ํ•จ๊ป˜ ์˜ฌ๋ ค๋†“์œผ๋ฉด์„œ ํ–ฅ์ƒ๋๋‹ค. ์ „๊ธฐ์žฅ ์—ญ์‹œ ์ „๊ธฐ์žฅ ์„ธ๊ธฐ์— ๋”ฐ๋ผ์„œ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์ด ๋ฐ˜์ชฝ ๊ธˆ์†์„ฑ์ด ๋˜๊ฑฐ๋‚˜ ๋ฐ˜๋„์ฒด๊ฐ€ ๋˜๋„๋ก ๋‹จ์œ„ํ™” ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•๋“ค์€ ๊ทธ๋ž˜ํ•€ ๋ฉด ์œ„์—์„œ ํก์ฐฉ๋œ ๋ถ„์ž์˜ ๋ฐฐ์—ด ๋ชจ์–‘์— ๋”ฐ๋ผ์„œ ๋‚˜๋…ธ ํฌ๊ธฐ์˜ ์ „์ž ์žฅ์น˜๋ฅผ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์‚ฐํ™”๋œ ์ง€๊ทธ์žฌ๊ทธ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์—์„œ ๋ฒŒ์ง‘ ๋ชจ์–‘์˜ ๊ทธ๋ž˜ํ•€ ๊ตฌ์กฐ๋ฅผ ๋ง๊ฐ€๋œจ๋ฆฌ์ง€์•Š๊ณ  ์—ํญ์‚ฌ์ด๋“œ๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋งŽ์€ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ์ œ 5 ์žฅ์—์„œ, ์šฐ๋ฆฌ๋Š” ์ข์€ ์ง€๊ทธ์žฌ๊ทธ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ์ค‘๊ฐ„์— ์žˆ๋Š” ์—ํญ์‚ฌ์ด๋“œ๊ฐ€ ์ œ๊ฑฐ๋˜๋Š” ๋ฐ˜์‘ ๊ณผ์ •์„ ์—ฐ๊ตฌํ•œ ๊ฒฐ๊ณผ์— ๋Œ€ํ•ด ๋…ผํ–ˆ๋‹ค. ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ๋„ˆ๋น„์— ๋”ฐ๋ผ์„œ ์—ํญ์‚ฌ์ด๋“œ์˜ ์ด๋™๊ณผ ์ œ๊ฑฐ ๋ฐ˜์‘์˜ ํผํ…์…œ ์žฅ๋ฒฝ์˜ ๋†’์ด๊ฐ€ ๋‹ฌ๋ผ์ ธ์„œ ๋‘ ๋ฐ˜์‘์ด ๊ฒฝ์Ÿ์  ๊ฒฝ๋กœ๋ผ๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‘ ๋ฐ˜์‘ ๊ณผ์ • ๋ชจ๋‘, ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ ํ‰๋ฉด์— ์ˆ˜์ง ๋ฐฉํ–ฅ์œผ๋กœ ์ „๊ธฐ์žฅ์„ ๊ฐ€ํ•˜๋ฉด ํผํ…์…œ ์žฅ๋ฒฝ์˜ ๋†’์ด๊ฐ€ ๋‚ฎ์•„์ง€๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์—ฐ๊ตฌ๋ฅผ ํ•˜๋ฉด์„œ ๊ทธ๋ž˜ํ•€์˜ ํ•œ ๋ถ€๋ถ„์— ๊ตญํ•œ๋œ ํ™”ํ•™ ๋ฐ˜์‘์ด๋‚˜ ์ „๊ธฐ์žฅ์œผ๋กœ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ ํŒŒ์ƒ๋ฌผ์„ ๋งŒ๋“ค์–ด์„œ ๊นจ๋—ํ•œ ๊ทธ๋ž˜ํ•€ ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ์ „์ž๊ตฌ์กฐ์™€ ๋‹ค๋ฅธ ์กฐ์ •๋œ ์ „์ž๊ตฌ์กฐ๋ฅผ ๊ด€์ฐฐํ–ˆ๋‹ค. ๊ท€ํ•œ ๊ธฐ๋Šฅ์„ ๊ฐ–์€ ๋ถ„์ž๊ณ„๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ์œ„ํ•ด, ์ด ๊ฒฐ๊ณผ๋“ค์„ ํ† ๋Œ€๋กœ ๊ทธ ์˜๋ฏธ์— ๋Œ€ํ•˜์—ฌ ์ œ 6 ์žฅ์—์„œ ๋…ผํ•˜์˜€๋‹ค.In this thesis, we have performed theoretical and computational studies on the properties of graphene nanoribbons (GNRs). The electronic structure of a graphene nanoribbon is different from that of graphene. As the bonds of graphene are broken in order to form edge structures, the two-dimensional structure turns into a one-dimensional-like structure. The zero band gap of the pristine graphene becomes open by the broken symmetry for graphene nanoribbons. In addition, either ฮฑ- or ฮฒ-spin state is localized at an edge with the spatial separation between different spin states. We have studied the model systems of chemically modified graphene nanoribbons by first-principle calculations on the band structure and the chemical reactions. We investigated the effects of the adsorption of small molecules and the application of external electric fields on the electronic properties of graphene nanoribbons. In Chapter 1, features of the band structures for graphene and graphene nanoribbons are introduced. In order to understand the change of the band structure near the Fermi energy in periodic boundary conditions, it is necessary to explain how the atomic arrangement in real space is related with the band structure in reciprocal space, as discussed in terms of the wave vector for the orbital phases. We also introduced some of the experimental studies for the synthesis and the characterization of graphene and grapheme derivatives. These studies illustrated that controlled synthesis of graphene derivatives with particular properties could be very challenging. In Chapter 2, as a main computational method, general features of density functional theory (DFT) were described as compared with Hartree-Fock method. For the calculations of extended systems, DFT calculations with planewave wavefunctions as well as k-points sampling are explained. In Chapter 3, our calculations with the DFT-PBE (Perdew-Burke-Ernzerhof) method on pristine graphene nanoribbons were compared with other reported DFT calculations. The electronic structures of pristine graphene nanoribbons are analyzed as a reference to show the differences from chemically modified graphene nanoribbons. Graphene nanoribbons with zigzag edge structures are attracting attentions in the field of material research, because they are anticipated to be promising for future devices such as spintronics and transistors due to the unique electronic and magnetic properties. The properties of zigzag graphene nanoribbons (ZGNRs) can be tuned by the interactions with small molecules or under the effect of external field. In Chapter 4, the influence of pyridine adsorption and the applied electric field on the band structure and metallicity of ZGNRs was investigated by using DFT calculations. The semiconducting ZGNRs became half-metallic or remained semiconducting depending on the configuration of covalent bonds between pyridine and the ZGNRs. In addition, the band gap of the different spin states of the ZGNRs could be tuned by non-covalent bonds. This effect was enhanced when BF3 was introduced simultaneously at the opposite edge. The applied external electric field can also modulate the band structures of the ZGNRs, making them half-metallic or semiconducting to some extent. These features suggest that the well-arranged adsorption of small molecules could be used to tune the band structures of nano-scale electronic devices based on graphene. Removal of an epoxide group from oxidized ZGNR without damaging honeycomb structure of graphene is a challenging problem. In Chapter 5, we have studied the reaction mechanism of the epoxide group on the middle of narrow ZGNR. It was found that barriers for competing processes of migration and reduction depend on the widths of ZGNRs. It was also shown that the transition state energies were lowered by the application of perpendicular electric field with respect to the surface of ZGNR. Our studies illustrated that the electronic properties of graphene derivatives can be controlled by the modification of local structures of graphene chemically or electrically. Implications of such results, with the perspective of designing noble functional molecular systems, are discussed in Chapter 6.Abstract i Contents vii List of Figures x List of Tables xx 1 Introduction 1 1.1 Graphene and its derivatives synthesis 2 1.1.1 Graphene 3 1.1.2 Graphene oxide 4 1.1.3 Reduced graphene oxide 5 1.1.4 Graphene Nanoribbon 6 1.2 Band structure of GNR 7 1.2.1 C-C bonds and allotropes 7 1.2.2 Chemical bonding in solids: orbitals in a repeated potential 8 1.2.3 Graphene 17 1.2.4 Graphene nanoribbon 22 1.2.5 Localized state in periodic boundary conditions and external electric field 24 2 Theory and Methodology 31 2.1 Introduction 32 2.2 The Born-Oppenheimer approximation 32 2.3 Hartree-Fock and Kohn-Sham equations 33 2.3.1 Hartree-Fock (HF) 34 2.3.2 Density Functional Theory (DFT) 37 2.4 Reciprocal space and k-points 43 2.4.1 Reciprocal space 43 2.4.2 Brillouin zone sampling 47 3 Computational Studies on the Properties of Pristine GNRs 51 3.1 Computational details: preliminary calculations 53 3.1.1 Lattice constants 53 3.1.2 Planewave cutoff 54 3.1.3 k-points sampling 57 3.2 Electronic and magnetic structure 59 3.2.1 Supercell and band structure 59 3.2.2 Band gaps related with the width of ZGNR 63 3.2.3 Magnetism of pristine GNR 64 3.3 DFT-PBE calculations of GNRs 67 4 Tuning of the Band Structures of GNRs by an Electric Field and adsorption of molecules 71 4.1 Introduction 72 4.2 Computational Details 73 4.3 Results and discussion 77 4.3.1 Covalent and noncovalent interactions 77 4.3.2 External electric field 89 4.4 Conclusions 93 5 Migration and Removal of an Epoxide in Graphene Nanoribbons by the Width and an Electric Field 97 5.1 Introduction 98 5.2 Computational Methods 101 5.3 Results and discussion 103 5.3.1 Epoxide migration 104 5.3.2 Reduction of an epoxide 108 5.4 Conclusions 113 6 Concluding Remarks 117 A Band structures under an external electric field 125 B Band structures of 8-ZGNR with an epoxide group 129 Bibliography 132 ๊ตญ๋ฌธ์ดˆ๋ก (Abstract in Korean) 157 ๊ฐ์‚ฌ์˜ ๋ง (Acknowledgements) 161Docto

    ๋ ˆํ‹ฐ๋†€ ์•ˆ์ •์„ฑ๊ณผ ์ƒ์ฒด์ ‘๊ทผ๋ฅ  ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ˆ˜์ค‘์œ ์ ํ˜• ์—๋ฉ€์…˜, ๋‹จ๋ฐฑ์งˆ ๊ธฐ๋ฐ˜ ์ž…์ž, ํฌ์ ‘ ๋ณตํ•ฉ์ฒด์˜ ํŠน์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋ฐ”์ด์˜ค์‹œ์Šคํ…œยท์†Œ์žฌํ•™๋ถ€(๋ฐ”์ด์˜ค์‹œ์Šคํ…œ๊ณตํ•™), 2018. 8. ๊น€์šฉ๋…ธ.๋ ˆํ‹ฐ๋†€์€ ์ง€์šฉ์„ฑ ๋น„ํƒ€๋ฏผ์ธ ๋น„ํƒ€๋ฏผ A๋กœ, ํ•ญ๋…ธํ™” ๊ธฐ๋Šฅ์„ ๋‚˜ํƒ€๋‚ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ•ญ์•”, ํ•ญ์—ผ์ฆ๊ณผ ๊ฐ™์€ ์œ ์šฉํ•œ ์ƒ๋ฆฌํ™œ์„ฑ์„ ๊ฐ–๋Š”๋‹ค. ํ•˜์ง€๋งŒ ๋ฌผ์— ๋Œ€ํ•œ ๋‚ฎ์€ ์šฉํ•ด๋„์™€ ์ž์™ธ์„  ๋ฐ ์—ด์— ์‰ฝ๊ฒŒ ๋ถ„ํ•ด๋˜๊ธฐ ๋•Œ๋ฌธ ์— ์‹ํ’ˆ์— ์‘์šฉํ•จ์— ์ œํ•œ์ด ๋”ฐ๋ฅธ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ ˆํ‹ฐ๋†€์˜ ์•ˆ์ •์„ฑ ๋ฐ ์ƒ์ฒด์ ‘๊ทผ๋ฅ ์„ ์ฆ๊ฐ€์‹œํ‚ฌ ์ „๋‹ฌ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ „๋‹ฌ ์‹œ์Šคํ…œ์œผ๋กœ๋Š” O/W emulsion, ๋‹จ๋ฐฑ์งˆ ๋ณตํ•ฉ์ฒด, ํ™˜ํ˜•์•„๋ฐ€๋กœ์Šค๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ๋ ˆํ‹ฐ๋†€์— ์ตœ์ ํ™” ์‹œ์ผœ ์•ˆ์ •์„ฑ ๋ฐ ์ƒ์ฒด์ ‘๊ทผ๋ฅ ์„ ํ™•์ธํ•œ๋‹ค. ์ „๋‹ฌ์‹œ์Šคํ…œ์˜ ์กฐ๊ฑด์€ O/W emulsion์˜ ๊ฒฝ์šฐ ์œ ํ™”์ œ์™€ ์˜ค์ผ๋†๋„์— ๋”ฐ๋ผ, ๋‹จ๋ฐฑ์งˆ ๋ณตํ•ฉ์ฒด๋Š” stabilizer์™€ coating agent์— ๋”ฐ๋ผ, ๋งˆ์ง€๋ง‰์œผ๋กœ ํ™˜ํ˜•์•„๋ฐ€๋กœ์Šค๋Š” ๋†๋„์— ๋”ฐ๋ผ ๋ถ„์„ํ•œ๋‹ค. ์•ˆ์ •์„ฑ์€ UV, pH, ์˜จ๋„์— ๋”ฐ๋ฅธ ์ €์žฅ์•ˆ์ •์„ฑ์„, ๋ ˆํ‹ฐ๋†€์˜ ์ž”๋ฅ˜๋Ÿ‰์œผ๋กœ ํ™•์ธํ•œ๋‹ค. O/W emulsion๋‚ด์˜ ๋ ˆํ‹ฐ๋†€์€ 10wt% ์ด์ƒ์˜ ์˜ค์ผ๋†๋„์˜ ์กฐ๊ฑด์—์„œ UV์— ์•ˆ์ •ํ•˜๋‹ค (24์‹œ๊ฐ„ ์กฐ์‚ฌ ์‹œ, 80% ์ž”๋ฅ˜). Negative charge๋ฅผ ๊ฐ–๋Š” ์œ ํ™”์ œ๋ฅผ ์‚ฌ์šฉํ•œ ์กฐ๊ฑด์—์„œ๋Š” ์ˆ˜์šฉ์•ก ์ƒ์— ์กด์žฌํ•˜๋Š” ๋ฏธ๋Ÿ‰์˜ ๊ธˆ์†์ด์˜จ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ์ €์žฅ ์•ˆ์ •์„ฑ์ด ๋‚ฎ์•„์ง„๋‹ค (WPI ์‚ฌ์šฉ์‹œ, 20% ์ž”๋ฅ˜). ๋‹จ๋ฐฑ์งˆ ๋ณตํ•ฉ์ฒด ๋‚ด์˜ ๋ ˆํ‹ฐ๋†€์€ ๋‹ค๋‹น๋ฅ˜๋กœ ์ฝ”ํŒ…ํ•œ ๊ฒฝ์šฐ์— loading efficiency๊ฐ€ 90% ์ด์ƒ์œผ๋กœ ์œ ์˜์ ์œผ๋กœ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. pectin์œผ๋กœ ์ฝ”ํŒ…ํ•œ ๋‹จ๋ฐฑ์งˆ ๋ณตํ•ฉ์ฒด์—์„œ ๋ ˆํ‹ฐ๋†€์˜ UV, pH์•ˆ์ •์„ฑ์ด ๊ฐ€์žฅ ๋†’์•˜์ง€๋งŒ ์ž”๋ฅ˜๋Ÿ‰์ด ์•ฝ 20%์— ๊ทธ์ณค๋‹ค. ํ™˜ํ˜•์•„๋ฐ€๋กœ์Šค ๋‚ด์˜ ๋ ˆํ‹ฐ๋†€์€ phase solubility๋ฅผ ํ™•์ธํ•ด๋ณธ๊ฒฐ๊ณผ, 1:1์˜ ๋น„์œจ๋กœ ๊ฒฐํ•ฉํ•˜๊ณ , ํ™˜ํ˜•์•„๋ฐ€๋กœ์Šค์˜ ๋†๋„์— ๋”ฐ๋ผ UV ๋ฐ ์ €์žฅ์•ˆ์ •์„ฑ์˜ ์ฐจ์ด๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค (p<0.05). UV ์กฐ์‚ฌ ์‹œ ๋ ˆํ‹ฐ๋†€์˜ ์ž”๋ฅ˜๋Ÿ‰์€ ์•ฝ 50%์˜€๊ณ , ์˜จ๋„์— ๋”ฐ๋ผ์„œ๋Š” ์•ฝ 80% ์ด์ƒ์ด ์ž”๋ฅ˜ํ–ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ๋ ˆํ‹ฐ๋†€์˜ ์ƒ์ฒด์ ‘๊ทผ๋ฅ ์€ O/W emulsion์—์„œ ์•ฝ 50%, ๋‹จ๋ฐฑ์งˆ ๋ณตํ•ฉ์ฒด์™€ ํ™˜ํ˜•์•„๋ฐ€๋กœ์Šค๋Š” ์•ฝ 80% ์ด์ƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ˆœ์ˆ˜ํ•œ ๋ ˆํ‹ฐ๋†€์˜ ์ƒ์ฒด์ ‘๊ทผ๋ฅ ์ด 20%์— ๋ถˆ๊ณผํ•œ ๊ฒƒ์„ ๋ฏธ๋ฃจ์–ด๋ณด์•„ ์•ˆ์ •์„ฑ ๋ฐ ์ƒ์ฒด์ ‘๊ทผ๋ฅ ์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ–ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ, O/W emulsion๊ณผ ๋‹จ๋ฐฑ์งˆ ๋ณตํ•ฉ์ฒด ๊ทธ๋ฆฌ๊ณ  ํ™˜ํ˜•์•„๋ฐ€๋กœ์Šค๋Š” ๋ ˆํ‹ฐ๋†€์„ ํฌ์ ‘ํ•˜์—ฌ, ์•ˆ์ •์„ฑ๊ณผ ์ƒ์ฒด์ ‘๊ทผ๋ฅ ์„ ํ–ฅ์ƒ์‹œ์ผœ์ฃผ๋Š” ์ „๋‹ฌ์‹œ์Šคํ…œ์œผ๋กœ ํšจ๊ณผ์ ์ด๋ผ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฒฐ๊ณผ์— ๋”ฐ๋ผ, ๊ฐ ์ „๋‹ฌ์‹œ์Šคํ…œ์€ ์‹ํ’ˆ ๋ฐ ํ™”์žฅํ’ˆ ์‚ฐ์—…์— ํ™œ์šฉ๋„ ๋†’์€ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค.Retinol is a fat-soluble vitamin, vitamin A, which not only exhibits anti-aging function, but also has useful physiological activities such as anti-cancer and antiinflammation. However, it is difficult to apply to foods because of its low solubility in water and instability in UV and heat. Therefore, this study aimed to develop delivery systems to increase retinol stability and bioaccessibility. O/W emulsion, protein complex and cycloamylose were developed and optimized for retinol as delivery systems to improve its stability and bioaccessibility. O/W emulsion, protein-based particle and cycloamylose, respectively, were compared in terms of retinol stability and bioaccessibility as functional of emulsifier type, coating agent type, and host material concentration. The stability of incorporated retinol was analyzed under UV irradiation and storage at different temperatures (4, 25, 40ยฐC). Finally, bioaccessibility of retinol was estimated in each delivery system with the most stable conditions. UV stability of retinol in the O/W emulsion was significantly improved at an oil concentration of 10 wt% or more. With anionic emulsifier, the storage stability of retinol was lowered due to interaction with a trace amount of metal ion present in the aqueous solution. When protein-based particles containing retinol were coated with polysaccharide, the loading efficiency reached to more than 90%. Retinol was found to have the highest UV and pH stability in protein-based particles coated with pectin. Residual amount of retinol increased with cycloamylose during UV and storage test periods regardless of cycloamylose concentration used in this study. Finally, when using the delivery systems, the bioaccessibility of retinol was significantly improved to at least 50% to 80% depending on the delivery systems, compared to less than 20% for pure retinol. This study showed that O/W emulsion, protein-based particle and cycloamylose were effective delivery systems that improved retinol stability and bioaccessibility by encapsulation. These delivery systems could be highly useful for the food and cosmetic industry who utilize functional ingredients such as retinol.ABSTRACT โ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.... I CONTENTS .โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆ... III LIST OF TABLES โ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆ. VIII LIST OF FIGURES โ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆ........ IX 1. Introduction โ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.....1 2. Objectives โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.....2 3. Background and Literature review ...........................................................3 3.1. Efficacy and unstable properties of retinol โ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ...3 3.2. Types and composition of emulsion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆ.โ€ฆ...โ€ฆโ€ฆ...4 3.2.1. Characteristics of O/W emulsion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.....4 3.2.2. Characteristics of emulsifier โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ5 3.3. Composition of protein based nanoparticles โ€ฆโ€ฆ.โ€ฆโ€ฆ...โ€ฆ.........โ€ฆ..7 3.3.1. Hydrophobic characteristics of corn protein zein โ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ......7 3.3.2. Characteristics of sodium caseinate as a stabilizer โ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ..8 3.3.3. Characteristics of polysaccharides as a coating agent โ€ฆโ€ฆ...โ€ฆ.....9 3.4. Characteristics of cyclic glucans โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ11 3.5. Definition and necessity of bioaccessibility โ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.13 4. Materials and Methods โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ15 4.1. Materials โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..15 4.2. Methods โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.....โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ.....16 4.2.1. Preparation and characteristics of retinol-loaded O/W emulsion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ........16 4.2.1.1. Preparation of retinol-loaded O/W emulsion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.......โ€ฆโ€ฆ.โ€ฆ.16 4.2.1.2. Characteristics of retinol-loaded O/W emulsion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆ..โ€ฆโ€ฆ18 4.2.1.2.1. Particle size distribution and zeta potential analysisโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ18 4.2.1.2.2. Turbidity analysis of O/W emulsion โ€ฆโ€ฆ.....โ€ฆ...โ€ฆ.18 4.2.1.3. Stability of retinol in O/W emulsion โ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆ....19 4.2.1.3.1. UV stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆ19 4.2.1.3.2. Storage stability at different temperature โ€ฆโ€ฆ..........19 4.2.1.4. Retinol contents analysis in O/W emulsion โ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ..โ€ฆ20 4.2.1.5. Statistical analysis โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ..20 4.2.2. Preparation and characteristics of protein based nanoparticles โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆ.21 4.2.2.1. Preparation of retinol-loaded zein particles โ€ฆโ€ฆ.....โ€ฆโ€ฆ..โ€ฆ21 4.2.2.1.1. Preparation of retinol-zein complex nanoparticles โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ.โ€ฆ.21 4.2.2.1.2. Preparation of polysaccharide coated nanoparticles โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ........21 4.2.2.2. Characteristics of retinol-loaded zein particles โ€ฆ.............โ€ฆ22 4.2.2.2.1. Particle Size distribution and zeta potential analysisโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆ........22 4.2.2.2.2. Particle yield and loading efficiency analysis โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆ.โ€ฆ22 4.2.2.2.3. Scanning electron microscopy (SEM) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...........โ€ฆ...24 4.2.2.2.4. Differential scanning calorimeter (DSC) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ..โ€ฆ...24 4.2.2.2.5. Fourier transform infrared spectroscopy (FT-IR) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ...25 4.2.2.3. Stability of retinol in zein particle โ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆ26 4.2.2.3.1. pH stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆ.26 4.2.2.3.2. UV stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆ26 4.2.2.4. Retinol contents analysis in zein particles โ€ฆโ€ฆ...โ€ฆโ€ฆโ€ฆ......27 4.2.2.5. Statistical analysis โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ.......27 4.2.3. Preparation and characteristics of inclusion complexes of retinol and cyclic glucans โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ...28 4.2.3.1. Preparation of retinol inclusion complexes โ€ฆโ€ฆ....โ€ฆ.โ€ฆโ€ฆ...28 4.2.3.2. Characteristics of retinol inclusion complexes โ€ฆโ€ฆโ€ฆ...โ€ฆ...29 4.2.3.2.1. Phase solubility โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....29 4.2.3.2.2. Differential scanning calorimeter (DSC) โ€ฆ.โ€ฆโ€ฆโ€ฆ.29 4.2.3.2.3. Fourier transform infrared spectroscopy (FT-IR) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....30 4.2.3.2.4. Scanning electron microscopy (SEM) โ€ฆโ€ฆโ€ฆ...โ€ฆ...30 4.2.3.3. Stability of retinol in inclusion complex โ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ...31 4.2.3.3.1. UV stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ31 4.2.3.3.2. Storage stability at different temperature โ€ฆโ€ฆ...โ€ฆ...31 4.2.4. Bioaccessibility analysis for encapsulated retinol โ€ฆโ€ฆ.โ€ฆโ€ฆ..โ€ฆ.32 4.2.4.1. Sample preparation โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ....32 4.2.4.2. In vitro digestion test โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ....33 4.2.4.3. Bioaccessibility analysis for encapsulated retinol โ€ฆโ€ฆโ€ฆ......34 5. Result and Discussion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..35 5.1. Characteristics and stability of retinol-loaded O/W emulsion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆ.โ€ฆ.35 5.1.1. Characteristics of retinol-loaded O/W emulsion โ€ฆโ€ฆโ€ฆ.......โ€ฆ...35 5.1.1.1. Effect of emulsifier types in O/W emulsion โ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ.....35 5.1.1.2. Effect of oil concentration in O/W emulsion โ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ....37 5.1.2. Stability of retinol in O/W emulsion โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ..โ€ฆ.41 5.1.2.1. UV stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...41 5.1.2.2. Storage stability at different temperature โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ47 5.2. Retinol-loaded protein based nanoparticles โ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ..โ€ฆโ€ฆ...61 5.2.1. Characteristics of retinol-loaded zein particles โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆ..61 5.2.1.1. Particle size distribution and zeta potential analysis โ€ฆ.........61 5.2.1.1.1. Effect of materials used in particle formation โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆ61 5.2.1.1.2. Effect of freeze drying โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ.....63 5.2.1.2. Particle yield and loading efficiency analysis โ€ฆโ€ฆโ€ฆโ€ฆ....โ€ฆ66 5.2.1.3. Scanning electron microscopy (SEM) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆ68 5.2.1.4. Differential scanning calorimeter (DSC) โ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ..โ€ฆ71 5.2.1.5. Fourier transform infrared spectroscopy (FT-IR) โ€ฆโ€ฆ..โ€ฆ.โ€ฆ73 5.2.2. Stability of retinol in zein particles โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ..โ€ฆ75 5.2.2.1. pH stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆ..โ€ฆ75 5.2.2.2. UV stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...82 5.3. Characteristics and stability of inclusion complexes of retinol and cyclic glucans โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ......โ€ฆโ€ฆ84 5.3.1. Characteristics of retinol inclusion complexes โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..84 5.3.1.1. Phase solubility โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ84 5.3.1.2. Differential scanning calorimeter (DSC) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....86 5.3.1.3. Scanning electron microscopy (SEM) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.87 5.3.1.4. Fourier transform infrared spectroscopy (FT-IR) โ€ฆโ€ฆโ€ฆ....โ€ฆ93 5.3.2. Stability of retinol in inclusion complexes โ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆโ€ฆ.....95 5.3.2.1. UV stability โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆ95 5.3.2.2. Storage stability at different temperature โ€ฆโ€ฆ...โ€ฆโ€ฆโ€ฆโ€ฆ.....97 5.4. Comparison of retinol stability using different delivery system โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.................99 5.4.1. Stability of retinol in different delivery system โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ99 5.4.2. Bioaccessibility analysis for encapsulated retinol โ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ103 6. Conclusions โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...107 7. Summary โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ..109 8. References โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.115Maste

    ๋ง‰๊ฒฐํ•ฉํ˜• ํ˜๊ธฐ์„ฑ ์†Œํ™”์—์„œ ๋ถ„๋งํ™œ์„ฑํƒ„ ์ฒจ๊ฐ€์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :ๅทฅๆฅญๅŒ–ๅญธ็ง‘,1997.Maste

    ๋ถ€์‚ฐํ•ญ ํ•ญ๋งŒ๋ฌผ๋ฅ˜์ •๋ณด์‹œ์Šคํ…œ ์—ฐ๊ณ„์ž๋ฃŒ์˜ ์˜ค๋ฅ˜๊ฒ€์ฆ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    2011๋…„๋ถ€ํ„ฐ 3๋…„์— ๊ฑฐ์ณ ๋ถ€์‚ฐํ•ญ๋งŒ๊ณต์‚ฌ์—์„œ ๊ตฌ์ถ•์ค‘์ธ ๋ถ€์‚ฐํ•ญ ํ•ญ๋งŒ๋ฌผ๋ฅ˜์ •๋ณด์‹œ์Šคํ…œ(BPA-NET)์€ ๊ฐ ๋ฌผ๋ฅ˜ ์ฃผ์ฒด๋ณ„๋กœ ์‚ฐ์žฌ๋œ ๋ฐ์ดํƒ€๋ฅผ ์ทจํ•ฉํ•˜์—ฌ ONE-STOP ์œผ๋กœ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์‹œ์Šคํ…œ์ด๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์€ ๊ตญ๊ฐ€๊ธฐ๊ด€ ๋ฐ ๋ฌผ๋ฅ˜์—…์ฒด๋กœ๋ถ€ํ„ฐ ๋ฐ›์€ ๋ฐ์ดํƒ€์˜ ์˜ค๋ฅ˜, ๋ˆ„๋ฝ,๋ถˆ์ผ์น˜ ใ…•๋ถ€์— ๋Œ€ํ•ด ์กฐ์‚ฌ๋ฅผํ†ตํ•˜์—ฌ ๊ทธ ์›์ธ ๋ถ„์„๊ณผ ๋ณด์™„์ฑ…์„ ์ œ์‹œ ํ•˜๊ณ ์ž ํ•œ๋‹ค.๋ชฉ ์ฐจ ์ œ 1 ์žฅ ์„œ๋ก  ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ์ œ 2 ์ ˆ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ ์ œ 2 ์žฅ PCS ์‹œ์Šคํ…œ์˜ ํ˜„ํ™ฉ ์ œ 1 ์ ˆ PCS ์‹œ์Šคํ…œ ๊ฐœ์š” ์ œ 2 ์ ˆ ๋ถ€์‚ฐํ•ญ์˜ PCS ์‹œ์Šคํ…œ ํ˜„ํ™ฉ ์ œ 3 ์ ˆ ๊ตญ๋‚ด์™ธ PCS ์‚ฌ๋ก€ ์ œ 3 ์žฅ ๋Œ€์ƒ ์‹œ์Šคํ…œ์˜ ํ˜„ํ™ฉ ๋ฐ ๋ถ„์„ ์ œ 1 ์ ˆ ํ˜„ ์‹œ์Šคํ…œ์˜ ์†Œ๊ฐœ ์ œ 2 ์ ˆ ํ˜„ ์‹œ์Šคํ…œ์˜ ํ”„๋กœ์„ธ์Šค ์ œ 3 ์ ˆ ํ˜„ ์‹œ์Šคํ…œ์˜ table layout ์ œ 4 ์ ˆ ์„ ๋ฐ•์Šค์ผ€์ฅด ์‹œ์Šคํ…œ์˜ ํ”„๋กœ์„ธ์Šค ์ œ 5 ์ ˆ ๋ฐ์ดํ„ฐ ์ทจํ•ฉ์˜ ๋ฌธ์ œ์  ์ œ 4 ์žฅ ์›์ธ ๋ถ„์„ ๋ฐ ๋Œ€์ฒ˜ ๋ฐฉ์•ˆ ์ œ 1 ์ ˆ ๋ฐ์ดํ„ฐ ์˜ค๋ฅ˜ ํ˜„ํ™ฉ ์ œ 2 ์ ˆ ์ž๋ฃŒ ์˜ค๋ฅ˜ ๋ฐœ์ƒ ์›์ธ ์ œ 3 ์ ˆ ์˜ค๋ฅ˜ ์›์ธ ์ œ๊ฑฐ ๋ฐฉ์•ˆ ์ œ 5 ์žฅ ๊ฒฐ๋ก  ์ฐธ๊ณ ๋ฌธ

    ๆฑ่ฐฟ ่ถ™๏ค‡ๅ‘ฝ ้Š่จ˜ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ตญ์–ด๊ตญ๋ฌธํ•™๊ณผ, 2015. 2. ๋ฐ•ํฌ๋ณ‘.๋ณธ๊ณ ๋Š” ๆฑ่ฐฟ ่ถ™๏ค‡ๅ‘ฝ(1693~1737)์˜ ้Š่จ˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ์œ ๊ธฐ ํ…์ŠคํŠธ๋ฅผ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ์šฐ์„  ๋ฐฐ๊ฒฝ ์‚ฌํ•ญ์„ ๋จผ์ € ์ •๋ฆฌํ•˜์˜€๋‹ค. ๋ฒŒ์—ด๊ฐ€์˜ ๋ณ‘์•ฝํ•œ ์ž์ œ๋กœ์„œ ๋ฌธํ•™์— ๋งค์ง„ํ•œ ๊ทธ์˜ ์ƒ์• ๋ฅผ ๋จผ์ € ์‚ดํ”ผ๊ณ  ๋‚˜์„œ, ์–‘๋ช…ํ•™์  ์ง€ํ–ฅ์„ ๋ณด์ธ ๊ทธ์˜ ์‚ฌ์ƒ๊ณผ ๊ฐœ์„ฑ๊ณผ ์ฃผ์ฒด์„ฑ์„ ๊ฐ•์กฐํ•œ ๊ทธ์˜ ๋ฌธ์˜ˆ๋ก ์ด ๊ฐ€์ง„ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ ์œ ๊ธฐ ์ฐฝ์ž‘์— ํฐ ์˜ํ–ฅ์„ ์ค€ ๋งŒ๋ช… ์†Œํ’ˆ๋ฌธ์— ๋Œ€ํ•˜์—ฌ ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ด์–ด์„œ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์กฐ๊ท€๋ช… ์œ ๊ธฐ์˜ ์ฃผ์ œ์  ํŠน์„ฑ์„ ๋„ค ๊ฐ€์ง€๋กœ ๋‚˜๋ˆ„์–ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์šฐ์„  ์กฐ๊ท€๋ช…์˜ ์œ ๊ธฐ์—์„œ ์‹ ์ดํ•œ ์„ธ๊ณ„์— ๋Œ€ํ•œ ๊ด€์‹ฌ์„ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์กฐ์„  ์œ ๊ธฐ๋“ค๊ณผ ๋งŒ๋ช… ์†Œํ’ˆ๋ฌธ ์œ ๊ธฐ์™€ ๋น„๊ตํ•จ์œผ๋กœ์จ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์˜ˆ์ˆ ์  ๋งค๊ฐœ๋ฅผ ํ†ตํ•˜์—ฌ ์ž์—ฐ์˜ ์‹ฌ๋ฏธ์„ฑ์ด ์ธ์‹๋˜๋Š” ์–‘์ƒ์„ ์‚ดํˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ๋Š” ์ธ๊ฐ„์˜ ์œ ํ•œ์„ฑ์— ๋Œ€ํ•œ ์˜์‹์ด ๋‚˜ํƒ€๋‚จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ž์•„๊ฐ€ ๆŠ’ๆƒ…ๅŒ–๋˜๋Š” ์–‘์ƒ์„ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์•ž์„  ๋ถ„์„์— ์ด์–ด ์กฐ๊ท€๋ช… ์œ ๊ธฐ์˜ ํ‘œํ˜„์  ํŠน์„ฑ์„ ๋„ค ๊ฐ€์ง€๋กœ ๋‚˜๋ˆ„์–ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์šฐ์„  ์œ ๋น„์™€ ์ƒ์ƒ๋ ฅ์— ์˜ํ•œ ์˜๋ก ํ™” ๊ฒฝํ–ฅ์ด ๋‚˜ํƒ€๋‚จ์„ ๋ฐํ˜”๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‹ค์–‘ํ•œ ๋น„์œ ๋ฒ•๊ณผ ๋‚ฏ์„  ๋ณด์กฐ๊ด€๋… ์ด์šฉ์˜ ๊ตฌ์ฒด์  ๋ฐฉ์‹์„ ์‚ดํˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ƒ๋žต๊ณผ ํ•จ์ถ•์„ ํ†ตํ•œ ์•”์‹œ์  ๋ฌ˜์‚ฌ๊ฐ€ ์‚ฌ์šฉ๋จ์„ ์‚ดํˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๏ฝข่ฟฝ่จ˜ๆฑๅณฝ้Š่ณž๏ฝฃ์˜ ๋…ํŠนํ•œ ๋ฌธ์ฒด๊ฐ€ ์›๊ต‰๋„์™€ ์™•์‚ฌ์ž„์˜ ์œ ๊ธฐ ๊ทธ๋ฆฌ๊ณ  ใ€Žๅฑฑๆตท็ถ“ใ€ ๋“ฑ ์—ฌ๋Ÿฌ ์ „๋ฒ”๋“ค์„ ์ฃผ์ฒด์ ์œผ๋กœ ์ˆ˜์šฉํ•˜๊ณ  ์ข…ํ•ฉํ•˜์—ฌ ๋งŒ๋“  ๋…์ฐฝ์ ์ธ ๊ฒฐ๊ณผ๋ฌผ์ž„์„ ๋ฐํ˜”๋‹ค. ์กฐ๊ท€๋ช…์˜ ์œ ๊ธฐ์— ๋Œ€ํ•œ ์ด๋Ÿฌํ•œ ๋ถ„์„์— ๋ฐ”ํƒ•ํ•˜์—ฌ, ์กฐ๊ท€๋ช… ์œ ๊ธฐ์˜ ๋ฌธํ•™์‚ฌ์  ์˜์˜๋ฅผ ์„ธ ๊ฐ€์ง€ ์ ์—์„œ ์‚ดํˆ๋‹ค. ์šฐ์„  ์กฐ๊ท€๋ช… ์œ ๊ธฐ๊ฐ€ ์•ž์„  ์œ ๊ธฐ๋“ค์˜ ํƒˆ์ฃผ์žํ•™์  ์ƒ์ƒ๋ ฅ์„ ๊ณ„์Šนํ•˜๋Š” ์ธก๋ฉด์ด ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋‹จ์–‘ ์‚ฐ์ˆ˜์œ ๊ธฐ ์ค‘์—์„œ ์ฒ˜์Œ์œผ๋กœ ์ผ๊ธฐ์ฒด๋ฅผ ๋ฒ—์–ด๋‚˜ ๅฐ็ฏ€ๅŒ–์˜ ์–‘์‹์„ ์ฑ„์šฉํ•œ ๏ฝข์ถ”๊ธฐ๋™ํ˜‘์œ ์ƒ๏ฝฃ์˜ ํ˜•์‹์ด ์ง€๋‹Œ ์˜์˜๋ฅผ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 19์„ธ๊ธฐ ์œ ๊ธฐ ์ž‘๊ฐ€๋“ค์—๊ฒŒ ๏ฝข์ถ”๊ธฐ๋™ํ˜‘์œ ์ƒ๏ฝฃ์˜ ํ‘œํ˜„๋“ค์ด ๋ณ€ํ˜•๋œ ์ฑ„ ๋ฐ›์•„๋“ค์—ฌ์ง€๊ฑฐ๋‚˜ ์ธ์šฉ๋˜๊ฑฐ๋‚˜ ์ธ์šฉํ‘œ์ง€ ์—†์ด ํ‘œ์ ˆ๋˜์—ˆ๋˜ ์–‘์ƒ๊ณผ ์˜๋ฏธ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์กฐ๊ท€๋ช…์˜ ์œ ๊ธฐ๊ฐ€ ์ง€๋‹Œ ๋…ํŠนํ•œ ์ฃผ๊ด€์„ฑ๊ณผ ์ž์—ฐ๊ด€์˜ ์˜๋ฏธ๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ ์กฐ๊ท€๋ช…์˜ ์œ ๊ธฐ์—์„œ ์ธ๊ฐ„๊ณผ ์ž์•„๊ฐ€ ๊ต๊ฐํ•˜๋Š” ํŠน๋ณ„ํ•œ ์ˆœ๊ฐ„์ด ์ง€๋‹ˆ๋Š” ๋ฏธ์  ๊ฐ€์น˜์˜ ์˜๋ฏธ๋ฅผ ๋ฐํ˜”๋‹ค.This thesis examines Jo Guimyeong's travel writing. I preceded the actual explanation of the texts with an investigation on biological, philosophical, and cultural background of the author and the creation of texts. As an result I confirmed that the author himself was a high aristocrat who suffered from innate illness and concentrated on literature very seriously. Also it has been found that his philosophical thinking has shown relevance to that of Yangmingxue, one of the most prominent Neo-confucianist schools in Ming Dynasty, and his literary opinion strongly advocated individuality, all of which are very closely related with Late-Ming 'Informal Essay(Xiaopinwen)' movement, a cultural phenomenon in Joseon Dynasty at the time. Then I undertook the actual examination of Jo Guimyeong's travel diaries, Yugi in Korean, where I identified these four main characteristics in theme: curiosity toward the mysterious, aesthetic perception mediated by art, consciousness on mortality, and lyrical transformation of the ego. These thematic characteristics reverberated in those in expression, namely: argumentation through analogy and imagination, various modes of figures of speech and unfamiliar vehicles, and syntactic anomalies and distinctive style. In doing so I have applied a comparative analysis in order to ascertain the influence of other works in Jo Guimyeongโ€™s texts, especially of those from Informal Essay movement, Yuan Hongdao and Wang Siren, and of those of a more distant origin, Classic of Mountains and Seas(Shanhaijing). Finally, the meaning of Jo Guimyeong's travel writing in light of literary history was discussed under these three points of view: Deploying unorthodox imagination, Introducing a new form, and Setting up a new standard. Through the process above I reached to a conclusion that the distinctive characteristics of Jo Guimyeong's travel writing lie in its anthropocentric subjectivity, which is unusual in East-Asian travel writing, and its continuous attempts to create one's own style from the influence of previous eminent writers. I also argued that despite its artificialness and abstruseness, Travel Account of a Previous Trip to Eastern Canyon(Chugidonghyeopyusang) displayed one of those rare moments when a man and nature sympathized with each other.1. ์„œ๋ก  2. ์˜ˆ๋น„์  ๊ฒ€ํ†  2.1. ์ „๊ธฐ์  ์‚ฌํ•ญ 2.2. ์–‘๋ช…ํ•™๊ณผ ๊ฐœ์„ฑ์  ๋ฌธ์˜ˆ๋ก  2.3. ๆ™ฉๆ˜Ž ๅฐๅ“ๆ–‡์˜ ์˜ํ–ฅ 3. ์กฐ๊ท€๋ช… ์œ ๊ธฐ์˜ ์ฃผ์ œ์  ํŠน์„ฑ 3.1. ์‹ ์ดํ•œ ์„ธ๊ณ„์— ๋Œ€ํ•œ ๊ด€์‹ฌ 3.2. ์˜ˆ์ˆ ์  ๋งค๊ฐœ๋ฅผ ํ†ตํ•œ ์‹ฌ๋ฏธ ์ธ์‹ 3.3. ์ธ๊ฐ„์˜ ์œ ํ•œ์„ฑ์— ๋Œ€ํ•œ ์˜์‹ 3.4. ์ž์•„์˜ ๆŠ’ๆƒ…ๅŒ– 4. ์กฐ๊ท€๋ช… ์œ ๊ธฐ์˜ ํ‘œํ˜„์  ํŠน์„ฑ 4.1. ๏งๆฏ”์™€ ์ƒ์ƒ๋ ฅ์— ์˜ํ•œ ่ญฐ่ซ–ๅŒ– 4.2. ๋‹ค์–‘ํ•œ ๋น„์œ ๋ฒ•๊ณผ ๋‚ฏ์„  ๋ณด์กฐ๊ด€๋… ์ด์šฉ 4.3. ์ƒ๋žต๊ณผ ํ•จ์ถ•์„ ํ†ตํ•œ ์•”์‹œ์  ์ˆ˜๋ฒ• 4.4. ๆง‹ๆ–‡่ซ–็š„ ํŒŒ๊ฒฉ๊ณผ ๋…ํŠนํ•œ ๋ฌธ์ฒด 5. ์กฐ๊ท€๋ช… ์œ ๊ธฐ์˜ ๋ฌธํ•™์‚ฌ์  ์˜์˜ 5.1. ่„ซๆœฑๅญๅญธ็š„ ์ƒ์ƒ๋ ฅ์˜ ๊ณ„์Šน 5.2. ๅฐๅ“ๆ–‡ ํ˜•์‹์˜ ์ •์ฐฉ 5.3. ไธน้™ฝ ้Š่จ˜์˜ ์ „๋ฒ” ์ˆ˜๋ฆฝ 6. ๊ฒฐ๋ก  ์ฐธ๊ณ ๋ฌธํ—Œ AbstractMaste

    On the Official Title of Joseon Missions to Imperial China

    No full text
    This paper aims to find out which term was the official title of Joseon missions to Imperial China, and whether the widespread term yeonhangsa(็‡•่กŒไฝฟ), which is much more frequently used in Korea, China, Japan, and Taiwan after Fuma Susumus book is published, is a suitable to cover whole Joseon Missions to Ming and Qing dynasty. To clarify that, we investigated the government official records such as Veritable Records of the Joseon Dynasty and Journal of the Royal Secretariat. Our research findings indicate that during the early Joseon period(1392~1636), bugyeongsa(่ตดไบฌไฝฟ) was the most frequently used term for Joseon missions to Ming dynasty, while jocheonsa(ๆœๅคฉไฝฟ), contrary to common belief, was much less used than anticipated, almost exclusively in the early 17th century. In the late 17th century, both bugyeongsa and buyeonsa(่ตด็‡•ไฝฟ) was used for Joseon missions to Qing dynasty. After 1706, buyeonsa was the frequently used term for Joseon missions to Qing dynasty. Meanwhile, throughout the late Joseon period yeonhaengsa was rarely used. Such transition of official titles of Joseon missions to Imperial China, namely bugyeongsa in Ming dynasty to buyeonsa in Qing dynasty, shows a change of attitude and perception of Joseon elites toward Ming and Qing dynasty, as bugyeongsa implies more respectful attitude toward Ming China while buyeonsa tries to maintain more neutral attitude toward Qing as a conquest dynasty ruled by yi(barbarians). As the both terms reflect crucial ideas and thoughts of the ruling elites of Joseon, suggesting that we should replace them with much rarely used, non-historical, ungrammatical term yeonhaengsa seems improper and ungrounded. If we are to avoid traditionally used bugyeongsa and buyeonsa and coin a new term for Joseon missions to Imperial China instead of yeonhaengsa, immyeongsa(ๅ…ฅๆ˜Žไฝฟ) and ipcheongsa(ๅ…ฅๆทธไฝฟ) should be used as they follow the traditional word formation of Korean missions to China
    corecore