26 research outputs found

    ๋ถˆํ™•์‹ค์„ฑ์„ ํฌํ•จํ•˜๋Š” ์กฐ๋ฆฝ์ž‘์—…์„ ์œ„ํ•œ ์ปดํ”Œ๋ผ์ด์–ธ์Šค ๊ธฐ๋ฐ˜ ํŽ™์ธํ™€ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2020. 8. ๋ฐ•์žฌํฅ.The peg-in-hole assembly is a representative robotic task that involves physical contact with the external environment. The strategies generally involve performing the assembly task by estimating the contact state between the peg and the hole. The contact forces and moments, measured using force sensors, are primarily used to estimate the contact state. In this paper, in contrast to past research in the area, which has involved the utilization of such expensive devices as force/torque sensors or remote compliance mechanisms, an inexpensive method is proposed for peg-in-hole assembly without force feedback or passive compliance mechanisms. The method consists of an analysis of the state of contact between the peg and the hole as well as a strategy to overcome the inevitable positional uncertainty of the hole incurred in the recognition process. A control scheme was developed to yield compliant behavior from the robot with physical contact under the condition of hybrid position/force control. Proposed peg-in-hole strategy is based on compliance characteristics and generating the force and moment. The peg is inserted into the hole as it adapts to the external environment. The effectiveness of the proposed method was experimentally verified using a humanoid upper body robot with fifty degrees of freedom and a peg-in-hole apparatus with a small clearance (0.1 mm). Three cases of experiments were conducted; Assembling the peg attached to the arm in the hole fixed in the external environment, grasping a peg with an anthropomorphic hand and assembling it into a fixed hole, and grasping both peg and hole with both hands and assembling each other. In order to assemble the peg-in-hole through the proposed strategy by the humanoid upper body robot, I present a method of gripping an object, estimating the kinematics of the gripped object, and manipulating the gripped object. In addition to the cost aspect, which is the fundamental motivation for the proposed strategy, the experimental results show that the proposed strategy has advantages such as fast assembly time and high success rate, but has the disadvantage of unpredictable elapsed time. The reason for having a high variance value for the success time is that the spiral trajectory, which is most commonly used, is used. In this study, I analyze the efficiency of spiral force trajectory and propose an improved force trajectory. The proposed force trajectory reduces the distribution of elapsed time by eliminating the uncertainty in the time required to find a hole. The efficiency of the force trajectory is analyzed numerically, verified through repeated simulations, and verified by the actual experiment with humanoid upper body robot developed by Korea institute of industrial technology.ํŽ™์ธํ™€ ์กฐ๋ฆฝ์€ ๋กœ๋ด‡์˜ ์ ‘์ด‰ ์ž‘์—…์„ ๋Œ€ํ‘œํ•˜๋Š” ์ž‘์—…์œผ๋กœ, ํŽ™์ธํ™€ ์กฐ๋ฆฝ ์ „๋žต์„ ์—ฐ๊ตฌํ•จ์œผ๋กœ์จ ์‚ฐ์—… ์ƒ์‚ฐ ๋ถ„์•ผ์˜ ์กฐ๋ฆฝ์ž‘์—…์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํŽ™์ธํ™€ ์กฐ๋ฆฝ์ž‘์—…์€ ์ผ๋ฐ˜์ ์œผ๋กœ ํŽ™๊ณผ ํ™€ ๊ฐ„์˜ ์ ‘์ด‰์ƒํƒœ๋ฅผ ์ถ”์ •ํ•จ์œผ๋กœ์จ ์ด๋ฃจ์–ด์ง„๋‹ค. ์ ‘์ด‰์ƒํƒœ๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์žฅ ๋„๋ฆฌ ์“ฐ์ด๋Š” ๋ฐฉ๋ฒ•์€ ํž˜ ์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ธ๋ฐ, ์ ‘์ด‰ ํž˜๊ณผ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ธก์ •ํ•˜์—ฌ ์ ‘์ด‰์ƒํƒœ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋งŒ์•ฝ ์ด๋Ÿฌํ•œ ์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค๋ฉด, ํ•˜๋“œ์›จ์–ด ๋น„์šฉ๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ์—ฐ์‚ฐ๋Ÿ‰ ๊ฐ์†Œ ๋“ฑ์˜ ์žฅ์ ์ด ์žˆ์Œ์€ ์ž๋ช…ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํž˜ ์„ผ์„œ ํ˜น์€ ์ˆ˜๋™ ์ปดํ”Œ๋ผ์ด์–ธ์Šค ์žฅ์น˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํŽ™์ธํ™€ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค. ํ™€์— ๋Œ€ํ•œ ์ธ์‹ ์˜ค์ฐจ ํ˜น์€ ๋กœ๋ด‡์˜ ์ œ์–ด ์˜ค์ฐจ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋จผ์ € ํŽ™๊ณผ ํ™€์˜ ์ ‘์ด‰ ๊ฐ€๋Šฅ ์ƒํƒœ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ๋กœ๋ด‡์˜ ์ปดํ”Œ๋ผ์ด์–ธ์Šค ๋ชจ์…˜์„ ์œ„ํ•œ ์ œ์–ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋””์ž์ธํ•œ๋‹ค. ์ „๋žต์€ ์ปดํ”Œ๋ผ์ด์–ธ์Šค ํŠน์ง•์— ๊ธฐ๋ฐ˜ํ•˜๋ฉฐ ํŽ™์— ํž˜๊ณผ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ƒ์„ฑ์‹œํ‚ด์œผ๋กœ์จ ์กฐ๋ฆฝ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํŽ™์€ ์™ธ๋ถ€ํ™˜๊ฒฝ์— ์ˆœ์‘ํ•จ์œผ๋กœ์จ ํ™€์— ์‚ฝ์ž…๋œ๋‹ค. ์ œ์•ˆํ•œ ์ „๋žต์€ ๋‚ฎ์€ ๊ณต์ฐจ๋ฅผ ๊ฐ–๋Š” ํŽ™์ธํ™€ ์‹คํ—˜์„ ํ†ตํ•ด์„œ ๊ทธ ์œ ํšจ์„ฑ์ด ๊ฒ€์ฆ๋œ๋‹ค. ํŽ™๊ณผ ํ™€์„ ๋กœ๋ด‡ํŒ”๊ณผ ์™ธ๋ถ€ํ™˜๊ฒฝ์— ๊ฐ๊ฐ ๊ณ ์ •๋œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹คํ—˜, ์ธ๊ฐ„ํ˜• ๋กœ๋ด‡ํ•ธ๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ํŽ™์„ ์žก์•„์„œ ๊ณ ์ •๋œ ํ™€์— ์‚ฝ์ž…ํ•˜๋Š” ์‹คํ—˜, ๊ทธ๋ฆฌ๊ณ  ํ…Œ์ด๋ธ”์— ๋†“์ธ ํŽ™๊ณผ ํ™€์„ ๊ฐ๊ฐ ๋กœ๋ด‡ํ•ธ๋“œ๋กœ ํŒŒ์ง€ํ•˜์—ฌ ์กฐ๋ฆฝํ•˜๋Š” ์ด ์„ธ ๊ฐ€์ง€์˜ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•ธ๋“œ๋กœ ํŽ™์„ ํŒŒ์ง€ํ•˜๊ณ  ์กฐ์ž‘ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ํŒŒ์ง€ ๋ฐฉ๋ฒ•๊ณผ ํ•ธ๋“œ๋ฅผ ์ด์šฉํ•œ ๋ฌผ์ฒด ์กฐ์ž‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐ„๋žตํžˆ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์ „๋žต์˜ ์„ฑ๋Šฅ์„ ์‹คํ—˜์ ์œผ๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋†’์€ ์กฐ๋ฆฝ ์„ฑ๊ณต๋ฅ ์„ ๊ฐ–๋Š” ๋Œ€์‹  ์กฐ๋ฆฝ์‹œ๊ฐ„์ด ์˜ˆ์ธกํ•  ์ˆ˜ ์—†๋Š” ๋‹จ์ ์ด ๋‚˜ํƒ€๋‚˜ ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ Œ์น˜ ๊ถค์  ๋˜ํ•œ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ € ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋‚˜์„  ํž˜ ๊ถค์ ์„ ์ด์šฉํ–ˆ์„ ๋•Œ ์กฐ๋ฆฝ ์„ฑ๊ณต์‹œ๊ฐ„์˜ ๋ถ„์‚ฐ์ด ํฐ ์ด์œ ๋ฅผ ํ™•๋ฅ ๊ฐœ๋…์„ ์ด์šฉํ•ด ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ๋ถ€๋ถ„์  ๋‚˜์„  ํž˜ ๊ถค์ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ํž˜ ๊ถค์ ์ด ๋‚˜์„  ํž˜ ๊ถค์ ์— ๋น„ํ•ด ๊ฐ–๋Š” ์„ฑ๋Šฅ์˜ ์šฐ์ˆ˜์„ฑ์„ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์น˜์  ๋ถ„์„, ๋ฐ˜๋ณต์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ๊ทธ๋ฆฌ๊ณ  ๋กœ๋ด‡์„ ์ด์šฉํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.1 INTRODUCTION 1 1.1 Motivation: Peg-in-Hole Assembly 1 1.2 Contributions of Thesis 2 1.3 Overview of Thesis 3 2 COMPLIANCE BASED STRATEGY 5 2.1 Background & Related Works 5 2.2 Analysis of Peg-in-Hole Procedure 6 2.2.1 Contact Analysis 7 2.2.2 Basic Idea 9 2.3 Peg-in-Hole Strategy 12 2.3.1 Unit Motions 12 2.3.2 State of Strategy 13 2.3.3 Conditions for State Transition 15 2.4 Control Frameworks 18 2.4.1 Control for Compliant Behavior 18 2.4.2 Friction Compensate 20 2.4.3 Control Input for the Strategy 25 2.5 Experiment 29 2.5.1 Experiment Environment 29 2.5.2 Fixed Peg and Fixed Hole 31 2.5.2.1 Experiment Results 31 2.5.2.2 Analysis of Force and Control Gain 36 2.5.3 Peg-in-Hole with Multi Finger Hand 41 2.5.3.1 Object Grasping 42 2.5.3.2 Object In-Hand Manipulation 44 2.5.3.3 Experiment Results 49 2.5.4 With Upper Body Robot 50 2.5.4.1 Peg-in-Hole Procedure 52 2.5.4.2 Kinematics of Grasped Object 54 2.5.4.3 Control Frameworks 54 2.5.4.4 Experiment Results 56 2.6 Discussion 59 2.6.1 Peg-in-Hole Transition 59 2.6.2 Influential Issues 59 3 WRENCH TRAJECTORY 63 3.1 Problem Statement 64 3.1.1 Hole Search Process 64 3.1.2 Spiral Force Trajectory Analysis 66 3.2 Partial Spiral Force Trajectory 70 3.2.1 Force Trajectory with Tilted Posture 70 3.2.2 Probability to Three-point Contact 76 3.3 SIMULATION & EXPERIMENT 78 3.3.1 Simulation 78 3.3.2 Experiment 83 4 CONCLUSIONS 90 Abstract (In Korean) 102Docto

    ๊ฐ€์ƒ ๋‹น๊น€, ์—ฌ์ ˆ๋‹จ ๊ตญ์†Œํ™” ๋ฐ 4์ฐจ์› ์นผ๋ผ๋น„-์•ผ์šฐ ๋‹ค์–‘์ฒด์˜ ๋„๋„๋“œ์Šจ-ํ† ๋งˆ์Šค ์ด๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2022. 8. ๊น€์˜ํ›ˆ.The main purpose of this dissertation is to generalize Manolache's virtual pullbacks and Kiem-Li's cosection localization to Donaldson-Thomas theory of Calabi-Yau 4-folds. The three main applications are Lefschetz principle, Pairs/Sheaves correspondence, and a foundation of surface counting theory. A secondary purpose is to revisit virtual pullbacks and cosection localization via the Kimura sequence for Artin stacks, derived algebraic geometry, and algebraic cobordism. We also prove Graber-Pandaripande's torus localization formula in full generality.์ด ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉ์ ์€ ๊ฐ€์ƒ ๋‹น๊น€๊ณผ ์—ฌ์ ˆ๋‹จ ๊ตญ์†Œํ™”๋ฅผ ์นผ๋ผ๋น„-์•ผ์šฐ 4์ฐจ์› ๋‹ค์–‘์ฒด์˜ ๋„๋„๋“œ์Šจ-ํ† ๋งˆ์Šค ์ด๋ก ์œผ๋กœ ํ™•์žฅํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด์ฐจ์ ์ธ ๋ชฉ์ ์€ ๊ฐ€์ƒ ๋‹น๊น€๊ณผ ์—ฌ์ ˆ๋‹จ ๊ตญ์†Œํ™”๋ฅผ ์•„ํ‹ด ์Šคํƒ์˜ ๊ต์ฐจ์ด๋ก , ํŒŒ์ƒ ๋Œ€์ˆ˜ ๊ธฐํ•˜ํ•™ ๋ฐ ๋Œ€์ˆ˜์  ์ฝ”๋ณด๋””์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.Abstract i Introduction 1 I Virtual intersection theory 17 1 Intersection theory 18 1.1 Intersection theory for schemes 18 1.2 Intersection theory for Artin stacks 25 1.3 Algebraic cobordism 29 2 Virtual pullbacks 35 2.1 Intrinsic normal cones 36 2.2 Perfect obstruction theories 47 2.3 Virtual pullbacks and virtual cycles 52 3 Cosection localization 65 3.1 Cone reduction 66 3.2 Reduced virtual cycles 72 3.3 Cosection-localized virtual pullbacks 75 II Donaldson-Thomas theory of Calabi-Yau 4-folds 83 4 Virtual pullbacks in DT4 theory 84 4.1 Local models 86 4.2 Symmetric obstruction theories 97 4.3 Square root virtual pullbacks 108 5. Cosection localization in DT4 theory 118 5.1 Cone reductions 119 5.2 Reduced virtual cycles 122 5.3 Cosection-localized virtual cycles 125 6 Applications to enumerative geometry 131 6.1 Moduli spaces, virtual cycles, and invariants 131 6.2 Lefschetz principle 140 6.3 Pairs/Sheaves correspondence 142 6.4 Counting surfaces on Calabi-Yau 4-folds 146 III Generalizations 148 7 Torus localization via equivariant virtual pullbacks 149 7.1 Equivariant virtual pullbacks 149 7.2 Localization of virtual cycles 159 8 Cosection localization via (-1) -shifted 1-forms 163 8.1 Three reductions 164 8.2 Localized virtual cycles 167 9 Virtual cycles in algebraic cobordism 170 9.1 Limit algebraic cobordism 170 9.2 Virtual pullbacks 176 9.3 Cosection localization 184 9.4 Torus localization 189 A Kimura sequence for Artin stacks 193 A.1 Kimura sequence for Artin stacks 193 A.2 Chow lemma for Artin stacks 197 Abstract (in Korean) i Acknowledgement (in Korean) ii๋ฐ•

    ํ™˜๊ฒฝ์š”์ธ์ด ๊ธฐ์ฃผ์‹๋ฌผ ์ฅ๋ฐฉ์šธ๋ฉ๊ตด๊ณผ ์ดˆ์‹๋™๋ฌผ ๊ผฌ๋ฆฌ๋ช…์ฃผ๋‚˜๋น„ ์œ ์ถฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ณผํ•™๊ต์œก๊ณผ(์ƒ๋ฌผ์ „๊ณต), 2021. 2. ๊น€์žฌ๊ทผ.๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๋‚˜ํƒ€๋‚˜๋Š” ๋น ๋ฅธ ํ™˜๊ฒฝ ๋ณ€ํ™”๋กœ ์ธํ•ด ๊ณค์ถฉ์„ ํฌํ•จํ•œ ์ƒ๋ฌผ๋‹ค์–‘์„ฑ์˜ ์œ„๊ธฐ๊ฐ€ ๋„๋ž˜ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค. ์ƒํƒœ๊ณ„ ๋‚ด์—์„œ ๊ณค์ถฉ์˜ ์ƒํƒœํ•™์ ยท์ƒ๋ฌผํ•™์ ์ธ ๊ฐ€์น˜๋ฅผ ์ƒ๊ฐํ•ด ๋ณผ ๋•Œ, ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ๊ณค์ถฉ์— ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์˜ํ–ฅ์„ ๊ตฌ์ฒด์ ์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ ์—์„œ ์‹๋ฌผ์€ ๊ณค์ถฉ์— ์ฃผ์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์š”์ธ์ด๋ฏ€๋กœ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์‹๋ฌผ์˜ ๋ฐ˜์‘์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์ด ์„ ํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋‹ค์ˆ˜ ์ง„ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ† ๋Œ€๋กœ ๊ธฐํ›„๋ณ€ํ™”๋กœ ์ธํ•œ ์‹๋ฌผ์˜ ๋ฐ˜์‘๊ณผ ๊ทธ๋กœ ์ธํ•œ ๊ณค์ถฉ ๊ตฐ์ง‘์˜ ๋ณ€ํ™”์— ๋Œ€ํ•œ ๊ฐ€์„ค์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๊ธฐํ›„๋ณ€ํ™”๋Š” ๋ณต์žกํ•œ ํ™˜๊ฒฝ ์š”์ธ์˜ ๋ณ€ํ™”๋ฅผ ๋™๋ฐ˜ํ•˜๋ฉฐ ๊ทธ์— ๋Œ€ํ•œ ์‹๋ฌผ์˜ ๋ฐ˜์‘ ๋˜ํ•œ ์ข…์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์–‘์ƒ์œผ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์–ด, ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ํ˜„์žฌ์˜ ์ฃผ์š” ์˜ˆ์ธก์€ ์—ฌ์ „ํžˆ ๋” ๋งŽ์€ ์‹คํ—˜์  ์ฆ๊ฑฐ์™€ ์ฆ๋ช…์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ํŠนํžˆ, ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ์‹๋ฌผ๊ณผ ๊ณค์ถฉ์˜ ์ƒํ˜ธ์ž‘์šฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ์ฃผ์š”ํ•œ ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ฌ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๋Š” ๊ฐ•์ˆ˜ ๋นˆ๋„์˜ ์ฆ๊ฐ€์™€ ์‹๋ฌผ๊ณผ ๊ณค์ถฉ์˜ ๊ณ„์ ˆ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์—ฌ์ „ํžˆ ๋ฏธ์ง„ํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ ๊ณ ์œ ์ข…์ธ ์ฅ๋ฐฉ์šธ๋ฉ๊ตด(Aristolochia contorta)๊ณผ ์ด๋ฅผ ์œ ์ผํ•œ ๊ธฐ์ฃผ์‹๋ฌผ๋กœ ํ™œ์šฉํ•˜๋Š” ํŠน์ด์  ์ดˆ์‹ ๊ณค์ถฉ์ธ ๊ผฌ๋ฆฌ๋ช…์ฃผ๋‚˜๋น„(Sericinus montela)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ™˜๊ฒฝ ์š”์ธ์ด ์‹๋ฌผ-๊ณค์ถฉ ์ƒํ˜ธ์ž‘์šฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒŒ์•…ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ํ™˜๊ฒฝ ์š”์ธ์ด ์‹๋ฌผ์˜ ์ƒ์œก๊ณผ ๋ฐฉ์–ด ์ž‘์šฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๊ณผ ๊ทธ๋กœ ์ธํ•ด ๋‚˜ํƒ€๋‚˜๋Š” ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒ์œก ๋ณ€ํ™”์˜ ๊ด€๊ณ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ธ ๊ฐ€์ง€์˜ ์ฃผ์š”ํ•œ ์‹คํ—˜์„ ์‹คํ–‰ํ•˜์˜€๋‹ค. ์šฐ์„ , ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์š”์ธ์˜ ๊ธฐ์ฃผ์‹๋ฌผ์— ๋Œ€ํ•œ ์˜ํ–ฅ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ€์ง„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ฅ๋ฐฉ์šธ๋ฉ๊ตด์˜ ์„œ์‹์ง€์— ๋Œ€ํ•œ ํ˜„์žฅ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด์‚ฐํ™”ํƒ„์†Œ ๋†๋„์˜ ์ƒ์Šน๊ณผ ๊ฐ•์ˆ˜ ๋นˆ๋„์˜ ์ฆ๊ฐ€๊ฐ€ ์‹๋ฌผ์˜ ์ƒ์œก๊ณผ ๋ฐฉ์–ด ์ž‘์šฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ๋ฐ ์ดˆ์‹ ๊ณค์ถฉ์— ๋Œ€ํ•œ ์—ฐ์‡„์ ์ธ ํšจ๊ณผ๋ฅผ ํŒŒ์•…ํ•˜๊ณ , ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ผ ๋‚˜ํƒ€๋‚˜๋Š” ์‹๋ฌผ-๊ณค์ถฉ ์ƒํ˜ธ์ž‘์šฉ ๋ณ€ํ™”์˜ ๊ณ„์ ˆ์ ์ธ ๋™ํƒœ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ƒ๋ถ€๊ฐœ๋ฐฉํ˜•์˜จ์‹ค(open-top chamber)์„ ํ™œ์šฉํ•œ ๋‘ ๊ฐœ์˜ ๋ฉ”์กฐ์ฝ”์ฆ˜ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ค„๊ธฐ ๊ธธ์ด์™€ ์žŽ์˜ ์ˆ˜๋ฅผ ์ธก์ •ํ•˜์—ฌ ์‹๋ฌผ์˜ ์ƒ์žฅ ์–‘์ƒ์„ ๊ด€์ฐฐํ•˜์˜€์œผ๋ฉฐ, ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒ๋Œ€์ƒ์žฅ๋ฅ (relative growth rate)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‹๋ฌผ์˜ ๋ฐ˜์‘์ด ๊ณค์ถฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์‹๋ฌผ์˜ ์žŽ์˜ ์˜์–‘ ๊ฐ€์น˜๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํƒ„์†Œ: ์งˆ์†Œ ๋น„์œจ(C: N ratio)๊ณผ 1์ฐจ ๋Œ€์‚ฌ์‚ฐ๋ฌผ์„ ๋ถ„์„ํ•˜์˜€๊ณ , ์‹๋ฌผ ์žŽ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ํ™”ํ•™์  ๋ฐ˜์‘์„ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ 2์ฐจ ๋Œ€์‚ฌ์‚ฐ๋ฌผ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ˜„์žฅ ์กฐ์‚ฌ ๊ฒฐ๊ณผ, ์ฅ๋ฐฉ์šธ๋ฉ๊ตด์˜ ์ƒ์œก์€ ๋‹ค์–‘ํ•œ ์ƒ๋ฌผ์  ์š”์ธ๊ณผ ๋น„์ƒ๋ฌผ์  ์š”์ธ์— ์˜ํ–ฅ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ํŠนํžˆ, ์ดˆ์‹ ๊ณค์ถฉ์œผ๋กœ ์ธํ•œ ์„ญ์‹ ์ŠคํŠธ๋ ˆ์Šค์™€ ์ข…๊ฐ„ ๊ฒฝ์Ÿ์œผ๋กœ ์ธํ•œ ์ŠคํŠธ๋ ˆ์Šค, ํ† ์–‘ ๋‚ด ์–‘์ด์˜จ ํ•จ๋Ÿ‰์ด ์ฃผ์š”ํ•œ ์š”์ธ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‹๋ฌผ์˜ ๋ฐ˜์‘์˜ ๊ด€์ ์—์„œ๋Š”, ์ด์‚ฐํ™”ํƒ„์†Œ ๋†๋„์˜ ์ƒ์Šน์ด ์‹๋ฌผ์˜ ๊ด‘ํ•ฉ์„ฑ์„ ์–ต์ œํ•˜์—ฌ ์ƒ์œก์„ ๊ฐ์†Œ์‹œํ‚ค๊ณ  ์‹๋ฌผ์˜ ๋ฐฉ์–ด ์ž‘์šฉ์€ ์ฆ์ง„์‹œ์ผฐ๋‹ค. ์ด๋Ÿฌํ•œ ์ฆ์ง„๋œ ์‹๋ฌผ์˜ ๋ฐฉ์–ด ์ž‘์šฉ์— ๋”ฐ๋ผ ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒ์œก์€ ์–ต์ œ๋˜์—ˆ๋‹ค. ์ด์™€ ๋‹ฌ๋ฆฌ, ๊ฐ•์ˆ˜ ๋นˆ๋„์˜ ์ฆ๊ฐ€๋Š” ์ด๋Ÿฌํ•œ ๋†’์€ ๋†๋„์˜ ์ด์‚ฐํ™”ํƒ„์†Œ์˜ ์˜ํ–ฅ์„ ๋ถ€๋ถ„์ ์œผ๋กœ ์™„ํ™”ํ•˜์—ฌ, ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒ์žฅ์„ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ๋”๋ถˆ์–ด, ์ด๋Ÿฌํ•œ ์ด์‚ฐํ™”ํƒ„์†Œ ๋†๋„์˜ ์ƒ์Šน๊ณผ ๊ฐ•์ˆ˜ ๋นˆ๋„์˜ ์ฆ๊ฐ€๊ฐ€ ์žŽ์˜ ์˜์–‘ ๊ฐ€์น˜์™€ ์‹๋ฌผ์˜ ์ƒ์‹œ ๋ฐฉ์–ด(constitutive defense)์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์‹œ๊ธฐ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ๊ฐ€๋œ ๊ฐ•์ˆ˜ ๋นˆ๋„๋Š” ์˜์–‘ ๊ฐ€์น˜๋ฅผ ์ฆ์ง„์‹œ์ผฐ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์˜ํ–ฅ์€ ์‹๋ฌผ์˜ ์ƒ์œก ๊ธฐ๊ฐ„์˜ ์ค‘๊ฐ„์— ๊ฐ€์žฅ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐ˜๋ฉด, ์ƒ์Šน๋œ ์ด์‚ฐํ™”ํƒ„์†Œ ๋†๋„๋Š” ์˜์–‘ ๊ฐ€์น˜๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ณ  ์ƒ์‹œ ๋ฐฉ์–ด๋ฅผ ์ฆ์ง„์‹œ์ผฐ์œผ๋ฉฐ, ์‹๋ฌผ์˜ ์ƒ์œก ๊ธฐ๊ฐ„์˜ ์ข…๋ฃŒ ์‹œ๊ธฐ์— ๊ฐ€์žฅ ํฌ๊ฒŒ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๊ธฐ์ ์œผ๋กœ ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๋ณ€ํ™”์— ๋”ฐ๋ผ ํŠน์ด์  ์ดˆ์‹ ๊ณค์ถฉ๊ณผ ๋น„ํŠน์ด์  ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒ์žฅ ์–‘์ƒ ๋˜ํ•œ ๊ณ„์ ˆ์  ๋ณ€๋™์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ๊ฐ•์ˆ˜ ๋นˆ๋„์˜ ์ฆ๊ฐ€๋ณด๋‹ค ์ด์‚ฐํ™”ํƒ„์†Œ ์ƒ์Šน์ด ๋ฏธ์น˜๋Š” ๋” ์ฃผ์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์„ ๊ณ ๋ คํ•ด๋ณผ ๋•Œ, ๊ธฐ์ฃผ์‹๋ฌผ์˜ ์งˆ๊ณผ ์–‘์ด ๋ชจ๋‘ ๊ฐ์†Œํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด์— ๋”ฐ๋ผ ๊ทธ๊ฒƒ์„ ์ด์šฉํ•˜๋Š” ํŠน์ด์  ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒ์žฅ๋„ ์–ต์ œ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ๊ณค์ถฉ ๊ตฐ์ง‘์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์ด๋ผ๋Š” ๊ธฐ์กด์— ์ œ์‹œ๋œ ๊ฐ€์„ค๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ƒํ•˜์ง€๋งŒ ๊ทธ ๊ณผ์ •์€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๊ธฐํ›„๋ณ€ํ™”๋กœ ์ธํ•œ ํ™˜๊ฒฝ ๋ณ€ํ™”๊ฐ€ ์‹œ๊ธฐ์ ์œผ๋กœ ๋‹ค๋ฅธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๊ฒƒ์„ ๊ณ ๋ คํ•ด๋ณผ ๋•Œ, ๊ฐ•์ˆ˜ ๋นˆ๋„์˜ ์ฆ๊ฐ€๊ฐ€ ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒํ™œ์‚ฌ ์ค‘ ํŠน์ • ์‹œ๊ธฐ์˜ ์ƒ์žฅ์„ ์ฆ๊ฐ€์‹œํ‚ด์œผ๋กœ์จ ์ด์‚ฐํ™”ํƒ„์†Œ ์ฆ๊ฐ€์˜ ๋ถ€์ •์ ์ธ ํšจ๊ณผ๋ฅผ ์ผ๋ถ€ ์ƒ์‡„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ์‹๋ฌผ-๊ณค์ถฉ ์ƒํ˜ธ์ž‘์šฉ์—์„œ ์‹๋ฌผ์˜ ์ข…ํŠน์ด์ ์ธ ๋ฐ˜์‘๊ณผ ๊ธฐ์กด์— ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜์œผ๋‚˜ ์ฃผ์š”ํ•œ ์˜ํ–ฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์„ ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ ์š”์ธ์„ ๊ณ ๋ คํ•จ์œผ๋กœ์จ, ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ์‹๋ฌผ๊ณผ ์ดˆ์‹ ๊ณค์ถฉ์˜ ์ƒํ˜ธ์ž‘์šฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ์ดํ•ดํ•˜๋Š” ๋ฐ์— ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๋˜ํ•œ, ์‹๋ฌผ๊ณผ ๊ณค์ถฉ์˜ ์ƒํ™œ์‚ฌ์  ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์„ ํ†ตํ•ด ๊ธฐํ›„๋ณ€ํ™” ํ™˜๊ฒฝ์—์„œ ์‹๋ฌผ-๊ณค์ถฉ ์ƒํ˜ธ์ž‘์šฉ ๋ณ€ํ™”์˜ ๋”์šฑ ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.It is quite obvious that the future biodiversity, including entomofauna, would be at risk by rapid environmental changes as climate change progresses. Considering the ecological and biological values in the ecosystem, the attempt to understand the plant responses to climate change is preferentially needed to be examined because of its significant consequences on insect family. Although there have been many researches, the effects of climate change on plant-herbivore interactions in the context of cascading effects from plants to herbivores are still unclear. In particular, the significance of increased precipitation frequency and the seasonality of plant and herbivore have not received sufficient attention yet. Here, I tried to address these gaps by conducting three major researches using a native plant (Aristolochia contorta) and its specialist herbivore (Sericinus montela). First, a field survey in natural habitat of A. contorta was conducted to investigate possible effects of various environmental factors on the host plant. Second, I performed two mesocosm experiments using open-top chambers (OTCs) to examine the effects of elevated CO2 and increased precipitation frequency on plant growth and defenses and consequences to specialist herbivores, and to figure out the seasonality of those effects of two environmental factors. I observed the growth of plant based on stem length and leaf number, and measured the relative growth rate (RGR) of herbivores to assess the cascading effects of plant responses to herbivores growth performance. I further investigated C: N ratio and primary metabolites as parameters of nutrient value, and analyzed secondary metabolites as parameters of plant chemical defenses. According to field survey, the growth period of A. contorta could be affected by various biotic and abiotic factors, particularly herbivorous and interspecific competitive stress, and cations in soil. In addition, elevated CO2 impeded growth with decreased photosynthesis ability, and increased resistance in plants. In contrast, increased precipitation frequency partly ameliorated the negative effects of high CO2. Growth performance of specialist herbivore decreased under elevated CO2 condition as a consequence of increased resistance in plants. Furthermore, elevated CO2 and increased precipitation frequency had different effects on nutrient value and constitutive defenses of host plant in distinct temporal variations. That is, positive effects of increased precipitation on nutrient value were significant in the middle of plant growing season, whereas negative effects of elevated CO2 on both of nutrient value and constitutive defenses were remarkable in the late of growing season. The unconformable variations of food quality seemed to be responsible for the seasonality of specialist and generalist herbivore. In conclusion, this research suggests both the quantity and quality of host plants would decline because of significant CO2 effects, and the growth performance of its specialist herbivore might be threatened as climate change progresses. That is, different scenario but the same predictions of climate change effects on entomofauna is suggested. Nevertheless, considering the seasonality of effects of elevated CO2 and increased precipitation frequency, less danger of herbivorous insect may be expected because of the ameliorating effect of increased precipitation frequency to high CO2 at a certain emergence timing in their life cycle. Additionally, the findings of this research can contribute to enable comprehensive understanding of climate change effects on plant-herbivore interaction, with the consideration of significant variable environmental factor under climate change and species-specific characteristics. This study also highlighted the ecological implications of seasonal dynamics for precise of future plant-herbivore interaction under climate change.Abstract i Contents iv List of figures viii List of tables xii Chapter 1. Introduction 1 1.1. Plant-herbivore interaction and secondary metabolites 1 1.2. Climate change and plant-herbivore interaction 4 1.3. Aristolochia contorta and Sericinus montela as experimental models for plant-herbivore interaction 8 1.4. Purpose of research 11 Chapter 2. Biotic and abiotic effects on the growth and reproduction of Aristolochia contorta 14 2.1. Introduction 14 2.2. Methods 16 2.2.1. Study sites and survey method 16 2.2.2. Soil analysis 19 2.2.3. Statistical analysis 19 2.3. Results and Discussion 20 2.3.1. Regional growth characteristics of A. contorta 20 2.3.2. Effects of environmental factors on growth speed of A. contorta 23 2.3.3. Effects of environmental factors on flowering and fruting of A. contorta 26 2.4. Conclusion 30 Chapter 3. Reduced host plant growth and increased tyrosine-derived secondary metabolites under climate change and negative consequences on its specialist herbivore 31 3.1. Introduction 31 3.2. Material and Methods 35 3.2.1. Plant material 35 3.2.2. Experimental design 36 3.2.3. Growth measurement 40 3.2.4. Carbon and nitrogen analysis 40 3.2.5. Secondary metabolite extraction and instrumental UPLC conditions 41 3.2.6. Photosynthesis and chlorophyll measurement 42 3.2.7. Measurement of relative growth performance of Sericinus montela 44 3.2.8. Statistical analysis 45 3.3. Results 46 3.3.1. Differences of the plant growth among experimental groups varied according to organs 46 3.3.2. Photosynthesis inhibition by long-term exposure to elevated CO2 concentration in Aristolochia contorta 52 3.3.3. Reduced growth performance of a specialist herbivore caused by decreased food quality of host plant under climate change 54 3.4. Discussion 60 3.5. Conclusion 66 Chapter 4. Seasonality of host plant responses to climate change and consequent effects on plant-herbivore interactions 68 4.1. Introduction 68 4.2. Material and Methods 71 4.2.1. Plant material 71 4.2.2. Experimental design 72 4.2.3. Measurement of relative growth performance of specialist and generalisth herbivore 75 4.2.4. Carbon and nitrogen analysis 76 4.2.5. Primary metabolites measurement 77 4.2.6. Phytohormone and secondary metabolites analysis 78 4.2.7. Statistical analysis 80 4.3. Results 81 4.3.1. Different seasonal variations in relative growth performance of specialist and generalist herbivore 81 4.3.2. Seasonal dynamics in leaf nutrient value related to unconformable variations in soluble sugars and free amino acids 86 4.3.3. Increased secondary metabolites for constitutive defenses in late growth period 90 4.3.4. Seasonal dynamics of JA inducibility but no differences in induced responses in secondary metabolites according to plant growing season 94 4.4. Discussion 98 4.4.1. The seasonality of nutrient value and defenses in plants and relative growth performances of specialist and generalist herbivore 98 4.4.2. Effects of elevated CO2 and increased watering frequency on the seasonality of host plant and specialist and generalist herbivore 101 4.5. Conclusion 107 Chapter 5. General conclusions 109 References 113 Abstract in Korean 134 Appendices 137 Appendix 1. The blueprint of an open-top chamber 137 Appendix 2. Response curve for the exact quantification of AA1 and AA2 139 Appendix 3. Primary metabolites analysis method 140 Appendix 4. Phytohormone analysis method 142 Appendix 5. Secondary metabolites analysis method 144Docto

    Formation Mechanisms and Suppression Method of Weld Defects in CO2 Laser Welding of Primer-coated Steel for Shipbuilding

    Get PDF
    Laser are now established as industrial tool that cut, weld, drill and modify the surface properties of materials. Laser-processes offer many advantages over conventional processes e.g. speed, quality, and increased production. The use of zinc-coated steel in automobile industries as well as in various industry fields has increased due to low price and high corrosion resistance. Recently the laser welding technology has been considered the application for shipbuilding structure. However, when this technology is applied to primer-coated steel, good quality weld beads are not easily obtained. Because that the primer-coated layer caused the spatter, humping bead and porosity, that are main part of the weld defects, attributed to the powerfully vaporizing pressure of zinc. We were performed experiment with objectives of understanding spatter and porosity formation mechanism and producing sound weld beads in 6mmt primer coated steels by a CO2 CW laser. The effects of welding parameterswere investigated in the bead shape and penetration depth in bead and lap welding. Laser welding of zinc-coated steel in lap joint leads to a problem that is related to the low boiling point of zinc(907 oC) compared with high melting point of steel(1530 oC). When the keyhole penetrates at the interface between the two sheets in lap joint, the layer rises to a very high temperature. At this temperature, the zinc vapour pressure is so high that it explodes out of the melt pool and generated the spatter and humping bead. Namely serious effects of primer-coated position was lap side rather than surface. Therefore, introducing a small gap clearance in the lap position, the zinc vapor could escape through it and sound weld beads can be acquired. And mechanism of porosity formation has searched by analysis the composition of inner surface of porosity and the vaporizing particle according to weld conditions. There is a lot of zinc in inclusion of inner surface of porosity. But there is not zinc in dimple structure. These results are indicated that the porosity was formed by zinc vaporized pressure. Then, the dynamic behaviors of laser-induced plasma and spatter phenomena were photographed by high speed video camera during CO2 CW laser welding with gap or no-gap clearance. Laser-induced plasma has been accompany with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. In result, the weld defects such as spatter, porosity and humping bead have formed. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. Therefore, as observing the behavior of plasma, it should be estimated how the keyhole was fluctuated and the weld defect was formed.defocused distance, welding speed, coated thickness, coated positionAbstract 1. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋ชฉ์  3 2. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 5 2.1 ์šฉ์œต์•„์—ฐ๋„๊ธˆ๊ฐ•ํŒ์˜ ์ ์šฉํ˜„ํ™ฉ๊ณผ ํŠน์„ฑ 5 2.1.1 ์šฉ์œต์•„์—ฐ๋„๊ธˆ๊ฐ•ํŒ์˜ ์ ์šฉํ˜„ํ™ฉ 5 2.1.2 ์šฉ์œต์•„์—ฐ๋„๊ธˆ๊ฐ•ํŒ์˜ ํ”ผ๋ง‰์กฐ์ง 6 2.1.3 ์šฉ์œต์•„์—ฐ๋„๊ธˆ๊ฐ•ํŒ์˜ ๋‚ด์‹์„ฑ 8 2.2 ์‚ฐ์—…์šฉ ๋ ˆ์ด์ €์˜ ๋ฐœ์ง„ ์›๋ฆฌ์™€ ํŠน์„ฑ 13 2.2.1 ๋ ˆ์ด์ €์˜ ๋ฐœ์ง„ ์›๋ฆฌ 13 2.2.2 ์‚ฐ์—…์šฉ ๋ ˆ์ด์ €์˜ ํŠน์„ฑ 19 3. ์‹คํ—˜ ์žฅ์น˜ ๋ฐ ๋ฐฉ๋ฒ• 28 3.1 ์‹คํ—˜์žฌ๋ฃŒ์™€ CO2 ๋ ˆ์ด์ € ์šฉ์ ‘๋ฒ• 28 3.1.1 ์‹คํ—˜์žฌ๋ฃŒ 28 3.1.2 CO2 ๋ ˆ์ด์ € ์šฉ์ ‘์žฅ์น˜์™€ ์šฉ์ ‘๋ฐฉ๋ฒ• 30 3.2 ์šฉ์ ‘๊ธˆ์†๋ถ€์˜ ๊ธฐ๊ณต๊ณผ ์ฆ๋ฐœ์ž…์ž์˜ ์กฐ์„ฑ ๋ถ„์„๋ฐฉ๋ฒ• 36 3.2.1 ์šฉ์ ‘๊ธˆ์†๋‚ด ๊ธฐ๊ณต์˜ ์กฐ์„ฑ ๋ถ„์„๋ฐฉ๋ฒ• 36 3.2.2 ์ฆ๋ฐœ์ž…์ž์˜ ํฌ์ง‘ ๋ฐ ์กฐ์„ฑ ๋ถ„์„๋ฐฉ๋ฒ• 36 4. ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 38 4.1 Primer ์ฝ”ํŒ…๊ฐ•ํŒ์˜ ์šฉ์ž… ๋ฐ ์šฉ์ ‘๊ฒฐํ•จ์˜ ํŠน์„ฑ 38 4.1.1 ์ง‘๊ด‘๊ด‘ํ•™๊ณ„์˜ ๋น„์ดˆ์  ๊ฑฐ๋ฆฌ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์šฉ์ž…ํŠน์„ฑ 39 4.1.2 ์šฉ์ ‘์†๋„ ๋ฐ primer์ฝ”ํŒ…์กฐ๊ฑด์— ๋”ฐ๋ฅธ ์šฉ์ ‘ํŠน์„ฑ 49 4.2 Lap welding์— ์žˆ์–ด์„œ ์šฉ์ ‘ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” primer์ฝ”ํŒ…์กฐ๊ฑด ๋ฐ gap๊ฐ„๊ทน์˜ ์˜ํ–ฅ 79 4.2.1 Primer ์ฝ”ํŒ…์œ„์น˜ ๋ฐ ์ฝ”ํŒ…๋‘๊ป˜์— ๋”ฐ๋ฅธ ์šฉ์ ‘ํŠน์„ฑ ๋น„๊ต 79 4.2.2 ์šฉ์ ‘ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” gap๊ฐ„๊ทน์˜ ์˜ํ–ฅ 89 4.3 ์šฉ์ ‘๊ธˆ์†๋ถ€์˜ ๊ธฐ๊ณต๊ณผ ์ฆ๋ฐœ์ž…์ž์˜ ์กฐ์„ฑ 104 4.3.1 ์šฉ์ ‘๊ธˆ์†๋ถ€์˜ ๊ฐ•์ œํŒŒ๋‹จ์— ์˜ํ•œ ๊ธฐ๊ณต์˜ ์กฐ์„ฑ๋ถ„์„ 105 4.3.2 ๋น„๋“œํ‘œ๋ฉด์— ํ˜•์„ฑ๋˜๋Š” ๋ถ€์œ ๋ฌผ์งˆ์˜ ์„ฑ๋ถ„๋ถ„์„ 113 4.3.3 ์ฆ๋ฐœ์ž…์ž์˜ ์กฐ์„ฑ๋ถ„์„ 117 4.4 ๋ ˆ์ด์ € ์šฉ์ ‘ํ˜„์ƒ์˜ ๊ณ ์†๋„ ๊ณ„์ธก 121 4.4.1 ๊ณ ์†๋„ ๋น„๋””์˜ค ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•œ ์šฉ์ ‘ํ˜„์ƒ์˜ ๊ณ„์ธก๋ฐฉ๋ฒ• 121 4.4.2 Gap๊ฐ„๊ทน์˜ ์œ ๋ฌด์— ๋”ฐ๋ฅธ ์œ ๊ธฐํ”Œ๋ผ์ฆˆ๋งˆ์™€ ์ŠคํŒจํ„ฐ์˜ ๋™์  ๊ฑฐ๋™ 123 4.5 ๊ธฐ๊ณต ๋ฐ ์ŠคํŒจํ„ฐ์˜ ๋ฐœ์ƒ ๋ฉ”์นด๋‹ˆ์ฆ˜๊ณผ ์–ต์ œ๋ฐฉ๋ฒ• 127 5. ๊ฒฐ๋ก  130 ์ฐธ๊ณ ๋ฌธํ—Œ 13

    ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ํŒŒํ”„๋ฆฌ์นด์˜ ๋น„ํŒŒ๊ดด์  ์‹๋ฌผ ๋‚ด๋ถ€ ์ „๊ธฐ์ „๋„๋„ ์ธก์ •

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€(์›์˜ˆ๊ณผํ•™์ „๊ณต), 2018. 8. ์†์ •์ต.The electrical properties of plant stems represent physiological activities in-cluding water and ion transport. Plant responds to changes in environmental condition, which can be reflected in internal electrical conductivity of plant stems (ECps). Therefore, monitoring of ECps may help understand the plant physiological changes related to environmental stress. Because direct and stable measurement of ECps was very difficult, complicated, and expensive, the ECps could not be easily adapted to monitor plant responses to stressed environmental conditions. The objectives of this study were to develop a stable and simple measuring method of internal ECps and investigate the re-lationship between the ECps and environmental factors in greenhouse. Two electrodes with three needles were inserted into both sides of paprika stem to monitor paprika ECps and stable ECps was acquired. Environmental fac-tors such as temperature, irradiance, and relative humidity were recorded and compared with the ECps. The ECps was positively correlated with light intensity and temperature (R2=0.642 and 0.815, respectively), while nega-tively correlated with relative humidity (R2=-0.416). The ECps was predicted using a regressed equation describing environmental data, and the predicted ECps corresponded well to measured ones. The ECps was higher during the day than at night, which was attributed to higher daytime water content in the stems. The ECps was better correlated with water content than ion con-centrations in the stem. To use ECps for monitoring of paprika responses to environmental stress, relationship of ECps with plant physiological responses was established. The relationships between ECps and photosynthetic re-sponses of paprika as well as sap flow were evaluated. Monitoring of papri-ka ECps relative to various environmental conditions such as low irradiance and water shortage showed that plant responses to environmental stress could be explained by changes in ECps. High ECps was related to high pho-tosynthetic rate, stomatal conductance, and transpiration rate. Sap flow of the plant was also associated with ECps, with a correlation coefficient of 0.606. However, the sap flow reflected only water flux, while ECps was de-termined by both water and ion contents in stem of paprika. Comparison of measured and predicted ECpss could be used to detect unusual cultivation conditions of paprika. Plant responses to water shortage could be reflected on lower ECps compared with predicted value. Therefore, continuous moni-toring of ECps can be used to detect plant responses to water stress. In order to use this method in the field, it will be necessary to test and develop field application techniques through further experiments such as comparison with sap flow.INTRODUCTION 1 LITERATURE REVIEW 5 Measurement of plant internal electrical conductivity 5 Plant responses to stress 8 Literature Cited 15 CHAPTER I. Non-destructive measurement of internal electrical conductivity of paprika and its relation to environmental fac-tors 21 Abstract 21 Introduction 23 Materials and Methods 28 Results and Discussion 37 Literature Cited 54 CHAPTER II. Evaluation of plant stress conditions in paprika by comparing internal electrical conductivity, photosynthetic re-sponse, and sap flow 58 Abstract 58 Introduction 60 Materials and Methods 63 Results and Discussion 67 Literature Cited 82 CONCLUSION 87 ABSTRACT IN KOREAN 89Docto

    Analyzing of E-mail header for Identifying the Authorship of Digital documents and the Exemption of Hearsay rule

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์ˆ˜๋ฆฌ์ •๋ณด๊ณผํ•™๊ณผ(๋””์ง€ํ„ธํฌ๋ Œ์‹ํ•™์ „๊ณต), 2015. 8. ์ด์ƒ์›.์ด๋ฉ”์ผ, ์ฒจ๋ถ€๋ฌธ์„œ ๋“ฑ ๋””์ง€ํ„ธ ๋ฌธ์„œ๊ฐ€ ๊ทธ ๋ฌธ์„œ ๋‚ด์šฉ์˜ ์ง„์‹ค์„ฑ์„ ์š”์ฆ์‚ฌ์‹ค๋กœ ๋ฒ•์ •์— ์ฆ๊ฑฐ๋กœ ์ œ์ถœ๋  ๊ฒฝ์šฐ ํ˜•์‚ฌ์†Œ์†ก๋ฒ• ์ œ313์กฐ์˜ ํ˜•์‹์  ๋ฌธ์–ธ์— ์–ฝ๋งค์ธ ํ•ด์„์œผ๋กœ ์ธํ•˜์—ฌ ์ž‘์„ฑ์ž๋กœ ์ถ”์ •๋˜๋Š” ์ž๊ฐ€ ๋ฒ•์ •์—์„œ ์ž‘์„ฑ์‚ฌ์‹ค์„ ์ธ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ• ์™ธ ๋‹ค๋ฅธ ๊ฐ๊ด€์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ฆ๊ฑฐ๋Šฅ๋ ฅ์„ ๋ถ€์—ฌํ•˜๋Š” ๊ฒƒ์ด ๋ถˆ๊ฐ€๋Šฅํ•œ ํ˜„์‹ค์— ๋ฌธ์ œ์˜์‹์„ ๊ฐ€์ง€๊ณ , ์ด๋ฉ”์ผ ํ—ค๋” ๋ถ„์„์„ ํ†ตํ•œ ์ž‘์„ฑ์ž ํŠน์ •๊ณผ ์ด์— ๊ธฐ๋ฐ˜ํ•œ ๋ฌธ์„œ์˜ ์ง„์ •์„ฑ ์ž…์ฆ์„ ์œ„ํ•œ ๋…ผ๋ฆฌ์  ๊ทผ๊ฑฐ๋ฅผ ์ œ์‹œํ•˜๊ณ , ๋ฏธ๊ตญ์—ฐ๋ฐฉ์ฆ๊ฑฐ๊ทœ์น™ ๋ฐ ๊ด€๋ จ ํŒ๋ก€๋ฅผ ํ†ตํ•ด ๋…ผ๋ฌธ์—์„œ ์ฃผ์žฅํ•˜๋Š” ์ด๋ก ์˜ ๋น„๊ต๋ฒ•์ , ์ œ๋„ ์—ฐํ˜์  ๊ธฐ์ดˆ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๋…ผ๋ฆฌ ๊ตฌ์„ฑ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ผ๋ถ€ ๋ณด์—ฌ์ค€ ์ „ ๊ตญ๊ฐ€์ •๋ณด์›์žฅ์— ๋Œ€ํ•œ ์„ ๊ฑฐ๋ฒ•์œ„๋ฐ˜ ํ•ญ์†Œ์‹ฌํŒ๊ฒฐ์„ ๋ถ„์„ ์†Œ๊ฐœํ•จ1. ์ „์ž์  ์ฆ๊ฑฐ์™€ ๋””์ง€ํ„ธ ํฌ๋ Œ์‹ 2. ์ „๋ฌธ๋ฒ•์น™์˜ ์˜์˜ ๋ฐ ๋น„๊ต๋ฒ•์  ๊ณ ์ฐฐ 3. ํ•ฉ์น˜์„ฑ(Authenticity)์˜ ์˜์˜์™€ ์ž…์ฆ ๋ฐฉ๋ฒ• ๋ฐ ์ •๋„ 4. ์ด๋ฉ”์ผ ํ—ค๋” ๋ถ„์„์— ์˜ํ•œ ์ „์ž๋ฌธ์„œ์˜ ์ž‘์„ฑ์ž ํŠน์ • 5. ํ˜•์‚ฌ์†Œ์†ก๋ฒ• ์ œ313์กฐ, ์ œ315์กฐ์˜ ํ•ฉ๋ฆฌ์  ํ•ด์„ 6. ๊ฒฐ๋ก Maste

    ์œ ์—ฐ ์–‘ํŒ” ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ํŽ™์ธํ™€ ์ž‘์—…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2014. 2. ๋ฐ•์žฌํฅ.์ตœ๊ทผ์— ์ด๋ฅด๋Ÿฌ ๋กœ๋ด‡์˜ ์ ์šฉ ๋ฒ”์œ„๋Š” ๊ณต์žฅ์˜ ์ƒ์‚ฐ๋ผ์ธ๊ณผ ๊ฐ€์ •๊นŒ์ง€ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ๋กœ๋ด‡์ด ๊ณต์žฅ์˜ ์ƒ์‚ฐ๋ผ์ธ์—์„œ ๋‹จ์ˆœ ์ž‘์—…์ž๋ฅผ ๋Œ€์ฒดํ•˜๊ฑฐ๋‚˜ ๊ฐ€์ •์—์„œ ํž˜๋“ ์ผ์„ ๋„์šธ๋•Œ ๋กœ๋ด‡์ด ์ฃผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” ์—…๋ฌด๋Š” ์กฐ๋ฆฝ์ž‘์—…์ด๋‹ค. ๋กœ๋ด‡์ด ์ด๋Ÿฌํ•œ ์กฐ๋ฆฝ์ž‘์—…์„ ์›ํ™œํžˆ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ์กฐ๋ฆฝ์ž‘์—…์„ ๋Œ€ํ‘œํ•˜๋Š” ํŽ™์ธํ™€ ์ž‘์—…์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํŽ™์ธํ™€ ์ž‘์—…์ด๋ž€ ํŠน์ • ๋ฌผ์ฒด(peg)๋ฅผ ๋ชจ์–‘์ด ๋งž๋Š” ๊ตฌ๋ฉ(hole)์— ๋ผ์›Œ ๋งž์ถ”๋Š” ์ž‘์—…์œผ๋กœ, ๋‚˜์‚ฌ๋ฅผ ์กฐ๋ฆฝํ•˜๊ฑฐ๋‚˜, ํ†ฑ๋‹ˆ๋ฐ”ํ€ด๋ฅผ ์ถ•์— ๊ณ ์ •ํ•˜๋Š” ์ž‘์—…์„ ์˜ˆ๋กœ ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๋กœ๋ด‡์„ ํ†ตํ•œ ํŽ™์ธํ™€ ์ž‘์—…์€ ๋จผ์ € ํ™€์˜ ์œ„์น˜๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ํŽ™์„ ์‚ฝ์ž…ํ•˜๋Š” ๊ณผ์ •์œผ๋กœ ์ง„ํ–‰๋˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ๊ณผ์ •์—์„œ ํ™€์˜ ์ •ํ™•ํ•œ ์œ„์น˜์ •๋ณด๋Š” ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํŽ™์ธํ™€ ์ž‘์—…์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜๊ณ , ๋น„์ •ํ˜•ํ™˜๊ฒฝ์—์„œ ํŽ™์ธํ™€ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์™ธ๋ถ€์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ์ „๋žต์˜ ์œ ํšจ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ•œ๊ตญ์ƒ์‚ฐ๊ธฐ์ˆ ์—ฐ๊ตฌ์› RSCL์—ฐ๊ตฌ์‹ค์˜ ์–‘ํŒ”๋กœ๋ด‡์„ ์ด์šฉํ•˜์—ฌ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋จผ์ € ํ•œ ํŒ” ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ํŽ™์ธํ™€ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ํ™•์žฅํ•˜์—ฌ ์–‘ํŒ”๋กœ๋ด‡์˜ ๊ฐ ํŒ”์— ํ™€๊ณผ ํŽ™์„ ๋ถ€์ฐฉํ•˜์—ฌ ๊ทธ ์ „๋žต์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.I. ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋ชฉํ‘œ 3 1.3 ๋…ผ๋ฌธ ๊ตฌ์„ฑ 4 II. ํŽ™ ์ธ ํ™€ 5 2.1 ํŽ™์ธํ™€ ์ž‘์—… 5 2.2 ์ผ๋ฐ˜์ ์ธ ํŽ™์ธํ™€ ์ „๋žต 6 2.2.1 ๋น„์ „์ •๋ณด ์ด์šฉ 7 2.2.2 F/T ์„ผ์„œ๋ฅผ ์ด์šฉํ•œ ํ™€ ์œ„์น˜ ์ถ”์ • 8 2.2.3 ํƒ์ƒ‰์ „๋žต ์‚ฌ์šฉ 9 2.2.4 ๋Šฅ/์ˆ˜๋™ ์ปดํ”Œ๋ผ์ด์–ธ์Šค 10 III. ํŽ™์ธํ™€ ์ „๋žต ์ œ์•ˆ 12 3.1 ๋‚˜์„ -์Šคํฌ๋ฅ˜ ๋ชจ์…˜ 14 3.2 ์„ผ์„œ๋ฆฌ์Šค ์ˆ˜๋™ ์ปดํ”Œ๋ผ์ด์–ธ์Šค 16 IV. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 18 4.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ 18 4.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ 19 V. ํ•œํŒ” ํŽ™์ธํ™€ ์‹คํ—˜ 21 5.1 ์‹คํ—˜ ํ™˜๊ฒฝ 21 5.2 ์ „๋žต ๊ตฌํ˜„ 24 5.3 ํ•œํŒ” ํŽ™์ธํ™€ ์‹คํ—˜ ๊ฒฐ๊ณผ 27 5.3.1 ์›ํ˜• ํŽ™์ธํ™€ ์‹คํ—˜ 28 5.3.2 ์‚ฌ๊ฐ ํŽ™์ธํ™€ ์‹คํ—˜ 32 VI. ์–‘ํŒ” ํŽ™์ธํ™€ ์‹คํ—˜ 34 6.1 ์–‘ํŒ”๋กœ๋ด‡ ์‹œ์Šคํ…œ 34 6.2 ์–‘ํŒ” ํŽ™์ธํ™€ ์‹คํ—˜ ๊ฒฐ๊ณผ 36 VII. ๊ฒฐ ๋ก  40 ์ฐธ๊ณ ๋ฌธํ—Œ 42 Abstract 44Maste

    The Critical Assessment of Heterogeneous Outcome of CEO Hubris

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฒฝ์˜ํ•™๊ณผ, 2014. 2. ๋ฐ•์ฒ ์ˆœ.This dissertation aims to examine and explore the research area of CEO hubris. Research from the institutional theory explains the homogenous aspects of organization, however, lacks the explanations of heterogeneous behavior. This paper attempts to explain the heterogeneous behavior through CEO hubris. Thus, I conducted one empirical study and one review paper based on CEO hubris. First study is based CEO hubris and institutional theory through corporate social responsibility. It argues that CEO hubris does not follow the norm on corporate social responsibility due to arrogant and simple minded behavior of CEO hubris characteristics. Rather than following the norm of corporate social responsibility from institutional pressure, the degree of corporate social responsibility from CEO hubris will either be very high or very low. Furthermore, internal control mechanisms using ratios of outside board of directors and foreign ownership as a moderating variable is used for this research. Second study is a review paper based on CEO hubris, overconfidence, CEO celebrity, and narcissism. This paper attempts to clarify the confusion of similar perspectives by exploring and investigating a comprehensive review of the related theories by looking into the origin, definition, cause and outcome.OVERALL INTRODUCTIONโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ1 STUDY 1 CEO HUBRIS AND INSTITUTIONAL PRESSURE: CORPORATE SOCIAL RESPONSIBILITY โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ7 Abstractโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ4 Introduction โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ5 Theory and Hypothesisโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ10 Methodโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ23 Resultsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ30 Discussionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ33 Conclusionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ37 STUDY 2 REVIEW PAPER: ANTECEDENTS AND OUTCOMES OF CEO HUBRIS โ€ฆโ€ฆ38 Abstract.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ39 Introduction โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ40 CEO Hubris: The Phenomenonโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ42 Overconfidence, CEO Celebrity and Narcissismโ€ฆโ€ฆโ€ฆ51 Limitations and Future Researchโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ71 Conclusionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ73 OVERALL CONCLUSIONโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ74 REFERENCESโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ77 ๊ตญ๋ฌธ์ดˆ๋กโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ107 Tables Descriptive Statistics and correlations of Study...โ€ฆโ€ฆโ€ฆ96 Results of Deviation Median Regression Analysisโ€ฆโ€ฆโ€ฆ97 Results of KEJI Regression Analysis โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ98 Antecedents and Outcomes of CEO Hubris...................99 Antecedents and Outcomes of Overconfidenceโ€ฆโ€ฆโ€ฆโ€ฆ100 Antecedents and Outcomes of CEO Celebrityโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ101 Antecedents and Outcomes of Narcissismโ€ฆ................102 Figures Research Modelโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ105 Summary Model of Antecedents and Outcomes of CEO Hubrisโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ106Docto

    implant ์‹œ์ˆ ๋กœ ์ธํ•œ ํ•˜์น˜์กฐ ์‹ ๊ฒฝ์˜ ์†์ƒ์— ์˜ํ•œ ๋ณ€ํ™”์™€ ์น˜๋ฃŒ ๋ฐ ๊ทธ ์˜ˆํ›„ (์ข…์„ค)

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜ํ•™๊ณผ, 2012. 2. ํ™ฉ์ˆœ์ •.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž„์ƒ ์ ์šฉ ์ดํ›„ ๋งŽ์€ ์ž„์ƒ์  ์—ฐ๊ตฌ์™€ ๊ทธ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง„ ์น˜๊ณผ ์ž„ํ”Œ๋ž€ํŠธ์— ๋Œ€ํ•œ ํ•ฉ๋ณ‘์ฆ ์ค‘ ํ•˜๋‚˜์ธ ํ•˜์น˜์กฐ ์‹ ๊ฒฝ ์†์ƒ์— ๋Œ€ํ•˜์—ฌ ์†์ƒ ์‹œ ์‹ ๊ฒฝ์˜ ๋ณ€ํ™”์™€ ์น˜๋ฃŒ ๋ฐ ๊ทธ ์˜ˆํ›„์— ๋Œ€ํ•ด ์•Œ์•„ ๋ณด๊ธฐ ์œ„ํ•˜์—ฌ 1942๋…„๋ถ€ํ„ฐ 2011๋…„๊นŒ์ง€์˜ ๋ณด๊ณ ๋œ ๋ฌธํ—Œ๋“ค์„ ๊ณ ์ฐฐ์„ ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๊ณ ์ฐฐ๊ฒฐ๊ณผ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‚ฌ์‹ค์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ•˜์น˜์กฐ ์‹ ๊ฒฝ์€ ํ•˜์•…๊ด€๊ณต ํ†ต๊ณผํ•˜์—ฌ ์„ฌ์œ ์„ฑ ์†์— ๋‘˜๋Ÿฌ ์Œ“์—ฌ ํ•˜์•…๊ด€์„ ๋”ฐ๋ผ ์„ค์ธก์—์„œ ํ˜‘์ธก์œผ๋กœ ๊ฐ€๋กœ ์ง€๋ฅด๋ฉฐ ์ „์น˜๋ถ€๋กœ ์ฃผํ–‰ํ•˜๋ฉด์„œ ์ด์‹ ๊ฒฝ๊ณผ ์ ˆ์น˜์‹ ๊ฒฝ์œผ๋กœ ๋‚˜๋ˆ„์–ด์ง€๊ฒŒ ๋œ๋‹ค. ํ•˜์น˜์กฐ ์‹ ๊ฒฝ์€ 2๊ฐœ๋กœ ๊ฐˆ๋ผ์ง€๋Š” ์ฃผํ–‰๊ฒฝ๋กœ, ๋ฐฉ์‚ฌ์„ ์ƒ ๋ณด์ด์ง€ ์•Š๋Š” ํ•˜์•…๊ด€๊ณผ ํ•˜์•…๊ณต ๋“ฑ ์‚ฌ๋žŒ์— ๋”ฐ๋ผ ์ฃผํ–‰ ๊ฒฝ๋กœ๊ฐ€ ๋‹ค์–‘ํ•˜๊ณ , ์‹ค์ œ๋กœ ํ•˜์•…๊ด€์€ ํ•˜๋‚˜์˜ ๊ด€์ด ์•„๋‹ˆ๋ผ ํ•ด๋ฉด๊ณจ๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ๊ณ  ์ด๊ฒƒ์„ ์ž‘์€ ์‹ ๊ฒฝ๋“ค์ด ์ฃผํ–‰ํ•˜๊ณ  ์žˆ์–ด ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ์‹œ ์†์ƒ์ด ์ผ์–ด๋‚˜๊ธฐ ์‰ฝ๊ธฐ ๋•Œ๋ฌธ์— ๋”์šฑ ์ฃผ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ž„ํ”Œ๋ž€ํŠธ ์‹œ์ˆ ์— ์˜ํ•œ ํ•˜์น˜์กฐ ์‹ ๊ฒฝ ์†์ƒ์€ ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ์‹œ ๋“œ๋ฆด์— ์˜ํ•œ ์†์ƒ, ์‹๋ฆฝ์ฒด์˜ ์˜ํ•œ ์†์ƒ, ์—ฐ์กฐ์ง ์†์ƒ์— ๋”ฐ๋ฅธ ์‹ ๊ฒฝ ์†์ƒ ๋“ฑ์— ์ผ์–ด๋‚˜๋ฉฐ ์‹ ๊ฒฝ์ง„ํƒ•, ์ถ•์‚ญ๋‹จ์—ด, ์‹ ๊ฒฝ์†๋‹จ์—ด๋กœ ๊ตฌ๋ถ„์ด ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์‹ ๊ฒฝ ์†์ƒ ํ›„ ์‹ ๊ฒฝ์˜ ๋ณ€ํ™”๋Š” ์ž„์ƒ์ ์œผ๋กœ ์กฐ์งํ•™์ ์œผ๋กœ ๋‚˜๋ˆ„์–ด์ง„๋‹ค. ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ ํ›„ ์ž„์ƒ์ ์œผ๋กœ ํ•˜์น˜์กฐ ์‹ ๊ฒฝ์˜ ์†์ƒ์— ๋”ฐ๋ฅธ ๊ฐ๊ฐ์ด์ƒ, ๊ฐ๊ฐ์ €ํ•˜, ๊ฐ๊ฐ๊ณผ๋ฏผ, ๊ฐ๊ฐ๋ถ€์ „, ๊ฐ๊ฐ์†Œ์‹ค ๋“ฑ์˜ ๊ฐ๊ฐ์žฅ์•  ๋ฐœ๋ณ‘๋ฅ ์€ 0~40%๋กœ ๋ณด๊ณ ๋œ๋‹ค. ์กฐ์งํ•™์ ์œผ๋กœ๋Š” ํ•˜์น˜์กฐ ์„ฌ์œ ๊ฐ€ ์†์ƒ๋˜๋ฉด ์‚ผ์ฐจ์‹ ๊ฒฝ์ ˆ ๋‚ด์˜ ์‹ ๊ฒฝ์„ธํฌ์ฒด์˜ ์—ผ์ƒ‰์งˆ์†Œ์šฉํ•ด์™€ ์›์œ„๋ถ€์—์„œ waller ๋ณ€์„ฑ์ด ์ผ์–ด๋‚˜ ์ถ•์‚ญ์ด ์žฌ์ƒ๋˜๊ณ  ์„ฌ์œ ๊ฐ€ ์žฌ์ƒ๋œ๋‹ค. ์‹ ๊ฒฝ์†์ƒ์˜ ํšŒ๋ณต์€ ์‹ ๊ฒฝ์†์ƒ์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๊ฒŒ ๋˜๋Š”๋ฐ ์‹ ๊ฒฝ ์••๋ฐ•์€ 4๊ฐœ์›”, ์‹ ๊ฒฝ ์ ˆ๋‹จ์€ 8๊ฐœ์›”๋กœ ์‹ ๊ฒฝ์••๋ฐ•์—์„œ ๊ฐ๊ฐ ํšŒ๋ณต์ด ๋น ๋ฅด๋‹ค. ์ˆ  ํ›„์— ๊ฐ๊ฐ ํšŒ๋ณต์— ์žˆ์–ด์„œ๋„ ์••๋ฐ•์ด ์ ˆ๋‹จ ๋ณด๋‹ค ํšŒ๋ณต์ด ๋น ๋ฅด๋‹ค. ํ•˜์น˜์กฐ ์‹ ๊ฒฝ ์†์ƒ ์‹œ ์น˜๋ฃŒ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋น„์™ธ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•๊ณผ ์™ธ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค. ์ž„ํ”Œ๋ž€ํŠธ๊ฐ€ ํ•˜์•…๊ด€์„ ์นจ๋ฒ”์‹œ ์ž„ํ”Œ๋ž€ํŠธ๋Š” ๋ฐ˜๋“œ์‹œ ์ œ๊ฑฐ ํ•˜๊ณ  ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋น„์™ธ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์•ฝ๋ฌผ์š”๋ฒ•๊ณผ ์ดํ•™์š”๋ฒ•์„ ์‹œํ–‰ํ•œ๋‹ค. ์•ฝ๋ฌผ ์š”๋ฒ•์œผ๋กœ๋Š” ์Šคํ…Œ๋กœ์ด๋“œ์™€ NSAIDs๋ฅผ 3์ฃผ๊ฐ„ ํˆฌ์—ฌํ•˜์—ฌํ•˜๋Š” ๊ฒƒ์ด ๊ถŒ์œ ๋˜๋ฉฐ ๋™ํ†ต์กฐ์ ˆ์„ ์œ„ํ•œ ํ•ญ๊ฒฝ๋ จ์ œ์™€ ํ•ญ์šฐ์šธ์„ฑ ์•ฝ๋ฌผ์š”๋ฒ•์€ ๋นจ๋ฆฌ ์‹œํ–‰ํ•˜๋Š” ๊ฒƒ์ด ํšจ๊ณผ์ ์ธ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„์™ธ๊ณผ์ ์ธ ์น˜๋ฃŒ๋ฒ•์„ ํ†ตํ•ด 3๊ฐœ์›” ๋™์•ˆ ๊ฐ๊ฐ์ €ํ•˜์˜ ๊ฐœ์„ ์ด ์—†๋Š” ๊ฒฝ์šฐ์—๋Š” ๋ฌธํ•ฉ์ˆ , ๊ฐ์••์ˆ , ์‹ ๊ฒฝ์ด์‹์ˆ ๊ณผ ๊ฐ™์€ ์™ธ๊ณผ์  ๋ฐฉ๋ฒ•์„ ์‹œํ–‰ํ•˜๋„๋ก ์ถ”์ฒœ๋˜๊ณ  ์žˆ๋‹ค.This paper addresses the issue of changes to the inferior alveolar nerve caused by complications associated with dental implants. It represents a cumulative summary of research materials on the topic from 1942 to 2011. From this research, we found the following results: The inferior alveolar nerve is surrounded with fibrous tissue and travels through the mandibular foramen and along the mandibular canal from the lingual side to the buccal side, then travels separately to the anterior incisor nerves and to the mental nerves. The inferior alveolar nerve exhibits a variety of anatomical eccentricity such as the possibility of a second inferior alveolar nerve, and the potential invisibility of the mandibular canal and mandibular foramen in radiographics. In fact, the mandibular canal is not a single canal but consists of a number of cancellous bones, and is home to so many smaller nerves that it is highly sensitive to damage caused by the placement of an implant. Inferior alveolar nerve injury by implant placement can be caused by drilling for the implant placement, the placement of the body itself, or soft tissue damage. Such injury may be classified as neuropraxia, axonnotmesis or neurotmesis. The changes to the nerve after injury may be analyzed clinically and histologically. After implant placement, the clinical incidence of paresthesia, hypoesthesia, hyperesthesia, dyesthesia and anesthesia caused by inferior alveolar nerve injury is reported to be within the range of 0 to 40%. Histologically, after the fibers of the inferior alveolar nerve are damaged, chromatolysis of the cell body in the trigeminal ganglion as well as waller degeneration in the distal end occur, after which the nerve fibers regenerate. The recovery period of injuries to the inferior alveolar nerve depends on the type of injury. Nerve compression recovers faster at around 4 months, and nerve amputation takes longer, around 8 months. Sensory recovery from nerve compression after surgery is faster than that of nerve amputation. There are surgical and nonsurgical methods for the treatment of inferior alveolar nerve injuries. When an implant penetrates the mandibular canal, it must be surgically removed and followed up with medicament and physiological treatments. Medicament that includes the administration of steroids and NSAIDs for 3 weeks is suggested. The use of antidepressants and anticonvulsants for pain control has been reported to be more effective the sooner after surgery that they are administered. If the patient shows no improvement after these treatments, surgical methods such as anastomosis, decompression and nerve grafts are suggested by a majority of authors.Maste

    Induction of heat shock protein in the optic nerve tissue using transpupillary thermotherapy

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์•ˆ๊ณผํ•™์ „๊ณต,2005.Docto
    corecore