20 research outputs found
Several Issues on the National Assembly Regulation
ํ๋ฒ ์ 64์กฐ ์ 1ํญ์์๋ ๊ตญํ๋ ๋ฒ๋ฅ ์ ์ ์ดํ์ง ์๋ํ๋ ๋ฒ์ ๋ด์์ ์์ฌ์ ๋ด๋ถ๊ท์จ์ ๊ดํ์ฌ ๊ท์น์ ์ ์ ํ ์ ์๋ค ๊ณ ๊ท์ ํ๊ณ ์๋ค. ํ์๋ ์ด ๊ท์ ๊ณผ ๊ด๋ จํ์ฌ ์ด ๊ธ์์ ๋ค์๊ณผ ๊ฐ์ ๊ฒฐ๋ก ์ ๋์ถํ๊ณ ์๋ค. ์ฒซ์งธ๋, ํ๋ฒ์์ ๊ตญํ๊ฐ ์ ์ ํ๋ ์์ฌ์ ๋ด๋ถ๊ท์จ์ ๊ดํ ๋ฒ๊ท๋ฒ์ ๋ํด ๊ท์น ์ด๋ผ๋ ์ฉ์ด๋ฅผ ์ฌ์ฉํ๊ณ ์๋ค๊ณ ํ์ฌ ๊ตญํ๊ท์น์ ์ง์์ ๋ํด ๆณๆฎต้่ชช์์ ๋งํ๋
๋ฒ๋ฅ ๋ณด๋ค ํ์๊ฐ๋
์ผ๋ก์์ ์ง์๋ง ์ธ์ ํ์ฌ์๋ ์๋ ๋๋ค. ๊ทธ๋ฆฌ๊ณ ๊ตญํ์ ํจ๊ป ๋
๋ฆฝ๋ ํ๋ฒ๊ธฐ๊ด์ธ ๋๋ฒ์, ํ๋ฒ์ฌํ์, ์ค์์ ๊ฑฐ๊ด๋ฆฌ์์ํ๊ฐ ์ ์ ํ๋ ๋ฒ๊ท๋ฒ์ ๋ํด ๊ตญํ๊ท์น์์ ์ฌ์ฉํ๋ ๊ท์น ๊ณผ ๋์ผํ ์ฉ์ด๋ฅผ ์ฌ์ฉํ๊ณ ์๋ค๊ณ ํ์ฌ ๋ชจ๋ ๋๋ฑํ ํจ๋ ฅ์ ์ธ์ ํ ๊ฒ๋ ์๋๋ค. ๊ตญํ๊ท์น์ ์ ์ ํ๋ ๊ตญํ๋ ์
๋ฒ๊ถ์ ๊ฐ์ง๊ณ ์๊ธฐ ๋๋ฌธ์ ๊ตญํ๊ท์น์ ๋ํด์๋ ๋ฒ๋ฅ ๋ก์์ ์ง์๊ฐ ์ธ์ ๋์ด์ผ ํ๋ค. ๋์งธ๋, ๊ตญํ๊ท์น์ ๋ํด ๋ฒ๋ฅ ๋ก์์ ํจ๋ ฅ์ ์ธ์ ํ๋ ๊ฒฝ์ฐ์ ๋ฒ๋ฅ ๊ท์ ๊ณผ ์ถฉ๋ํ
๋ ๊ตญํ๊ท์น์ ํจ๋ ฅ์ด ๋ฌธ์ ๋๋๋ฐ, ํ์๋ ํ๋ฒ ์ 64์กฐ ์ 1ํญ ๊ท์ ์๋ ๋ถ๊ตฌํ๊ณ ๊ตญํ๊ท์น์ ์ ์ด๋๋ ๋ฒ๋ฅ ์ ๋ฌต์์ ์ผ๋ก ํ์งํ๊ฑฐ๋ ๊ฐ์ ํ ์ ์๋ ๊ฐ๋ฅ์ฑ์ ์ธ์ ํ๊ณ ์๋ค. ์
์งธ๋, ๊ตญํ๋ฒ ์ 166์กฐ ์ 1ํญ์์๋ ๊ตญํ๋ ํ๋ฒ ๋ฐ ๋ฒ๋ฅ ์ ์ ์ด๋์ง ์๋ํ๋ ๋ฒ์ ์์์ ์์ฌ์ ๋ด๋ถ๊ท์จ์ ๊ดํ ๊ท์น์ ์ ์ ํ ์ ์๋ค ๊ณ ๊ท์ ํ์ง๋ง ๋ ๊ตญ
ํ๋ฒ ๊ท์ ์ ํ๋ฒ ์ 64์กฐ ์ 1ํญ๊ณผ ์ค์ง์ ์ผ๋ก ๅ่ชๅ่ฆ(tautology)์ ๊ท์ ์ผ ๋ฟ ๊ตญํ๊ท์น์ ์ ์ ์ ๋ํ ์์๊ทผ๊ฑฐ๊ฐ ๋๋ ๊ฒ์ ์๋๋ผ๋ ์ ์ด๋ค.์ด ๋
ผ๋ฌธ์ 2010๋
์กฐ์ ๋ํ๊ต ํ์ ์ฐ๊ตฌ๋น์ ์ง์์ ๋ฐ์ ์ฐ๊ตฌ๋์
On the Ground and the Scope of the Enactment Power of Municipal Ordinance
The writer asserts in this article that enactment power of municipal ordinance
bases on the Constitution ยง117 (1) which represents the resolution of enactment
power of the Constitution, and the proviso of the Local Autonomy Act ยง22 is
unconstitutional which regulates the enactment of municipal ordinance concerning
the restriction on rights of residents, the imposition of obligation on residents, or
penal provisions without delegation of individual laws.
If we stands on unconstitutionality theory, it doesnt matter whether the
individual law delegates comprehensively so long as the municipal ordinance
restrict the right of residents, imposes obligation on residents or stipulates the
penalty within the limit of the laws and subordinate statutes. Comprehensive
delegation to administrative legislation is void. If we apply this void doctrine on
the delegation of municipal ordinance enactment and comprehensive delegation to
the ordinance is void, nevertheless the local government can enact the same
provision based on autonomous power of enactment conferred by the
Constitution, and this enactment cannot be treated as void. But it does not
eliminate the necessity of discussing the scope of the enactment power of
municipal ordinances as the Constitution restricts the enactment power within the
delegation of the laws and the subordinate statutes.
Under the constitutionality theory, local government cannot enact restricting the
right of residents, imposing obligation on residents or stipulating the penalty
without delegation of individual laws. Though the individual laws delegate the
enacting power, subsequent problem arises whether general or comprehensive
delegation is suffice or individual and specific delegation is necessary. If we...์ด ๋
ผ๋ฌธ์ 2008๋
์กฐ์ ๋ํ๊ต ํ์ ์ฐ๊ตฌ๋น์ ์ง์์ ๋ฐ์ ์์ฑ๋์์
๊ฒฉ์ U(1) ๊ฒ์ด์ง ์ด๋ก ์ ๊ตฌ์์ํ์ ์์ ์ด ๊ทธ๋ฆฌ๊ณ ๋จธ์ ๋ฌ๋์ ์ด์ฉํ ๋ถ์
ํ์๋
ผ๋ฌธ(์์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์์ฐ๊ณผํ๋ํ ๋ฌผ๋ฆฌยท์ฒ๋ฌธํ๋ถ(๋ฌผ๋ฆฌํ์ ๊ณต), 2022. 8. ์ด์์ข
.Using lattice formalism, we can show that there exists confining phase in the strong coupling limit for the compact U(1) gauge theory. Since we know that there is no confining behavior between electrons and positrons in continuum U(1) gauge theory, we may expect to have some kind of deconfining phase transition at some coupling constant.
In this paper, I have shown that in the strong coupling limit, the potential between static lepton and antilepton pair of the theory is linearly dependent on the distance between two particles. Then U(1) gauge configurations are generated using the Monte Carlo algorithm and phase transition is simulated. From the gauge configurations, the Polyakov loop is measured which serves as the order parameter of the transition. Finally, the critical inverse coupling constant squared ฯ_c and scaling exponents ฮฒ, ฮฝ is extracted from fitting the Binder cumulant.
In addition to the conventional fitting methods, several physically motivated neural network structures are introduced to show their potential in application to physics problems. Few physically motivated neural network structures are introduced and their performances are compared.๊ฒฉ์ ๊ท๊ฒฉํ๋ ์ฝคํฉํธ U(1) ๊ฒ์ด์ง ์ด๋ก ์ ์ฌ์ฉํ๋ฉด ๊ฐํ ๊ฒฐํฉ ์์ ๊ทนํ์์ ๊ตฌ์๋ ์์ด ์กด์ฌํ๋ ๊ฒ์ ๋ณด์ผ ์ ์๋ค. ํ์ง๋ง ์ฐ์์ฒด U(1) ๊ฒ์ด์ง ์ด๋ก ์์๋ ์ ์์ ์์ ์์ ๊ตฌ์์ ๊ด์ฐฐ๋์ง ์๊ธฐ ๋๋ฌธ์ ์ด๋ค ๊ฒฐํฉ ์์ซ๊ฐ์์ ์ด๋ค ์ข
๋ฅ์ ์์ ์ด๊ฐ ์กด์ฌํด์ผ ํจ์ ์์ธกํ ์ ์๋ค.
์ด ๋
ผ๋ฌธ์์๋ ๊ฐํ ๊ฒฐํฉ ์์ ๊ทนํ์์ ์ด๋ก ์ ์ ์ ์ธ ๋ ํค๊ณผ ๋ฐ๋ ํค ์ฌ์ด์ ๊ทธ ๊ฑฐ๋ฆฌ์ ์ ํ์ผ๋ก ๋น๋กํ๋ ์์น์๋์ง๊ฐ ์กด์ฌํจ์ ๋ณด์๋ค. ๋ค์์ผ๋ก๋ ๋ชฌํ
์นด๋ฅผ๋ก ์๊ณ ๋ฆฌ์ฆ์ ์ด์ฉํด U(1) ๊ฒ์ด์ง ๋ฐฐ์น๋ฅผ ์์ฑํ์ฌ ์ด๋ก ์ ์์ ์ด๋ฅผ ์๋ฎฌ๋ ์ด์
ํ์๋ค. ์์ฑ๋ ๊ฒ์ด์ง ๋ฐฐ์น๋ค๋ก๋ถํฐ ์์ ์ด์ ์ง์ ๋ณ์์ธ Polyakov loop๋ฅผ ์ธก์ ํ์๊ณ Binder cumulant์ curve crossing method๋ฅผ ์ด์ฉํด ์์ ์ด๊ฐ ์ผ์ด๋๋ ๊ฒฐํฉ์์์ ๋น๋ก์ง์ ฮฒ, ฮฝ๋ฅผ ๊ณ์ฐํ์๋ค.
๊ธฐ์กด์ ๋ฐฉ๋ฒ์ ๋ํด ๋ฌผ๋ฆฌ์ ์ธ ๊ธฐ๋ฐ์ ๊ทผ๊ฑฐ๋ก ์ค๊ณ๋ ์ธ๊ณต์ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ๋ช ๊ฐ์ง ์๊ฐํ๊ณ ๋ชจํ ๊ฐ์ ์ฑ๋ฅ์ ๋น๊ตํด ๋ณด์๋ค.ABSTRACT 5
1. Introduction
1.1. Lattice Gauge Theory 1
1.2. Confinement in lattice U(1) gauge theory 1
1.3. Machine learning and lattice U(1) gauge theory 1
1.4. Summary of this thesis 2
1.4.1. Confinement in pure lattice U(1) gauge theory 4
1.4.2. Numerical simulation of the phase transition 5
1.4.3. Machine learning analysis 5
I Confinement in lattice U(1) pure gauge theory 7
2. Pure U(1) gauge action on lattice 9
2.1. Gauge invariance of discretized Dirac field and introduction of link variable 9
2.2. Haar measure and integration rule 10
2.2.1. Building Haar measure for general compact Lie group G 10
2.3. Gauge invariant objects on lattice and pure gauge action 11
3. Strong coupling expansion and confinement in lattice U(1) gauge theory 15
3.1. Extracting potential between static lepton and anti-lepton pair 15
3.1.1. Euclidean Correlator 16
3.1.2. Relation between Wilson loop expectation value and static lepton - antilepton potential
16
3.2. Strong coupling expansion 20
3.2.1. Plaquette integration rules for U(1) gauge theory 20
3.2.2. Wilson loop in strong coupling limit 21
II Numerical simulation of the phase transition 25
4. Generating U(1) gauge ensemble 27
4.1. Monte Carlo Metropolis algorithm 27
4.1.1. Markov chain and Importance sampling 27
4.1.2. Metropolis algorithm 28
4.2. Setting target precision 29
4.2.1. Autocorrelation 30
4.2.2. Thermalization 32
4.3. Generated ensemble information 33
5. Detection of phase transition 35
5.1. Polyakov loop 35
5.2. Plaquette sum 36
6. Scaling finite size effect 39
6.1. Scaling hypothesis 39
6.1.1. Finite size effect and classification of the transition type 39
6.1.2. Finite size scaling from the scaling hypothesis 42
6.2. Binder ratio and 4th order cumulant 43
6.3. Fitting results and discussion 45
6.3.1. ฯ_c 45
6.3.2. ฮฒ and ฮฝ 45
6.3.3. Discussion on the fitting results 47
III Machine learning Analysis 49
7. Physically inspired neural network models and generalization ability 51
7.1. Deep Neural Network (DNN) 51
7.1.1. Forward phase 51
7.1.2. Backpropagation phase 52
7.1.3. Optimization algorithms 54
7.2. Convolutional Neural Network (CNN) 56
7.2.1. Convolutional layer 56
7.2.2. Pooling layer 57
7.3. Physics inspired neural network models 57
7.3.1. Polyakov kernel 58
7.3.2. Positional encoding 60
7.4. Extrapolating near the phase transition 61
7.4.1. Training data and model structures 61
7.4.2. Generalization ability 62
7.5. Training results and discussion 62
Bibliography 70์