10 research outputs found

    ์ฐจ๋Ÿ‰์˜ ์Šคํฌํ‹ฐํ•œ ์—”์ง„์Œ ์ •๋Ÿ‰ํ™”๋ฅผ ์œ„ํ•œ ์Œ์งˆ ์ง€์ˆ˜ ๊ฐœ๋ฐœ๊ณผ ๊ทธ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•œ ๋ฐฉ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊ฐ•์—ฐ์ค€.Developments in vehicle technology and accompanying improvements in NVH performance have led to increased consumer demand for high sound quality, such as a sporty engine sound. As sporty sound is subjective, this thesis sought to express its meaning quantitatively and to develop a model that accommodates the differences in individuals tastes. This thesis tackles two main issues. The first is to identify the efficiency of factor analysis for utilizing it in developing a sound quality index of sportiness. The second is to further improve the accuracy of the sound quality index and to refine the definition of sportiness by adding K-means cluster analysis. In Chapter 2 and 3, the initial procedure for developing the sportiness index is presented. Accordingly, the process of recording the vehicles interior operating sound under wide open throttle acceleration conditions for 4 different vehicles and producing 13 evaluation samples by using parametric band-pass filtering is described. Acoustic and psychoacoustic parameters of the samples produced were calculated, and the preferences for sportiness were identified through jury testing. Jury test was jointly carried out by 23 evaluators and a semantic differential method was used to find adjectives that could explain the concept and preference for sportiness. The Sportiness index was developed using factor analysis and multiple linear regression analysis between the calculated values and the previously collected jury test results. The index was then validated by examining the correlation coefficient through a new sample group. Furthermore, the necessity of factor analysis for the sportiness index development was concluded. In Chapter 4, after K-means clustering, factor and multiple linear regression analysis were repeated to develop a model reflecting differences for each group in evaluators tastes. The improved index was also retested using new evaluators and new samples, demonstrating its reliability through the high correlation observed in the validation studies. This sound quality evaluation index is useful for producing highly accurate results and reflecting the opinions of groups expressing a variety of commonalities.ํ˜„์žฌ ์ฐจ๋Ÿ‰ ๊ฐœ๋ฐœ ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ์ฐจ๋Ÿ‰์˜ NVH ์„ฑ๋Šฅ์ด ๋งŽ์ด ๊ฐœ์„ ๋˜์—ˆ๊ณ , ์ด๋กœ ์ธํ•ด ์†Œ์Œ ์ €๊ฐ์˜ ์ธก๋ฉด๋ณด๋‹ค ๋“ฃ๊ธฐ ์ข‹์€ ์†Œ๋ฆฌ์™€ ๊ฐ™์€ ์Œ์งˆ ์ธก๋ฉด์—์„œ์˜ ์†Œ๋น„์ž์˜ ์ˆ˜์š”๊ฐ€ ๊ณ„์†ํ•ด์„œ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์Šคํฌํ‹ฐํ•œ ์—”์ง„์Œ์ด ๊ทธ ๋ฒ”์ฃผ์— ์†ํ•˜๊ณ , ์ด๋Š” ์‚ฌ๋žŒ๋งˆ๋‹ค ๋– ์˜ฌ๋ฆฌ๋Š” ์ด๋ฏธ์ง€๊ฐ€ ๋‹ค๋ฅด๊ณ  ์†Œ๋ฆฌ์— ๋Œ€ํ•œ ์ทจํ–ฅ์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ๊ด€์ ์ธ ๊ฐœ๋…์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์Œ์งˆ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด์„œ ๊ทธ๋Ÿฌํ•œ ๊ฐœ๋…์˜ ๊ฐ๊ด€์ ์ธ ์˜๋ฏธ๋ฅผ ์ฐพ์•„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ , ์ทจํ–ฅ์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ์ˆ˜์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ฐพ๊ธฐ ์œ„ํ•ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃจ๋Š” ๋‚ด์šฉ์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š”, ์Šคํฌํ‹ฐํ•จ์˜ ์Œ์งˆ ์ง€์ˆ˜๋ฅผ ๊ฐœ๋ฐœํ•จ์— ์žˆ์–ด ์š”์ธ ๋ถ„์„์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์š”์ธ ๋ถ„์„์˜ ํšจ์œจ์„ฑ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•œ ๊ฒƒ์ด๊ณ , ๋‘ ๋ฒˆ์งธ๋Š”, K-ํ‰๊ท  ๊ตฐ์ง‘ ๋ถ„์„์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์Œ์งˆ ์ง€์ˆ˜์˜ ์ •ํ™•๋„๋ฅผ ๋” ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์Šคํฌํ‹ฐํ•จ์˜ ์˜๋ฏธ๋ฅผ ๋”์šฑ ๊ตฌ์ฒดํ™”ํ•˜๊ณ ์ž ํ•œ ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์˜ 2์žฅ๊ณผ 3์žฅ์—์„œ๋Š”, ์–‘์‚ฐ๋˜๊ณ  ์žˆ๋Š” ์ฐจ๋Ÿ‰ 4๋Œ€๋ฅผ wide open throttle ์กฐ๊ฑด์—์„œ ์—”์ง„์Œ์„ ๋…น์Œํ•˜์˜€๊ณ , ๋…น์Œ๋œ ์†Œ๋ฆฌ๋กœ๋ถ€ํ„ฐ parametric band-pass filter๋ฅผ ์‚ฌ์šฉํ•ด ์‹ ํ˜ธ๋ฅผ ๋ณ€์กฐํ•˜์—ฌ 13๊ฐœ์˜ ์ƒ˜ํ”Œ์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ œ์ž‘๋œ ์ƒ˜ํ”Œ์˜ ์Œํ–ฅ์‹ฌ๋ฆฌํ•™์  ๋งค๊ฐœ๋ณ€์ˆ˜๋“ค์„ ๊ณ„์‚ฐํ•˜์˜€๊ณ , ์ฒญ์Œ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด์„œ ์Šคํฌํ‹ฐํ•จ์— ๋Œ€ํ•œ ์„ ํ˜ธ๋„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์ฒญ์Œ ํ‰๊ฐ€๋Š” 23๋ช…์˜ ํ‰๊ฐ€์ž๊ฐ€ ์ฐธ์—ฌํ•˜์˜€๊ณ , ์˜๋ฏธ๋ฏธ๋ถ„๋ฒ•์„ ์‚ฌ์šฉํ•ด ์Šคํฌํ‹ฐํ•จ์˜ ์„ ํ˜ธ๋„์™€ ์Šคํฌํ‹ฐํ•จ์„ ์ž˜ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์šฉ์‚ฌ๋“ค์„ ์ฐพ์•„๋ƒˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์š”์ธ ๋ถ„์„์— ์ ์šฉํ•ด ์‚ฌ๋žŒ๋“ค์ด ๊ณตํ†ต์ ์œผ๋กœ ๋Š๋ผ๋Š” ์Šคํฌํ‹ฐํ•จ์˜ ํŠน์„ฑ์„ ๋‘ ์š”์ธ์œผ๋กœ ํ‘œํ˜„ํ•˜์˜€๊ณ , ํ‰๊ฐ€ ๊ฒฐ๊ณผ ๊ฐ„ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ ๋ถ„์„์„ ์ด์šฉํ•ด ๊ด€๋ จ๋œ ์Œ์งˆ ์ธ์ž๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ์Šคํฌํ‹ฐํ•จ ์ •๋Ÿ‰ํ™” ์ง€์ˆ˜๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์ง€์ˆ˜๋Š” ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ๊ตฐ์„ ํ†ตํ•ด ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ ํ™•์ธํ•˜์—ฌ ๊ทธ ์œ ํšจ์„ฑ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์š”์ธ ๋ถ„์„ ์‚ฌ์šฉ ์œ ๋ฌด์— ๋”ฐ๋ฅธ ํšŒ๊ท€์‹์˜ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•จ์œผ๋กœ์จ ์š”์ธ ๋ถ„์„์˜ ํ•„์š”์„ฑ์— ๋Œ€ํ•ด์„œ๋„ ์–ธ๊ธ‰ํ•˜์˜€๋‹ค. 4์žฅ์—์„œ๋Š”, ์Šคํฌํ‹ฐํ•จ์— ๋Œ€ํ•œ ํ‰๊ฐ€์ž๋“ค์˜ ์„ฑํ–ฅ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ํ† ๋Œ€๋กœ K-ํ‰๊ท  ๊ตฐ์ง‘ ๋ถ„์„์„ ํ™œ์šฉํ•ด ๊ฐ ์ง‘๋‹จ์— ๋งž๋Š” ํšŒ๊ท€์‹์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ์š”์ธ ๋ถ„์„๊ณผ ๋‹ค์ค‘์„ ํ˜•ํšŒ๊ท€ ๋ถ„์„์„ ์žฌ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์ง€์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ์„ ์—ญ์‹œ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ํ‰๊ฐ€์ž๋“ค๋กœ ์žฌ๊ฒ€์‚ฌํ•˜์˜€๊ณ  ๋†’์€ ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ ํ† ๋Œ€๋กœ ๊ทธ ์‹ ๋ขฐ์„ฑ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœ๋œ ์Œ์งˆ ํ‰๊ฐ€ ์ง€์ˆ˜๋Š” ์Šคํฌํ‹ฐํ•จ์„ ๊ฐ๊ด€์ ์œผ๋กœ ์ •์˜ํ•จ์— ์žˆ์–ด ๋˜ ๋‹ค๋ฅธ ๊ณตํ†ต์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ง‘๋‹จ์˜ ์˜๊ฒฌ๊นŒ์ง€๋„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๊ณ  ์ •ํ™•๋„ ๋†’์€ ๊ฒฐ๊ณผ๋ฅผ ์‚ฐ์ถœํ•ด์ฃผ๋Š” ์œ ์šฉํ•œ ์ง€์ˆ˜์ด๋‹ค.CHAPTER 1 INTRODUCTION 1 CHAPTER 2 SOUND QUALITY EVALUATION OF VEHICLE ENGINE SPORTINESS 6 2.1 Introduction 6 2.2 Sound recording and objective evaluation of engine sound 7 2.2.1 Recording of interior sound 7 2.2.2 Production of sound samples 12 2.2.3 Calculation of objective acoustic and psychoacoustic parameters 16 2.2.3.1 Sound pressure level 18 2.2.3.2 Loudness 19 2.2.3.3 Sharpness 20 2.2.3.4 Roughness 21 2.2.3.5 Tonality 22 2.3 Subjective evaluation of sound quality 23 2.3.1 Semantic differential method and pre-test 23 2.3.2 Jury testing 26 CHAPTER 3 DEVELOPMENT OF EVALUATION INDEX OF SPORTY ENGINE SOUND : USING FACTOR ANALYSIS 32 3.1 Introduction 32 3.2 Factor analysis 33 3.3 Regression analysis 42 3.3.1 Multiple linear regression 42 3.3.2 Development of a sound quality index for sportiness 44 3.4 Validation 50 3.5 Summary 55 CHAPTER 4 NEW APPROACH TO DEVELOPMENT OF EVALUATION INDEX OF SPORTY ENGINE SOUND : USING K-MEANS CLUSTER ANALYSIS 57 4.1 Introduction 57 4.2 Statistical analysis 59 4.2.1 K-means cluster analysis 59 4.2.2 Factor analysis after K-means clustering 66 4.2.3 Regression analysis after K-means clustering 71 4.3 Validation 78 4.4 Summary 83 CHAPTER 5 CONCLUSIONS 86 REFERENCES 89 APPENDIX 98 ๊ตญ ๋ฌธ ์ดˆ ๋ก 102Docto

    Formation of Mg films on galvalume coated steel substrate by PVD process and their corrosion resistances

    Get PDF
    ๊ธˆ์† ์žฌ๋ฃŒ ์ค‘ ์ฒ ๊ฐ•์žฌ๋Š” ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ์ด ๊ฐ€๋Šฅํ•˜๊ณ  ๊ธฐ๊ณ„์  ํŠน์„ฑ์ด ์šฐ์ˆ˜ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ฒ ๊ฐ•์žฌ๋Š” ๋ถ€์‹์— ์ทจ์•ฝํ•˜์—ฌ ์šฉ๋„์— ๋”ฐ๋ผ ๋‚ด์‹์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ํ‘œ๋ฉด์ฒ˜๋ฆฌ๊ฐ€ ํ•„์ˆ˜์ ์œผ๋กœ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ด๋Ÿฌํ•œ ์ฒ ๊ฐ•์žฌ์— ๋Œ€ํ•œ ๋‚ด์‹์„ฑ ํ‘œ๋ฉด์ฒ˜๋ฆฌ๋กœ์จ ์Šต์‹๊ณต์ •์„ ์ด์šฉํ•œ ์•„์—ฐ(Zn) ๋„๊ธˆ์ด ๋„๋ฆฌ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๊ฒƒ์€ ์Šต์‹ ๊ณต์ •์œผ๋กœ ์ธํ•œ ์ž์› ์†Œ๋ชจ ๋ฐ ํ™˜๊ฒฝ ๋ฌธ์ œ๋กœ ์ธํ•˜์—ฌ ๊ณ ๋‚ด์‹์„ฑ ํ‘œ๋ฉด์ฒ˜๋ฆฌ ๋ฐ ์นœํ™˜๊ฒฝ์ ์ธ ์ฝ”ํŒ… ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ ์—์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ๋‚ด์‹์„ฑ ์ฝ”ํŒ…๊ฐ•ํŒ ์ œ์ž‘์„ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๋ชจ์žฌ์ธ ๊ฐ•ํŒ, ์šฉ์œต ์•„์—ฐ ๋„๊ธˆ๊ฐ•ํŒ, ์šฉ์œต ์•Œ๋ฃจ๋ฏธ๋Š„ ๋„๊ธˆ๊ฐ•ํŒ, ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ ์ƒ์— PVD ํ”„๋กœ์„ธ์Šค์ธ ์Šคํผํ„ฐ๋ง๋ฒ•์— ์˜ํ•ด ํ™œ์„ฑ์ ์ธ ๊ธˆ์†์ธ ๋งˆ๊ทธ๋„ค์Š˜(Mg)์„ ๊ณต์ •์••๋ ฅ 2, 10 ๋ฐ 50mTorr ์กฐ๊ฑด์—์„œ 2ฮผm ๋‘๊ป˜๋กœ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ฝ”ํŒ…๋ง‰ ์ œ์ž‘ ์กฐ๊ฑด๊ณผ ๋‚ด์‹์„ฑ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์ž‘ํ•œ ๋งˆ๊ทธ๋„ค์Š˜ ์ฝ”ํŒ…๋ง‰์˜ ๋ชจํด๋กœ์ง€, ๊ฒฐ์ •๊ตฌ์กฐ ๋ฐ ๋ฐฐํ–ฅ์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๋ถ„๊ทน, ์ž„ํ”ผ๋˜์Šค ๋ถ„๊ด‘๋ฒ•(EIS)์„ ํ†ตํ•ด ๊ทธ ๋‚ด์‹์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ œ์ž‘ ์ฝ”ํŒ…๋ง‰์€ ๊ณต์ •์••๋ ฅ์ด ๋†’์€ ์กฐ๊ฑด์—์„œ ์ œ์ž‘ํ• ์ˆ˜๋ก ๊ฒฐ์ •์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ  ์กฐ๋ฐ€ํ•œ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ ๋‚ด์‹์„ฑ์ด ๋”์šฑ ์šฐ์ˆ˜ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ชจ์žฌ ์ค‘์—์„œ ๋„๊ธˆ์ธต์˜ ์•Œ๋ฃจ๋ฏธ๋Š„์— ์˜ํ•ด ์šฐ์ˆ˜ํ•œ ์ฐจํ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ๋˜ํ•œ ์•„์—ฐ์— ์˜ํ•ด ๋ถ€์‹์ƒ์„ฑ๋ฌผ์ด Simonkolleite์ƒ์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ๊ฐ€์ง„ ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ์„ ๊ณ ๋‚ด์‹์„ฑ ์ฝ”ํŒ…๊ฐ•ํŒ ์ œ์ž‘์„ ์œ„ํ•œ ์ตœ์  ๋ชจ์žฌ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •๋œ ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ์— ๋Œ€ํ•ด ์‹ค์šฉ PVD ํ”„๋กœ์„ธ์Šค์ธ ์ธ๋ผ์ธ ์Šคํผํ„ฐ(In-line) ๊ณต์ •์— ์˜ํ•ด ๋งˆ๊ทธ๋„ค์Š˜ ์ฝ”ํŒ…๋ง‰์„ ๊ณต์ •์••๋ ฅ 2 ๋ฐ 20mTorr ์กฐ๊ฑด์—์„œ ๋‘๊ป˜ 1.5 ๋ฐ 3ฮผm๋กœ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ œ์ž‘ ์ฝ”ํŒ…๋ง‰์˜ ํ‘œ๋ฉด ๋ฐ ๋‹จ๋ฉด ๋ชจํด๋กœ์ง€ ๋ถ„์„, ๊ฒฐ์ •๊ตฌ์กฐ๋ถ„์„, ์›์†Œ์กฐ์„ฑ ๋ถ„์„์„ ์‹ค์‹œํ•˜๊ณ  ๋ถ„๊ทน, EIS๋ฅผ ์ด์šฉํ•ด ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ถ€์‹ ๊ฐ€์†์‹œํ—˜๋ฒ•์ธ ์—ผ์ˆ˜๋ถ„๋ฌด(SST), ๋ณตํ•ฉ๋ถ€์‹(CCT) ์‹œํ—˜์„ ํ†ตํ•ด ๋‚ด์‹์„ฑ ํ‰๊ฐ€๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ชจํด๋กœ์ง€ ๋ถ„์„๊ฒฐ๊ณผ ๋™์ผ ๊ณต์ •์••๋ ฅ์—์„œ๋Š” ์ฝ”ํŒ…๋‘๊ป˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋งˆ๊ทธ๋„ค์Š˜ ๊ฒฐ์ •์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์กŒ์œผ๋ฉฐ ๋™์ผ ๋‘๊ป˜์—์„œ๋Š” ๊ณต์ •์••๋ ฅ์ด ๋†’์„์ˆ˜๋ก ๊ฒฐ์ •์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘์•„์ง€๊ณ  ๋‹จ๋ฉด ๊ตฌ์กฐ์—์„œ ๊ฒฐํ•จ์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋ถ„๊ทน์‹œํ—˜ ๊ฒฐ๊ณผ์—์„œ ์ฝ”ํŒ…๋‘๊ป˜๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋ถ€์‹์†๋„๊ฐ€ ๋†’์•˜์œผ๋ฉฐ, ๋™์ผ๋‘๊ป˜์—์„œ๋Š” ๋†’์€ ๊ณต์ •์••๋ ฅ์œผ๋กœ ์ œ์ž‘ํ• ์ˆ˜๋ก ๋‚ด์‹์„ฑ์ด ์šฐ์ˆ˜ํ•œ ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋ƒ„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ์นจ์ง€์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ถ„๊ทน ๋ฐ EIS ๋ถ„์„ ๊ฒฐ๊ณผ ๋ถ€์‹์ง„ํ–‰์— ๋”ฐ๋ผ ํ‘œ๋ฉด์˜ ๋งˆ๊ทธ๋„ค์Š˜ ์ฝ”ํŒ…์ธต์ด ๋ถ€์‹๋˜์–ด ํ˜•์„ฑ๋œ ๋ถ€์‹์ƒ์„ฑ๋ฌผ๋“ค์ด ์ถ•์ ๋˜๋ฉฐ ์ฐจํํšจ๊ณผ ๋ฐ ์ „ํ•ด์งˆ-์ฝ”ํŒ…์ธต ๊ณ„๋ฉด ๊ฐ„ ์ „ํ•˜์ด๋™์ €ํ•ญ์„ ์ฆ๊ฐ€์‹œ์ผœ ๋‚ด์‹์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‚ด์‹์„ฑ ํ‰๊ฐ€ ๊ฒฐ๊ณผ ๋งˆ๊ทธ๋„ค์Š˜-๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ์˜ ๊ฒฝ์šฐ ๋ชจ์žฌ์ธ ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ์€ ๋ฌผ๋ก  ์œ ์‚ฌ ๋‘๊ป˜์˜ ์•„์—ฐ๋„๊ธˆ๊ฐ•ํŒ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ๋‚ด์‹์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ, ๊ฑด-์Šต ๋ฐ˜๋ณต ๋ถ€์‹์‹œํ—˜์ธ ๋ณตํ•ฉ๋ถ€์‹ ์‹œํ—˜์—์„œ๋Š” ์œ ์‚ฌ ๋‘๊ป˜์˜ ๊ณ ๋‚ด์‹์„ฑ Zn-Al-Mg๊ณ„ ๋„๊ธˆ๊ฐ•ํŒ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ๋‚ด์‹์„ฑ์„ ๋‚˜ํƒ€๋ƒ„์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ด๋Š” ๋ถ€์‹์ƒ์„ฑ๋ฌผ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์—ผ์ˆ˜๋ถ„๋ฌด ์‹œํ—˜ ํ™˜๊ฒฝ์—์„œ๋Š” Mg๊ณ„ ๋ถ€์‹์ƒ์„ฑ๋ฌผ๋“ค์ด MgO, Mg(OH)2์™€ ๊ฐ™์€ ํ˜•ํƒœ๋กœ ์กด์žฌํ•˜์˜€์œผ๋ฉฐ ๋ณตํ•ฉ๋ถ€์‹ ์‹œํ—˜์—์„œ๋Š” Mg5(Co3)4(OH)2ยท4H2O(Hydro magnesite)์ƒ์œผ๋กœ ํ˜•์„ฑ๋˜์–ด ํ‘œ๋ฉด์„ ๋”์šฑ ์šฐ์ˆ˜ํ•œ ์ฐจํํšจ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ Zn๊ณ„ ๋ถ€์‹์ƒ์„ฑ๋ฌผ์€ Simonkolleite์ƒ์œผ๋กœ ํ˜•์„ฑ๋˜์–ด ๋‚ด์‹์„ฑ์ด ๋”์šฑ ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๊ฒฐ๊ณผ์ ์œผ๋กœ PVD ํ”„๋กœ์„ธ์Šค์— ์˜ํ•ด ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ ์ƒ์— ์ œ์ž‘ํ•œ Mg ์ฝ”ํŒ…๋ง‰์˜ ์šฐ์ˆ˜ํ•œ ๋‚ด์‹์„ฑ์„ ํ™•์ธํ•˜์˜€๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์ฝ”ํŒ…๋ง‰์˜ ์œ ํšจ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ ๋‚ด์šฉ 3 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 2.1 ์Šต์‹ ํ”„๋กœ์„ธ์Šค์— ์˜ํ•œ ์ฒ ๊ฐ•์žฌ์˜ ๋‚ด์‹์„ฑ ํ‘œ๋ฉด์ฒ˜๋ฆฌ 5 2.1.1 ์šฉ์œต์•„์—ฐ ๋„๊ธˆ๊ฐ•ํŒ 6 2.1.2 ์šฉ์œต์•Œ๋ฃจ๋ฏธ๋Š„ ๋„๊ธˆ๊ฐ•ํŒ 7 2.1.3 ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ 8 2.2 ๊ฑด์‹ ํ”„๋กœ์„ธ์Šค์— ์˜ํ•œ ์ฒ ๊ฐ•์žฌ์˜ ๋‚ด์‹์„ฑ ํ‘œ๋ฉด์ฒ˜๋ฆฌ 12 2.2.1 PVD ํ”„๋กœ์„ธ์Šค์— ์˜ํ•ด ์ œ์ž‘ํ•œ ๋‚ด์‹์„ฑ ์ฝ”ํŒ…๋ง‰์˜ ํŠน์„ฑ 12 2.2.2 PVD ํ”„๋กœ์„ธ์Šค์— ์˜ํ•ด ์ œ์ž‘ํ•œ ๋‚ด์‹์„ฑ ์ฝ”ํŒ…๋ง‰์˜ ์ข…๋ฅ˜ 13 2.3 ํ”Œ๋ผ์ฆˆ๋งˆ์™€ ๋ฐ•๋ง‰์˜ ํ˜•์„ฑ 14 2.3.1 ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ์ด์šฉ 14 2.3.2 ๋ฐ•๋ง‰์˜ ์„ฑ์žฅ๊ณผ ํ˜•์„ฑ 16 2.3.3 ํก์ฐฉ ์ธํžˆ๋น„ํ„ฐ ์ด๋ก  21 2.4 ๊ธˆ์†์˜ ๋ถ€์‹ 25 2.4.1 ๋ถ€์‹์˜ ์ •์˜ 25 2.4.2 ๋ถ€์‹์˜ ์ „๊ธฐํ™”ํ•™์  ๋ฐ˜์‘ 27 2.4.2 ์ „๊ธฐํ™”ํ•™์  ๋ฐฉ๋ฒ•์— ์˜ํ•œ ๋ถ€์‹์†๋„ ์ธก์ • 29 ์ œ 3 ์žฅ ์‹คํ—˜ ๋ฐฉ๋ฒ• 3.1 ์ฝ”ํŒ…๋ง‰ ์ œ์ž‘ ๋ฐ ์กฐ๊ฑด 34 3.1.1 ์ตœ์  ์ฝ”ํŒ… ์กฐ๊ฑด ๋„์ถœ์„ ์œ„ํ•œ ์‹คํ—˜ 34 3.1.2 ์‹ค์šฉ PVD ํ”„๋กœ์„ธ์Šค์— ์˜ํ•œ Mg ์ฝ”ํŒ…๋ง‰ ์ œ์ž‘ 39 3.2 ์ฝ”ํŒ…๋ง‰ ์žฌ๋ฃŒ ํŠน์„ฑ ๋ถ„์„ 42 3.2.1 ํ‘œ๋ฉด ๋ฐ ๋‹จ๋ฉด ๋ชจํด๋กœ์ง€ ๋ถ„์„ 42 3.2.2 ๊ฒฐ์ •๊ตฌ์กฐ ๋ถ„์„ 43 3.2.2 ์›์†Œ์กฐ์„ฑ ๋ถ„์„ 44 3.3 ์ฝ”ํŒ…๋ง‰ ๋‚ด์‹์„ฑ ํ‰๊ฐ€ 45 3.3.1 ๋ถ„๊ทน ์‹œํ—˜(Polarization test) 45 3.3.2 ์ž„ํ”ผ๋˜์Šค ๋ถ„๊ด‘๋ฒ•(EIS) 47 3.3.3 ์—ผ์ˆ˜๋ถ„๋ฌด์‹œํ—˜(SST) ๋ฐ ๋ณตํ•ฉ๋ถ€์‹์‹œํ—˜(CCT) 48 3.4 ๋ถ€์‹์ƒ์„ฑ๋ฌผ ๋ถ„์„ 52 ์ œ 4 ์žฅ ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 4.1 ์ตœ์  ์ฝ”ํŒ…์กฐ๊ฑด ๋„์ถœ์„ ์œ„ํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ 53 4.1.1 ์ฝ”ํŒ…๋ง‰์˜ ์žฌ๋ฃŒ ํŠน์„ฑ ๋ถ„์„ 54 4.1.2 ์ฝ”ํŒ…๋ง‰์˜ ์ „๊ธฐํ™”ํ•™์  ๋‚ด์‹ํŠน์„ฑ ๋ถ„์„ 65 4.1.3 ๊ณ ๋‚ด์‹ Mg ์ฝ”ํŒ…๊ฐ•ํŒ ์ œ์ž‘์„ ์œ„ํ•œ ์ตœ์  ์กฐ๊ฑด ๋„์ถœ 81 4.2 ์‹ค์šฉ PVD ํ”„๋กœ์„ธ์Šค์— ์˜ํ•ด ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ ์ƒ์— ์ œ์ž‘ํ•œ Mg ์ฝ”ํŒ…๋ง‰์˜ ํŠน์„ฑ ํ‰๊ฐ€ 83 4.2.1 ์ฝ”ํŒ…๋ง‰์˜ ์žฌ๋ฃŒ ํŠน์„ฑ ๋ถ„์„ 83 4.2.2 ์ฝ”ํŒ…๋ง‰์˜ ์ „๊ธฐํ™”ํ•™์  ๋‚ด์‹ํŠน์„ฑ ๋ถ„์„ 92 4.2.3 ๋ถ€์‹ ๊ฐ€์† ์‹œํ—˜์„ ํ†ตํ•œ ์ฝ”ํŒ…๋ง‰์˜ ๋‚ด์‹์„ฑ ํ‰๊ฐ€ 99 4.2.4 ๋ถ€์‹์ƒ์„ฑ๋ฌผ ๋ถ„์„ 109 4.3 ๊ณ  ์ฐฐ 129 4.3.1 Mg ์ฝ”ํŒ…๋ง‰์˜ ๊ฒฐ์ •์„ฑ์žฅ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ•ด์„ 129 4.3.2 ๊ฐˆ๋ฐ”๋ฅจ ๋„๊ธˆ๊ฐ•ํŒ ์ƒ์— ์ œ์ž‘ํ•œ Mg ์ฝ”ํŒ…๋ง‰์˜ ๋ถ€์‹ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ณ ์ฐฐ 131 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  133 ์ฐธ๊ณ  ๋ฌธํ—Œ 135 ๊ฐ์‚ฌ์˜ ๊ธ€Maste

    Steep Slope Field-Effect Transistors With B-Te-Based Ovonic Threshold Switch Device

    Get PDF
    In this letter, a new ovonic threshold switch (OTS) device based on simple binary Boron-Tellurium (B-Te) film is developed and implemented in series with the source region of a transistor. The newly developed B-Te-based device shows excellent characteristics such as low operating voltage, low leakage current, abrupt turn-on/off slope, fast switching speed, high endurance, and high thermal stability. Due to the great properties of the B-Te OTS device, the implemented transistor exhibits subthreshold swing less than 10 mV/dec and high on/off current ratio greater than 10(5). Moreover, we present a direction of implementing an ideal transistor based on simulation results explaining the effect of off-state resistances and threshold voltages of the OTS devices on the I-DS-V-GS characteristics of the implementer transistor.11Ysciescopu

    ๋”ฅ ์ฝ”ํŒ… ๋ฐฉ๋ฒ•์œผ๋กœ ๋งŒ๋“  ์ „๊ธฐ๋ณ€์ƒ‰ ๋ฐ•๋ง‰์˜ ๊ด‘์ „๊ธฐ๋ณ€์ƒ‰ ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์ ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2014. 8. ์„ฑ์˜์€.Electrochromic and photochromic materials with reversible transmittance in response to an applied voltage and illumination, respectively, are the most common materials for smart windows. An alternative, the photoelectrochromic cell (PECC) was first demonstrated in 1996. For PECC, coloration is attained by the photon-electron conversion with no need for external power sources. In this study, tungsten oxide (WO3) thin film was fabricated by the sol-gel method with film thickness control by repeated dip coating process. Electrochemical analysis was conducted in a three electrode half-cell using a lithium-based electrolyte and an optical transmittance change in colored/bleached state could be shown by using He-Ne laser (ฮป =633 nm). From a materials analysis perspective, WO3 thin films fabricated by the sol-gel method showed better adhesion with FTO glass after the annealing process when compared with samples without annealing. In addition, WO3 films with amorphous phases exhibited better electrochromic performance than crystalline WO3 films and film thickness control was possible by repeated dip coating. These results suggest that these modifications would be advantageous when assessing the electrochromic performance. Consequently, the optimum thickness for the best electrochromic performance was decided for employing to photoelectrochromic systems. After that, we fabricated two types of WO3 employed PECC. One is a layered structure composed of dye-sensitized TiO2 nanoparticle (NP) on the crystalline WO3 electrochromic film as the photoanode and employed the Pt counter electrode as a photocathode. The other is a separated structure composed of amorphous or crystalline WO3 electrochromic film electrode as a photocathode and dye-sensitized TiO2 NP as a photoanode. In addition, we apply WO3 thin film with different thickness at two types of PECCs for understanding the transmittance change tendency when illuminated with time on cell compared to that of solely electrochromic sytems. UV-vis spectra measurement results showed the sample with a thinner film of WO3 and with amorphous phases in separated structure exhibited the best coloration switching kinetics compared with others over illumination time and absolute transmittance change value was also quite remarkable. Furthermore, WO3 thin film in separated structure exhibited faster optical transmittance switching kinetics with illumination time than that of in layered structure. Consequently, this results show that WO3 employed two type of the photoelectochromic system exhibited same tendency compared to crystalline phase and film thickness dependent electrochromic properties. Lastly, for enhancing the optical properties of photoelectrochromic systems, which were dip-coated WO3 electrochromic thin film was employed, more transparent dyes on TiO2 NP have to be used for higher initial transmittance value (as-prepared state) in two types of photoelectrochromic systems.1. Introduction 1.1 Electrochromism 1.2 Types of electrochromic materials 1.3 Photoelectrochromic devices 1.4 Overview of this study 2. Theory 2.1 The theory of sol-gel method 2.2 The theory of dip-coating 2.3 The values for electrochromic materials 2.3.1 Coloration efficiency (CE) 2.3.2 Response time 2.3.3 Cycle life 3. Experimental 3.1 Preparation of WO3 thin film 3.2 Preparation of photoelectrochromic cell 3.3 Characterization 3.3.1 Material analysis 3.3.2 Electrochemical and optical properties 3.3.3 Photoelectrochromic properties 4. Results and discussion 4.1 Electrochromic characterization 4.1.1 Material analysis 4.1.2 Electrochemical and optical properties 4.2 Photoelectrochromic characterization 4.2.1 Material analysis 4.2.2 Optical properties 5. ConclusionsMaste

    DDC 20็‰ˆ์˜ ็‰นๅพต๊ณผ ็ดนไป‹

    No full text

    NbO2-based Insulator-Metal-Transition Devices for High Density Memory and Steep-Slope Transistor Applications

    No full text
    DoctorThere is an unceasing attempt to down scale charge based devices in memory and logic technologies such as dynamic random access memory (DRAM), NAND, and metal-oxide-semiconductor field-effect transistor (MOSFET) for higher density and higher performance. As a result, the semiconductor industry such as personal computers (PCs) and smartphone has experienced rapid growth in the last few years. However, physical scaling limits and high leakage current (junction, gate dielectric and subthreshold) restrains conventional electron-based memory and logic devices from satisfying the requirements for ultra-low-power and high-density capacities. Therefore, the threshold switching (TS) devices have been focused to overcome the limitations of conventional memory and logic devices. Among various TS devices, the NbO2 insulator-metal transition (IMT) TS device, which has superior characteristics such as the ultra-fast operating speed with superior thermal stability, was mainly studied in this dissertation. First, the mechanism of the NbO2 IMT device was analyzed and unveiled by numerical analysis with the experimental result. Based on nucleation theory derived from basic thermodynamics, the mechanism of the NbO2 IMT device was clearly understood. Moreover, origin of leakage current in the NbO2 film was revealed by current-induced atomic force microscopy (C-AFM) analysis. To prevent leakage current of the NbO2 film, the structural engineering on the NbO2 IMT device was conducted by inserting a barrier layer between electrode and electrolyte. As a result, the leakage current of the NbO2 IMT device was successfully reduced over 1-2 orders without losing any other unique characteristics such as fast operating speed and drift-free characteristics. Moreover, the performance of the TS device was maximized by introducing a hybrid device that combines Ag-based TS device with an ovonic threshold switching (OTS) device or NbO2 IMT device. At last, the feasibility of cross-point memory applications was demonstrated by combining suggested various NbO2 TS devices with resistive random access memory (RRAM). Moreover, the suggested TS devices were implemented with MOSFET to show feasibility as a logic device. The suggested MOSFET with TS has superior SS (<5mV/dec), which can overcome the limitations of conventional MOSFET based logic device technology.์ตœ๊ทผ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ๋กœ์ง ๋ฐ˜๋„์ฒด ๊ธฐ์ˆ ์€ ๋ฏธ์„ธํ™” ๊ณต์ •์˜ ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„์™€ ๋ฏธ์„ธํ™”๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋ˆ„์„ค์ „๋ฅ˜๋กœ ์ธํ•ด ์ „๊ณ„ ๋ฐ ์ „์ž๊ธฐ๋ฐ˜์˜ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ๋กœ์ง ์†Œ์ž๋Š” ๋” ์ด์ƒ ์ œ 4์ฐจ ์‚ฐ์—…์—์„œ ์š”๊ตฌ๋˜๋Š” ์ €์ „๋ ฅ ๋ฐ ๋†’์€ ์ง‘์ ๋„๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์–ด๋ ค์šด ์ƒํ™ฉ์— ๋‹ค๋‹ค๋ฅด๊ฒŒ ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ๋กœ์ง ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์— ๊ฐ€์ง€๋Š” ํ•œ๊ณ„๋ฅผ ๋ชจ๋‘ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋Š” TS ์†Œ์ž์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ํŠนํžˆ ๊ทธ ์ค‘์—์„œ NbO2 ๊ธฐ๋ฐ˜์˜ IMT (Insulator-Metal-Transition) ์†Œ์ž์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ฃผ๋กœ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ์˜ ์„œ๋‘์—๋Š”, ์—ด์—ญํ•™์  ์ด๋ก ์„ ์ด์šฉํ•œ ์ „๊ณ„ ํ•˜ ํ•ต ์ƒ์„ฑ ์ด๋ก ์˜ ์ˆ˜์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ NbO2 IMT์˜ ๋™์ž‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ๋˜ํ•œ, NbO2 IMT ์†Œ์ž์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์—ฐ๊ตฌ์—์„œ ๋ฐํ˜€ ๋‚ธ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด์„œ C-AFM (Current Atomic force microscope) ๋ถ„์„์„ ํ†ตํ•ด NbO2 IMT ์†Œ์ž์˜ ๋†’์€ ๋ˆ„์„ค ์ „๋ฅ˜๊ฐ€ NbO2 ๋ฐ•๋ง‰์˜ ๊ฒฐํ•จ ๋ถ€๋ถ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. NbO2 IMT ์†Œ์ž์˜ ๋ˆ„์„ค ์ „๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€๋ถ„์„ ์–ต์ œํ•˜๊ณ  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ, ๋ฐ•๋ง‰์˜ ๊ณ„๋ฉด์— Barrier ์ธต์„ ๊ณต์ •์„ ๋„์ž…์„ ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋น ๋ฅธ ๋™์ž‘ ์†๋„์™€ Drift-free ์„ฑ์งˆ์„ ์žƒ์ง€ ์•Š์Œ๊ณผ ๋™์‹œ์— ์†Œ์ž์˜ ๋ˆ„์„ค์ „๋ฅ˜๋ฅผ ์•ฝ 10-100๋ฐฐ ๋‚ฎ์ถ”๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ดํ›„์—, NbO2 IMT ์†Œ์ž์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์ƒ๋ฐ˜๋˜๋Š” ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์‹ค๋ฒ„ ๊ธฐ๋ฐ˜ TS ์†Œ์ž์™€์˜ ์—ฐ๊ฒฐ์„ ํ•œ ๋ณตํ•ฉ๊ตฌ์กฐ์˜ TS ์†Œ์ž๋ฅผ ์ œ์•ˆํ•จ์œผ๋กœ์จ ํ•ด๋‹น ์†Œ์ž๊ฐ€ ๊ณ ์ง‘์  ๋ฐ ๋น ๋ฅธ ์†๋„์˜ ํฌ๋กœ์Šค ํฌ์ธํŠธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ๋ณด๊ณ  ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์•ž์„œ ์ง„ํ–‰๋œ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ Barrier ์ธต์ด ์‚ฝ์ž…๋œ NbO2 ์†Œ์ž๊ฐ€ MOSFET์˜ source, drain ๋ฐ gate๋ถ€์™€ ์—ฐ๊ฒฐ์ด ๋˜์—ˆ์„ ๋•Œ, ๊ธฐ์กด์˜ SS ํ•œ๊ณ„ ๊ฐ’๋ณด๋‹ค ํ›จ์”ฌ ๊ฐ€ํŒŒ๋ฅธ SS (<5mV/dec)๋ฅผ ๊ฐ€์ง€๋Š” ํŠธ๋žœ์ง€์Šคํ„ฐ๊ฐ€ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด๊ณ ํ•˜์˜€๋‹ค
    corecore