52 research outputs found

    ์œ„ ์ƒํ”ผ์„ธํฌ์—์„œ IL-8์˜ ๋ถ„๋น„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ํ—ฌ๋ฆฌ์ฝ”๋ฐ•ํ„ฐ ํŒŒ์ผ๋กœ๋ฆฌ ์ด์™ธ์˜ ์œ„ ๋‚ด ์„ธ๊ท ์˜ ๋™์ • ๋ฐ ๋ณ‘์›์„ฑ ๋ฐœํ˜„์˜ ๊ธฐ์ „ ๊ทœ๋ช…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2022. 8. ๊น€์ƒ๊ท .Introduction: The role of non-H. pylori gastric bacteria (NHGB) in gastric inflammation is largely unknown. The aim of this study was to investigate their ability of inducing interleukin-8 (IL-8) production from gastric epithelial cells and to demonstrate the underlying mechanism. Methods: Gastric juice was obtained from 13 patients with gastric cancer. After culture, isolated NHGB were identified by 16S rRNA gene sequencing. Human gastric epithelial cells (AGS) were co-cultured with the bacteria, and IL-8 concentrations in cell culture supernatants were quantified by enzyme-linked immunosorbent assay. We additionally performed inhibition studies using inhibitors to TLR4, NOD1, ERK, p38, JNK, and NF-ฮบB, to reveal the mechanism of pathogen recognition, intracellular signal transduction and translational regulation of IL-8 by the bacteria. Results: Sixteen species of NHGB were isolated from gastric juice. After inoculation to AGS cells, Neisseria perflava potently stimulated IL-8 secretion in a time- and dose- dependent manner, which was attenuated when concurrently treated with NOD1 inhibitor. When AGS cells were co-treated with N. perflava and inhibitors of ERK, p38 or JNK, respectively, to determine the role of mitogen-activated protein kinases (MAPKs) in IL-8 production, a significant reduction in IL-8 production was observed after treatment with p38 inhibitor. The cells pretreated with NF-ฮบB inhibitor produced significantly reduced level of IL-8 when stimulated with N. perflava. Conclusions: This is the first study demonstrating that N. perflava induces MAPK phosphorylation and NF-ฮบB activation via a NOD1-dependent mechanism in gastric epithelial cells. N. perflava may contribute to the inflammation in gastric mucosa.์„œ๋ก : ์œ„ ๋‚ด์˜ ์—ผ์ฆ ๋ฐ˜์‘์—์„œ ํ—ฌ๋ฆฌ์ฝ”๋ฐ•ํ„ฐ ํŒŒ์ผ๋กœ๋ฆฌ ์ด์™ธ์˜ ์„ธ๊ท ์ด ๊ฐ€์ง€๋Š” ์—ญํ• ์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง ์ž˜ ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์„ธ๊ท ๋“ค์ด ์œ„ ์ƒํ”ผ ์„ธํฌ์—์„œ IL-8์˜ ์ƒ์„ฑ์„ ์œ ๋„ํ•˜๋Š” ๋Šฅ๋ ฅ๊ณผ ๊ทธ ๊ธฐ์ „์„ ์‚ดํŽด๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ฐฉ๋ฒ•: 13๋ช…์˜ ์œ„์•” ํ™˜์ž์—๊ฒŒ์„œ ์ฑ„์ง‘ํ•œ ์œ„์•ก์„ ์ด์šฉํ•ด ํ—ฌ๋ฆฌ์ฝ”๋ฐ•ํ„ฐ ํŒŒ์ผ๋กœ๋ฆฌ ์ด์™ธ์˜ ์„ธ๊ท ์„ ๋ฐฐ์–‘, ๋ถ„๋ฆฌํ•œ ๋’ค, ์ด๋ฅผ 16S rRNA ์œ ์ „์ž ์—ผ๊ธฐ์„œ์—ด ๋ถ„์„์„ ํ†ตํ•ด ๋™์ •ํ•˜์˜€๋‹ค. ์ธ๊ฐ„ ์ƒํ”ผ์„ธํฌ์ฃผ (AGS)๋ฅผ ์„ธ๊ท ๊ณผ ํ•จ๊ป˜ ๋ฐฐ์–‘ํ•œ ๋’ค, ๋ฐฐ์–‘์ƒ์ฒญ์•ก์˜ IL-8 ๋†๋„๋ฅผ ํšจ์†Œ๋ฉด์—ญ์ธก์ •๋ฒ•์œผ๋กœ ์ธก์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ณ‘์›์ฒด์˜ ์ธ์‹ ๋ฐ ์„ธํฌ๋‚ด ์‹ ํ˜ธ ์ „๋‹ฌ ๊ธฐ์ „, ์„ธ๊ท ์— ์˜ํ•œ IL-8 ์ „์‚ฌ ์กฐ์ ˆ ๊ธฐ์ „์„ ๋ฐํžˆ๊ธฐ ์œ„ํ•ด TLR4, NOD1, ERK, p38, JNK ๋ฐ NF-kB์— ๋Œ€ํ•œ ์–ต์ œ์ œ๋ฅผ ์ด์šฉํ•œ ์ €ํ•ด ์‹œํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ์œ„์•ก์—์„œ ์ด 16 ์ข…์˜ ๋น„-ํ—ฌ๋ฆฌ์ฝ”๋ฐ•ํ„ฐ ํŒŒ์ผ๋กœ๋ฆฌ ๊ท ์ฃผ๊ฐ€ ๋ฐฐ์–‘๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๊ฐ๊ฐ AGS ์„ธํฌ์— ์ ‘์ข…ํ•˜์—ฌ ๋ฐฐ์–‘ํ•˜์˜€์„ ๋•Œ, Neisseria perflava๋Š” ์‹œ๊ฐ„ ๋ฐ ์šฉ๋Ÿ‰ ์˜์กด์ ์œผ๋กœ IL-8์˜ ๋ถ„๋น„๋ฅผ ๋šœ๋ ทํ•˜๊ฒŒ ์ด‰์ง„ํ•˜์˜€๊ณ , NOD1 ์–ต์ œ์ œ๋ฅผ ํ•จ๊ป˜ ์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ์—๋Š” ํ•ด๋‹น ๋ฐ˜์‘์ด ์•ฝํ™”๋˜์—ˆ๋‹ค. IL-8 ์ƒ์„ฑ์— ์žˆ์–ด MAPKs์˜ ์—ญํ• ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด AGS ์„ธํฌ์— N. perflava์™€ ํ•จ๊ป˜ ERK, p38, JNK ์–ต์ œ์ œ๋ฅผ ๊ฐ๊ฐ ์ฒ˜๋ฆฌํ•œ ๊ฒฐ๊ณผ, p38 ์–ต์ œ์ œ ์ฒ˜๋ฆฌ์‹œ IL-8์˜ ์ƒ์„ฑ์ด ์œ ์˜ํ•˜๊ฒŒ ๊ฐ์†Œ๋œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. AGS ์„ธํฌ์— NF-kB ์–ต์ œ์ œ๋ฅผ ์ฒ˜๋ฆฌ ํ›„ N. perflava ๋ฐฐ์–‘์‹œ, IL-8์˜ ์ƒ์„ฑ์ด ์œ ์˜ํ•˜๊ฒŒ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๊ฒฐ๋ก : ๋ณธ ์—ฐ๊ตฌ๋Š” N. perflava๊ฐ€ ์œ„ ์ƒํ”ผ ์„ธํฌ์—์„œ NOD1 ์˜์กด์ ์œผ๋กœ MAPK ์ธ์‚ฐํ™”์™€ NF-kB ํ™œ์„ฑํ™”๋ฅผ ์œ ๋„ํ•จ์„ ์ฒ˜์Œ์œผ๋กœ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด N. perflava๋Š” ์œ„ ์ ๋ง‰์˜ ์—ผ์ฆ ๋ฐ˜์‘์— ๊ธฐ์—ฌํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.Introduction 1 Materials and Methods 7 Results 16 Discussion 36 References 50 Abstract in Korean 65๋ฐ•

    ์‚ผ์ฐจ์› ์ด์‚ฐํ™”ํƒ„์†Œ ์ €์žฅ ์šฉ๋Ÿ‰์˜ ํ™•๋ฅ ๋ก ์  ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์—ฐ๊ณ„ ๋ฐฉ๋ฒ•๋ก ์˜ ์ ์šฉ: ํ•œ๊ตญ ํฌํ•ญ๋ถ„์ง€ ์‚ฌ๋ก€์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2019. 2. ์ด์ค€๊ธฐ.The linked methodology is applied to perform probabilistic evaluation of individual gas-, liquid-, supercritical-, and whole fluid-phase carbon dioxide (CO2) storage capacities. In order to perform probabilistic evaluation of individual gas-, liquid-, supercritical-, and whole fluid-phase CO2 storage capacities, grid-based geologic formation volume, grid-based CO2 density, and grid-based CO2 storage capacity are evaluated through three-dimensional geologic modeling and grid-based Monte Carlo simulation sequentially as the linked methodology. The two clastic saline formations, which are the sandstone-dominant Fluvial Conglomerate and Sandstone (FCSS) and Shallow Marine Sandstone (SMSS) in the Pohang Basin, are selected as the target clastic saline formations. The results of the three-dimensional geologic modeling show that the six geologic formations are distributed very complicatedly both onshore and offshore with irregular depths and thicknesses, and they are partly dissected and offset by the eight major faults. The two clastic saline formations SMSS and FCSS are deep and thick at the three prospective areas such as Areas 1, 2, and 3 in the modeling domain. The results of the grid-based Monte Carlo simulation show the following three main contents. First, in the two clastic saline formations SMSS and FCSS, CO2 exists as gas, liquid, and supercritical phases with the corresponding distinctive density ranges depending on the pressure and temperature with depth. Second, the theoretical individual gas-, liquid-, supercritical-, and whole fluid-phase CO2 storage capacities all show asymmetric normal distributions. On the other hand, the effective individual gas-, liquid-, supercritical-, and whole fluid-phase CO2 storage capacities of the saline formations all show log-normal distributions, and their values are much lower than the values of the theoretical individual gas-, liquid-, supercritical-, and whole fluid-phase CO2 storage capacities. Third, in the SMSS, the grid-wise (elemental) theoretical and effective fluid-phase CO2 storage capacities are probabilistically higher at Area 1 (mainly as supercritical and liquid phases), intermediate at Area 2 (mainly as liquid and gas phases), and lower at Area 3 (mainly as a gas phase). However, in the FCSS, the grid-wise theoretical and effective fluid-phase CO2 storage capacities are probabilistically higher at Area 2 (mainly as supercritical and liquid phases), intermediate at Area 1 (mainly as a supercritical phase), and lower at Area 3 (mainly as a gas phase). Finally, four key criteria (parameters) for selecting or ranking the optimal CO2 storage locations are decided by summarizing and analyzing the results of the three-dimensional geologic modeling and grid-based Monte Carlo simulation. On the basis of the four key criteria (parameters), the overall suitability ranks of Areas 1, 2, and 3 for geologic CO2 storage are determined to be the first, second, and third, respectively.Abstract i Contents iv List of Tables vi List of Figures ix 1. Introduction 1 1.1. Global warming and geologic storage of carbon dioxide 1 1.2. Previous studies 10 1.3. Improvements and developments of this study 27 1.4. Objectives of this study 31 2. Linked methodology 33 2.1. Three-dimensional geologic modeling 33 2.2. Grid-based Monte Carlo simulation 37 3. Study area 53 3.1. Location and geological settings 53 3.2. Assignment of geologic formations for geologic carbon dioxide storage 57 4. Three-dimensional geologic modeling 60 4.1. Three-dimensional geologic modeling setups 60 4.2. Three-dimensional geologic models 62 5. Fluid-phase carbon dioxide storage capacity estimation 70 5.1. Grid-based Monte Carlo simulation setups 70 5.2. Probability density distributions of input data 73 5.3. Probability density distributions of fluid-phase carbon dioxide storage capacities 82 5.4. Comparison with the results of the US DOE methodology 97 6. Three-dimensional carbon dioxide storage capacities 106 6.1. Spatial distributions of fluid-phase carbon dioxide storage capacities 106 6.2. Optimal locations of carbon dioxide storage 120 7. Discussions 136 8. Conclusions 140 References 145 Abstract in Korean 165Docto

    Well Control Modeling of Oil Based Mud for Dual Gradient Drilling System

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2017. 2. ์ตœ์ข…๊ทผ.์‹ฌํ•ด์‹œ์ถ” ์‹ ๊ธฐ์ˆ ์ธ ์ด์ค‘๊ตฌ๋ฐฐ์‹œ์ถ”์˜ ํ˜„์žฅ์ ์šฉ์„ ์œ„ํ•ด์„œ๋Š” ์œ ์ •์ œ์–ด ์—ฐ๊ตฌ๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ์œ ์„ฑ์ด์ˆ˜๋Š” ์˜จ๋„, ์••๋ ฅ, ์กฐ์„ฑ์— ๋”ฐ๋ผ ์ด์ˆ˜๋ฐ€๋„๊ฐ€ ๋ณ€ํ•˜๋ฉฐ ๊ฐ€์Šค์šฉํ•ด์„ฑ์œผ๋กœ ํ‚ฅ๊ฐ์ง€๊ฐ€ ์ง€์—ฐ๋˜๋Š” ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฐ ์œ ์„ฑ์ด์ˆ˜์˜ ํŠน์ง•์„ ๋ฐ˜์˜ํ•œ ์ด์ˆ˜๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ค‘๊ตฌ๋ฐฐ ์‹œ์ถ”์‹œ์Šคํ…œ์˜ ์œ ์ •์ œ์–ด ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ง€์ƒํŽŒํ”„์œ ๋Ÿ‰, ์ด์ˆ˜์ ๋„, ์ด์ˆ˜์ข…๋ฅ˜, air gap ๋†’์ด์— ๋”ฐ๋ฅธ U-tubing ํ˜„์ƒ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ํŽŒํ”„์œ ๋Ÿ‰์ด ์‹œ์Šคํ…œ ์ตœ๋Œ€ ์ž์œ ๋‚™ํ•˜ ์œ ๋Ÿ‰๋ณด๋‹ค ์ž‘์€ ๊ฒฝ์šฐ๋Š” ์‹œ์ถ”ํŒŒ์ดํ”„ ๋‚ด๋ถ€๋ฅผ ์ด์ˆ˜๋กœ ์™„์ „ํžˆ ์ฑ„์šฐ์ง€ ๋ชปํ•ด ์‹œ์Šคํ…œ ๋‚ด์˜ ์œ ์ฒด๋ฅผ ์ˆœํ™˜์‹œํ‚ค๋Š” ํž˜์ด ์ค„์–ด๋“ค์–ด ์ฒœ์ด์œ ๋Ÿ‰์ด ๋‹ฌ๋ผ์ง„๋‹ค. ๋†’์€ ์ด์ˆ˜์ ๋„๋Š” ์ง€ํ‘œ๋ฉด ํšŒ์ˆ˜์œ ๋Ÿ‰์„ ๊ฐ์†Œ์‹œ์ผœ ์‹œ์Šคํ…œ ์•ˆ์ •ํ™”๋ฅผ ์ง€์—ฐ์‹œํ‚จ๋‹ค. ํ•˜์ง€๋งŒ ๋™์ผํ•œ ์ด์ˆ˜๋ฐ€๋„์™€ ์ ๋„์˜ ์กฐ๊ฑด์—์„œ๋Š” ์ด์ˆ˜์ข…๋ฅ˜์™€ air gap์˜ ์˜ํ–ฅ์€ ๋ฏธ๋ฏธํ•˜์˜€๋‹ค. ์ฒœ์ด๊ณผ์ • ์ค‘์— ํ‚ฅ ๋ฐœ์ƒ ์‹œ ์ง€ํ‘œ๋ฉด ํšŒ์ˆ˜์œ ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๋ฉฐ ์ถ”๊ฐ€์ ์œผ๋กœ ์ง€์ƒ ์ด์ˆ˜๋ถ€ํ”ผ ๋ณ€ํ™”๋ฅผ ๋™์‹œ์— ๋น„๊ตํ•˜๋ฉด ํ‚ฅ๊ฐ์ง€์— ํšจ๊ณผ์ ์ด๋‹ค. ์œ ์ž…๋œ ๊ฐ€์Šคํ‚ฅ์ด ์œ ์„ฑ์ด์ˆ˜์— ์šฉํ•ด๋จ์œผ๋กœ ์ˆ˜์„ฑ์ด์ˆ˜ ๋ณด๋‹ค ์ง€ํ‘œ๋ฉด ํšŒ์ˆ˜์œ ๋Ÿ‰ ์ฆ๊ฐ€ํญ์ด ์ค„์–ด๋“ค์–ด ํ‚ฅ๊ฐ์ง€๊ฐ€ ์ง€์—ฐ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค. ๋”ฐ๋ผ์„œ ์œ ์„ฑ์ด์ˆ˜ ์‚ฌ์šฉ ์‹œ ์œ ๋Ÿ‰๋ณ€ํ™”์˜ ๊ด€์ฐฐ์ด ์ค‘์š”ํ•˜๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ ์œ ์„ฑ์ด์ˆ˜๋ฅผ ์‚ฌ์šฉํ•œ ์ด์ค‘๊ตฌ๋ฐฐ ์‹œ์ถ”์‹œ์Šคํ…œ์˜ ์œ ์ •์ œ์–ด์— ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ 1 1.2 ๊ธฐ์กด์—ฐ๊ตฌ 8 1.3 ์—ฐ๊ตฌ๋ชฉ์  10 ์ œ 2 ์žฅ ์ด์ค‘๊ตฌ๋ฐฐ ์‹œ์ถ”์‹œ์Šคํ…œ 11 2.1 ์‹œ์Šคํ…œ์˜ ํŠน์ง• 11 2.2 U-tubing ํ˜„์ƒ 18 2.3 ํ‚ฅ๊ฐ์ง€ ๋ฐฉ๋ฒ• 23 ์ œ 3 ์žฅ ์œ ์„ฑ์ด์ˆ˜ ๋ชจ๋ธ๋ง 28 3.1 ์œ ์„ฑ์ด์ˆ˜ ๋ฐ€๋„๋ชจ๋ธ 28 3.2 ๊ฐ€์Šค์šฉํ•ด๋„ ๋ชจ๋ธ 33 3.3 ๊ฐ€์Šคํ‚ฅ ์œ ๋ฌด์— ๋”ฐ๋ฅธ ์œ ์„ฑ์ด์ˆ˜ ๋ฐ€๋„๋ณ€ํ™” 35 ์ œ 4 ์žฅ ์—ฐ๊ตฌ๊ฒฐ๊ณผ 40 4.1 ์œ ์ •ํ˜•์ƒ ์ •๋ณด์™€ ๊ธฐ๋ณธ ์ž…๋ ฅ์ž๋ฃŒ 40 4.2 ์ด์ˆ˜์ข…๋ฅ˜์— ๋”ฐ๋ฅธ U-tubing ํ˜„์ƒ ๋ถ„์„ 42 4.3 Air gap ๋†’์ด ๊ณ ๋ ค์— ๋”ฐ๋ฅธ U-tubing ํ˜„์ƒ ๋ถ„์„ 44 4.4 ์ด์ˆ˜์ ๋„์— ๋”ฐ๋ฅธ U-tubing ํ˜„์ƒ ๋ถ„์„ 46 4.5 ์ง€์ƒ ์ด์ˆ˜ํŽŒํ”„ ์ˆœํ™˜์œ ๋Ÿ‰์— ๋”ฐ๋ฅธ U-tubing ํ˜„์ƒ ๋ถ„์„ 48 4.6 ๊ฐ€์Šคํ‚ฅ์ด ์œ ์ž…๋œ ์ƒํ™ฉ์—์„œ ์œ ์ •์ œ์–ด ๋ถ„์„ 51 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  54 ์ฐธ๊ณ  ๋ฌธํ—Œ 56 ABSTRACT 62Maste

    Bi-directional wireless power transfer system for rope-less elevator

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ํ•˜์ •์ต.์ตœ๊ทผ ์ฐจ์„ธ๋Œ€ ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ๋กœ์„œ ์Šน๊ฐ•์ค„(๋กœํ”„) ์—†์ด ๋™์ž‘ํ•˜๋Š” ๋กœํ”„๋ฆฌ์Šค ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ๊ฐ€ ์ œ์•ˆ๋˜์–ด ์™”๋‹ค. ์Šน๊ฐ•์ค„์„ ์ œ๊ฑฐํ•จ์œผ๋กœ์จ ํ‰ํ˜•์ถ”์™€ ๊ถŒ์ƒ๊ธฐ๋ฅผ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ์–ด ๊ฑด๋ฌผ์—์„œ ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ๊ณต๊ฐ„์„ ํš๊ธฐ์ ์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์Šน๊ฐ•๊ธฐ์˜ ์ˆ˜์ง ๋™์ž‘ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ˆ˜ํ‰ ๋™์ž‘์ด ๊ฐ€๋Šฅํ•ด ๊ทธ ํ™œ์šฉ ๋ฒ”์œ„๋ฅผ ์ฆ๊ฐ€ ์‹œ์ผœ์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์Šน๊ฐ•๊ธฐ ๋‚ด๋ถ€์— ๋™๋ ฅ์žฅ์น˜๋ฅผ ํƒ‘์žฌํ•˜์—ฌ, ์—ฌ๋Ÿฌ ์Šน๊ฐ•๊ธฐ๊ฐ€ ํ•œ ๊ฐœ์˜ ์Šน๊ฐ•๋กœ๋ฅผ ๊ณต์œ ํ•˜๋ฉด์„œ ๋™์‹œ์— ์šดํ–‰๋˜๋„๋ก ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋กœํ”„๋ฆฌ์Šค ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ์˜ ์Šน๊ฐ•๊ธฐ์˜ ๋™๋ ฅ์žฅ์น˜๋Š” ๋ฌด์„  ์ „๋ ฅ ์ „์†ก์„ ํ†ตํ•ด ์ „์›์„ ์ž…๋ ฅํ•˜๋„๋ก ํ•˜์—ฌ ์ง‘์ „์žฅ์น˜์™€ ๊ฐ™์ด ์ง์ ‘์ ์œผ๋กœ ์ „๊ธฐ ๊ณต๊ธ‰์„ ๋ฐ›๋Š” ๋ฐฉ์‹์— ๋น„ํ•˜์—ฌ ์šด์šฉ ๋ฐ ๋ณด์ˆ˜ ๋น„์šฉ์„ ํš๊ธฐ์ ์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ๋Œ€ 2๋Œ€์˜ ์Šน๊ฐ•๊ธฐ๊ฐ€ ๋™์‹œ ๋™์ž‘ ๊ฐ€๋Šฅํ•œ ๋กœํ”„๋ฆฌ์Šค ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ์‹œ์Šคํ…œ์—์„œ ์Šน๊ฐ•๊ธฐ์˜ ์–‘๋ฐฉํ–ฅ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ์ œ์–ด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ € ๋กœํ”„๋ฆฌ์Šค ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ์˜ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ์ ํ•ฉํ•œ ์ฝ”์–ด์™€ ์ฝ”์ผ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๊ณ , ์ œ์•ˆํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ํšŒ๋กœ ๊ตฌ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋‹ค์ค‘ ์Šน๊ฐ•๊ธฐ์— ๋™์‹œ ์ „๋ ฅ ์ „์†ก์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์†ก์‹ ๋ถ€ ์ „๋ฅ˜๋ฅผ ์ผ์ •ํ•œ ๊ฐ’์œผ๋กœ ์ œ์–ดํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ์ •์ƒ์ƒํƒœ ๋ฐ ๊ณผ๋„์ƒํƒœ ์‘๋‹ต์„ ์–ป๊ธฐ ์œ„ํ•ด ์‹œ์Šคํ…œ์˜ ์ „๋‹ฌํ•จ์ˆ˜๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๋„์ถœ๋œ ์ „๋‹ฌํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ์ˆ˜์‹ ๋ถ€ ๋™์ž‘ ์ง€์ ์— ๋”ฐ๋ฅธ ์†ก์‹ ๋ถ€ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •๋„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ˆ˜์‹ ๋ถ€์—์„œ๋Š” ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ ์Šน๊ฐ•๊ธฐ์—์„œ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๋Š” ํšŒ์ƒ ์—๋„ˆ์ง€๊ฐ€ ์ „๋ ฅ๋ง์œผ๋กœ ํšŒ์ˆ˜๋˜๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ์–‘๋ฐฉํ–ฅ์œผ๋กœ ์ „๋ ฅ ์ „๋‹ฌ์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๊ณ , ์ด๋Ÿฌํ•œ ์ œ์–ด๊ฐ€ ์†ก์‹ ๋ถ€์™€ ์ˆ˜์‹ ๋ถ€ ์‚ฌ์ด์— ๋ณ„๋„์˜ ํ†ต์‹ ์—†์ด ์ด๋ฃจ์–ด ์งˆ ์ˆ˜ ์žˆ๋„๋ก ์ œ์•ˆ ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ์˜ ํšจ์œจ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ ์ˆ˜์‹ ๋ถ€ ์ „์•• ์ง€๋ น ์ƒ์„ฑ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ์ œ์•ˆํ•˜๊ณ , ์‹คํ—˜์„ ํ†ตํ•ด ๊ทธ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ์˜ ์†ก์‹ ๋ถ€์™€ ์ˆ˜์‹ ๋ถ€์˜ ์–‘๋ฐฉํ–ฅ ์ „๋ ฅ ์ œ์–ด๋Š” ๋ชจ์˜์‹คํ—˜๊ณผ ์ œ์ž‘๋œ ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ ์‹œ์Šคํ…œ์˜ ๋ชจ์˜ ์„ธํŠธ๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์˜ ํšจ์šฉ์„ฑ๊ณผ ์šฐ์ˆ˜์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.The ropeless elevator that operates without a hoisting rope is recently attracted in industry because the rope, counterweight and rotating machine which take up a lot of space in the building can be removed. In addition, more than one elevator car can be operated in one shaft and be driven not only in vertical direction but also in horizontal direction in the ropeless elevator. For the ropeless elevator, the supplying power to elevator car must be implemented wirelessly to facilitate freedom in motion. In this paper, the design and control method of bi-directional inductive wireless power transfer for ropeless elevator system is proposed. First, a core and coil structure suitable for a wireless power transfer system of a ropeless elevator is designed, and the circuit configuration of the proposed system is presented. Secondly, control strategy of controlling the transmitter current to a constant value is proposed to provide uniform magnetic flux density to each pick-up cars. And the system transfer function is calculated to analyze the stability of system in steady-state and transient situation. Also, the bi-directional wireless power transfer is implemented to use the regenerative energy without any communication system. Finally, the performance and actual operation of 25kW bi-directional wireless power transfer is presented. The bi-directional power control of the transmitter and receiver of the proposed system was verified through simulations and experimental sets of the manufactured elevator system. The effectiveness and superiority of the proposed method were confirmed.์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋ชฉ์  6 1.3 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 11 ์ œ 2 ์žฅ ์œ ๋„์„ฑ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ 12 2.1 ์œ ๋„์„ฑ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ์˜ ๋ณด์ƒ ํšŒ๋กœ 15 2.1.1 ๋‘ ๊ฐœ์˜ ์ปคํŒจ์‹œํ„ฐ๊ฐ€ ์ ์šฉ๋œ ๋ณด์ƒ ํšŒ๋กœ 16 2.1.2 SS ๋ณด์ƒ ํšŒ๋กœ์™€ dual-side LCC ๋ณด์ƒ ํšŒ๋กœ 17 2.2 ์†ก์ˆ˜์‹ ๋ถ€๊ฐ„ ๋ฌด์„ ํ†ต์‹ ์„ ํ•˜์ง€ ์•Š๋Š” ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ๊ธฐ์ˆ  22 2.3 ์šด์†ก ์‹œ์Šคํ…œ์— ์ ์šฉ๋œ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ๊ธฐ์ˆ  24 2.4 ๊ธฐ์กด ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ํ•œ๊ณ„ 30 ์ œ 3 ์žฅ ๋‹ค์ค‘ ๋ถ€ํ•˜ ์–‘๋ฐฉํ–ฅ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์ œ์–ด 31 3.1 ์ œ์•ˆํ•˜๋Š” ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ ๋ฐ ๋™์ž‘ 32 3.1.1 ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ์ž๊ธฐ ๊ฒฐํ•ฉ ๊ตฌ์กฐ 32 3.1.2 ๋กœํ”„๋ฆฌ์Šค ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ ์‹œ์Šคํ…œ์˜ ๊ตฌ์„ฑ 36 3.2 ์†ก์‹ ๋ถ€ ์ œ์–ด 42 3.2.1 ์†ก์‹ ๋ถ€ ์ผ์ • ์ „๋ฅ˜์› ์ œ์–ด 42 3.2.2 ์ˆ˜์‹ ๋ถ€ ์ฐจ๋Ÿ‰์ด ์—†๋Š” ๊ฒฝ์šฐ์˜ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ๋“ฑ๊ฐ€ํšŒ๋กœ 46 3.2.3 ์ˆ˜์‹ ๋ถ€ ์ฐจ๋Ÿ‰์ด 1๋Œ€ ๊ฒฝ์šฐ์˜ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ๋“ฑ๊ฐ€ํšŒ๋กœ 48 3.2.4 ์ˆ˜์‹ ๋ถ€ ์ฐจ๋Ÿ‰์ด 2๋Œ€ ๊ฒฝ์šฐ์˜ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ๋“ฑ๊ฐ€ํšŒ๋กœ 59 3.2.5 ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ์†Œ์‹ ํ˜ธ ๋ชจ๋ธ 61 3.2.6 ์†ก์‹ ๋ถ€ ์ „๋ฅ˜ ์ธก์ •๊ณผ ์ œ์–ด 62 3.3 ์ˆ˜์‹ ๋ถ€ ์ œ์–ด 69 3.3.1 ์ดˆ๊ธฐ ์œ„์ƒ ์ถ”์ • ๋ฐฉ๋ฒ• 69 3.3.2 ์ˆ˜์‹ ๋ถ€ ์ „๋ ฅ ์ œ์–ด ๋ฐฉ๋ฒ• 72 3.3.3 ์œ ํšจ ์ „๋ ฅ ๋ฌดํšจ ์ „๋ ฅ ์ œ์–ด 77 ์ œ 4 ์žฅ ๋ชจ์˜ ์‹คํ—˜ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ 81 4.1 ์ œ์•ˆํ•˜๋Š” ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ์‹œ์Šคํ…œ ๊ตฌ์„ฑ 81 4.1.1 ์†ก์‹ ๋ถ€์ธก ํŠธ๋ž™ ๋ผ์ธ ๊ตฌ์„ฑ๊ณผ ์ˆ˜์‹ ๋ถ€ ์ฐจ๋Ÿ‰ ์ง€์ง€๋Œ€ 81 4.1.2 ์†ก์‹ ๋ถ€์ธก, ์ˆ˜์‹ ๋ถ€์ธก ์‹คํ—˜ ์„ธํŠธ ๊ตฌ์„ฑ 83 4.1.3 ์‹คํ—˜ ์„ธํŠธ ์‹œ์Šคํ…œ ์ œ์ •์ˆ˜ 87 4.2 ๋ชจ์˜ ์‹คํ—˜ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ 89 4.2.1 ์†ก์‹ ๋ถ€์ธก ์ „๋ฅ˜ ์ œ์–ด ํŒŒํ˜• 89 4.2.2 ์ดˆ๊ธฐ ์œ„์ƒ ์ถ”์ • ์‹คํ—˜ 91 4.2.3 ๋ถ„๊ธฐ ๊ตฌ๊ฐ„ ์‹คํ—˜ 92 4.2.4 ์ˆ˜์‹ ๋ถ€ ์ฐจ๋Ÿ‰์ด 1๋Œ€์ธ ๊ฒฝ์šฐ ์ „๋ ฅ ์ œ์–ด ์‹คํ—˜ 93 4.2.5 ์ˆ˜์‹ ๋ถ€ ์ฐจ๋Ÿ‰์ด 2๋Œ€์ธ ๊ฒฝ์šฐ ์ˆ˜์‹ ๋ถ€์ธก ์ „๋ ฅ ์ œ์–ด ์‹คํ—˜ 98 4.2.6 ํšจ์œจ ์ธก์ • ๊ฒฐ๊ณผ 100 ์ œ 5 ์žฅ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 102 5.1 ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 102 5.2 ํ–ฅํ›„ ๊ณผ์ œ 104 ์ฐธ๊ณ  ๋ฌธํ—Œ 106 ๋ถ€ ๋ก 111 A.1 ์ „๋ ฅ๋ฐ˜๋„์ฒด IGBT์™€ SiC ์†Œ์ž ์‚ฌ์–‘ 111 A.2 ์ฐจ๋Ÿ‰ 2๋Œ€ ๋™์ž‘ ํ•  ๋•Œ ์ „์•• ์‹ 113 Abstract 117๋ฐ•

    ์—ด๋ฆฐ์ถฉ๋‚จ 73ํ˜ธ-[ํŠน์ง‘3] ์„ธ๊ณ„์œ ์‚ฐ ๋“ฑ์žฌ ์ดํ›„ ํ–ฅํ›„ ๊ณผ์ œ์™€ ์ •์ฑ…๋ฐฉํ–ฅ

    No full text
    1. ๋“ค์–ด๊ฐ€๋ฉฐ ๋ฐฑ์ œ์—ญ์‚ฌ์œ ์ ์ง€๊ตฌ๊ฐ€ ๋ฐฑ์ œ๊ด€๋ จ ๋ฌธํ™”์œ ์‚ฐ์œผ๋กœ๋Š” ์ฒ˜์Œ์œผ๋กœ ์„ธ๊ณ„์œ ์‚ฐ์˜ ๋ฐ˜์—ด์— ์˜ฌ๋ž๋‹ค. ์ด์— ๋”ฐ๋ผ ๊ณต์ฃผยท๋ถ€์—ฌยท์ต์‚ฐ์˜ ๊ตญ์ œ์ ์ธ ์ง€๋ช…๋„๊ฐ€ ์ƒ์Šนํ•˜๋ฉด์„œ ๊ด€๊ด‘๊ฐ ์ฆ๊ฐ€์™€ ๊ณ ์šฉ๊ธฐํšŒ, ๊ฒฐ๊ตญ ์ง€์—ญ ๊ฒฝ์ œ์˜ ํ™œ์„ฑํ™”๋ผ๋Š” ๋ฐ์€ ๋ฏธ๋ž˜๋ฅผ ๋ฐ”๋ผ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๊ทธ์— ๋”ฐ๋ผ ๊ฐ ์ง€์ž์ฒด์—์„œ๋Š” ์„ธ๊ณ„์œ ์‚ฐ์„ ์–ด๋–ป๊ฒŒ ๊ด€๋ฆฌํ•˜๊ณ  ํ™œ์šฉํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ๋งŽ์€ ๊ณผ์ œ๋ฅผ ์•ˆ๊ฒŒ ๋˜์—ˆ๊ณ , ์ด๋Š” ์ •๋ถ€์˜ ๊ด€์‹ฌ์ด๋‚˜ ์ง€์› ์—†์ด๋Š” ์‚ฌ์‹ค์ƒ ๋ชจ๋“  ๊ฒƒ์ด ์–ด๋ ต๋‹ค. -์ดํ›„ ์ƒ๋žต- ๋“ค์–ด๊ฐ€๋ฉฐ - ๋ฐฑ์ œ๋ฌธํ™” ์ธ์‹ ์ œ๊ณ ์™€ ์˜์—ญ ํ™•๋Œ€ - ์„ธ๊ณ„์œ ์‚ฐ์˜ ํšจ์œจ์ ์ธ ๊ด€๋ฆฌ์™€ ํ™œ์šฉ - ๊ด€๊ด‘ํ™œ์„ฑํ™”๋ฅผ ์œ„ํ•œ ์ธํ”„๋ผ ๊ตฌ์ถ• - ๋งบ์Œ

    ํด๋ฆฌ๋จธ ๊ธฐํŒ์œ„์˜ ์€ ๋‚˜๋…ธ๋ง‰๋Œ€ ์„ฑ์žฅ ๋ฐ ์‘์šฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    Doctor๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํด๋ฆฌ๋จธ ๊ธฐํŒ ์œ„์— ์€(Ag) ๋‚˜๋…ธ๋ฐ•๋ง‰์„ ํ˜•์„ฑํ•œ ํ›„ ์—ผ์†Œ ํ”Œ๋ผ์Šค๋งˆ์— ์˜ํ•ด ์—ผํ™”์€ (AgCl) ๋‚˜๋…ธ๋ง‰๋Œ€๋ฅผ ๊ธฐ์กด ๋‚˜๋…ธ๋ง‰๋Œ€ ์„ฑ์žฅ ๊ธฐ์ˆ ๋ณด๋‹ค ์ˆ˜๋ฐฑ ๋ฐฐ ๋น ๋ฅด๊ฒŒ ์„ฑ์žฅ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋‚˜๋…ธ๋ง‰๋Œ€ ์ดˆ๊ณ ์† ์„ฑ์žฅ๊ธฐ์ˆ ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์€ ๋‚˜๋…ธ๋ฐ•๋ง‰์„ ์—ผ์†Œ ํ”Œ๋ผ์Šค๋งˆ์— ๋…ธ์ถœํ•˜๋ฉด, ์€ ๋ฐ•๋ง‰ ํ‘œ๋ฉด์—์„œ ํ˜•์„ฑ๋œ ์—ผํ™”์€์ธต์€ ์€ ๋ฐ•๋ง‰๊ณผ ๊ฒฐ์ •์ƒ์ˆ˜ (lattice constant)๊ฐ€ ๋‹ฌ๋ผ์„œ ๊ทธ ๋ง‰์˜ ๊ณ„๋ฉด์— ์••์ถ•์‘๋ ฅ (compressive stress)์ด ์‘์ง‘๋œ๋‹ค. ์‘์ง‘๋œ ์‘๋ ฅ์€ ์—ผํ™”์€ ๋‚˜๋…ธ๋ง‰๋Œ€๊ฐ€ ํ˜•์„ฑ๋˜๋ฉด์„œ ์™„ํ™”๋˜๊ณ , ์ด ๊ณผ์ • ์ค‘์— ์€ ์›์ž๊ฐ€ ์‘๋ ฅ์œ ๋ฐœํ™•์‚ฐ (strain-induced diffusion)์— ์˜ํ•ด ๋‚˜๋…ธ๋ง‰๋Œ€ ์•„๋žซ๋ถ€๋ถ„์œผ๋กœ ํ™•์‚ฐํ•˜์—ฌ ๊ธฐํŒ์— ์ˆ˜์ง์ธ ๋ฐฉํ–ฅ์œผ๋กœ ์„ฑ์žฅํ•œ๋‹ค. ๋˜ํ•œ, ์ด๋•Œ์˜ ์‘๋ ฅ์— ์˜ํ•ด ํ”Œ๋ผ์Šคํ‹ฑ ๊ธฐํŒ์ด ํœ˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ์‘๋ ฅ๊ตฌ๋ฐฐ (strain gradient)๋ฅผ ์ฆ๊ฐ€์‹œ์ผœ ์€ ์›์ž์˜ ํ™•์‚ฐ์„ ์ด‰์ง„ํ•˜์—ฌ ๋‚˜๋…ธ๋ง‰๋Œ€๊ฐ€ ์ดˆ๊ณ ์†์œผ๋กœ ์„ฑ์žฅ ๋จ์„ ๋ฐฉ์‚ฌ๊ด‘ ๊ฐ€์†๊ธฐ์™€ ๊ณผ FEM (finite element method) ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์ด ๊ธฐ์ˆ ์€ ์ƒ์˜จ์—์„œ ์ œ์กฐ๊ฐ€ ๊ฐ€๋Šฅํ•˜๊ณ , 1๋ถ„ ์ดํ•˜์˜ ์งง์€ ๊ณต์ •์‹œ๊ฐ„ ๋™์•ˆ ๋‚˜๋…ธ๋ง‰๋Œ€ ๊ธธ์ด๋ฅผ ์ˆ˜ um ๊ธธ์ด๋กœ ์„ฑ์žฅ์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด์„œ, ์ƒ์‚ฐ๊ณต์ •์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, ๋‚˜๋…ธ๋ง‰๋Œ€์˜ ์ง๊ฒฝ ํฌ๊ธฐ๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ๋น›์˜ ์‚ฐ๋ž€๋„๋ฅผ 0%์—์„œ 100%๊นŒ์ง€ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ํ”Œ๋ผ์Šคํ‹ฑ ํ•„๋ฆ„์— ๋‹จ๊ฒฐ์ • ๋‚˜๋…ธ๋ง‰๋Œ€๋ฅผ ๋กคํˆฌ๋กค (roll-to-roll) ๊ณต์ •์œผ๋กœ ์„ฑ์žฅ์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ณ ์„ฑ๋Šฅ ํ”Œ๋ ‰์„œ๋ธ” ์†Œ์ž ๋Œ€๋Ÿ‰์ƒ์‚ฐ์— ์šฉ์ดํ•˜๋‹ค. Finite-difference time-domain (FDTD) ๋ฐ Rigorous coupled wave analysis (RCWA) ๊ด‘ํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์—ผํ™”์€ ๋‚˜๋…ธ๊ตฌ์กฐ์ฒด๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๊ด‘ ์‚ฐ๋ž€๋„๋ฅผ ๋†’์—ฌ ์กฐ๋ช…์šฉ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์—ผํ™”์€ ๋‚˜๋…ธ๋ง‰๋Œ€๋ถ€ํ„ฐ, ๊ด‘์‚ฐ๋ž€ ์—†์ด ํˆฌ๊ณผ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๋””์Šคํ”Œ๋ ˆ์ด์šฉ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ์— ์ ์šฉ ๋  ์ˆ˜ ์žˆ๋Š” ๋‚˜๋…ธ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. 200nm ๋‘๊ป˜์˜ ์€์œผ๋กœ ์ œ์กฐ๋œ ์—ผํ™”์€ ๋‚˜๋…ธ๋ง‰๋Œ€๋Š” 100%์˜ ์šฐ์ˆ˜ํ•œ ๊ด‘์‚ฐ๋ž€๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, OLED์˜ ํœ˜๋„ ํšจ์œจ์„ 33%๊นŒ์ง€ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. 10nm ๋‘๊ป˜์˜ ์€์œผ๋กœ ์ œ์กฐ๋œ ์—ผํ™”์€ ๋‚˜๋…ธ๊ตฌ์กฐ๋Š” ํ”Œ๋ผ์Šคํ‹ฑ ํ•„๋ฆ„์˜ ํ‰๊ท  ํˆฌ๊ณผ์œจ์„ 89.6%์—์„œ 93.4 %๋กœ ํ˜„์ €ํ•˜๊ฒŒ ํ–ฅ์ƒ ์‹œ์ผฐ์œผ๋ฉฐ, ๊ด‘ ์‚ฐ๋ž€๋„๋Š” 0.3% ๋ฏธ๋งŒ์œผ๋กœ ์œ ์ง€๋˜์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ๊ด‘ ์‚ฐ๋ž€ ์—†์ด OLED์˜ ํœ˜๋„ ํšจ์œจ์„ 10.7% ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” ๊ณ ์„ ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด ๊ด‘ํ•™ ์†Œ์ž์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์—ผํ™”์€ ๋‚˜๋…ธ๋ง‰๋Œ€์˜ ์ „๊ธฐ ํ™”ํ•™์  ํ™˜์›์„ ํ†ตํ•ด ์ˆ˜์ง ์ •๋ ฌ๋œ ์€ ๋‚˜๋…ธ๋ง‰๋Œ€ ๋˜ํ•œ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. ์ „๊ธฐ ํ™”ํ•™์  ํ™˜์› ๊ณผ์ • ๋™์•ˆ ์—ผ์†Œ ์›์ž๊ฐ€ ๋น ์ ธ๋‚˜์™€ ์€ ๋‚˜๋…ธ๋ง‰๋Œ€์˜ ์ธก๋ฒฝ์— ์‘์ง‘๋œ ์€ ๋‚˜๋…ธ์ž…์ž๋ฅผ ์ƒ์„ฑํ•˜์—ฌ, ์ˆ˜๋งŽ์€ ์ด‰๋งค ํ™œ์„ฑ ๋ถ€์œ„๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด ๊ฐ€๋ฃจํ˜• ์ด‰๋งค์™€ ๋‹ฌ๋ฆฌ ๊ธฐํŒ ์ง€์ง€ํ˜• ์ด‰๋งค๋กœ ์ ˆ์—ฐ ๊ฒฐํ•ฉ์ฒด๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์•„ ์ด‰๋งค ํšจ์œจ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ตฌํ˜„๋œ ์€ ๋‚˜๋…ธ๋ง‰๋Œ€๋Š” ์ตœ๋Œ€ 0.98 VRHE์˜ ์‚ฐ์†Œํ™˜์›๋ฐ˜์‘ ์ „์••์„ ๊ฐ–๊ฒŒ ๋˜์—ˆ๋‹ค.Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. In this dissertation, new and simple growth of nanorod on polymer film is proposed by plasma-assisted strain relaxation to overcome the existing problems. In this dissertation, the single-crystal AgCl nanowires (NWs) are demonstrated on plastic film by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl NWs. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl NWs grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl NWs. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the NW growth. As a result, vertically well-aligned AgCl NWs were grown by a strain-relaxation process on flexible polymer substrates. The growth rate of the AgCl NWs can be dramatically improved to ~2,000 nm/min on a flexible polymer substrate. The size of AgCl NWs is tunable from sub-wavelength ( 400 nm) by adjusting the thickness of Ag. Thus, optical behavior can be managed from near-zero haze (0.23%) to full-scattering (100 %). The subwavelength-scale nanostructure enhances the transmission of electromagnetic (EM) waves as well as prohibits the scattering of EM waves. And the wavelength-scale NWs are very effective in extracting the confined wave-guided electromagnetic wave in organic light-emitting diodes. Self-supported and vertically-aligned Ag NWs were also developed as electrocatalysts for the oxygen reduction reaction. The electrochemical reduction of the vertically-aligned AgCl NWs grown on plastic film enables to produce of binder-free Ag NWs. During the reduction, the extraction of Cl atoms from AgCl produced aggregated nanoparticles at the sidewall of Ag NWs, resulting in numerous active sites and high electrochemical surface area. The detailed contents of this dissertation are organized as follows. In the first part of the thesis (chapters 1 and 2), I introduce the conventional method to produce nanostructures on a polymer substrate and to grow nanowires on a rigid substrate and their limitations. Chapter 3 gives the fabrication of AgCl NWs on a polymer substrate and the details of the growth mechanism of AgCl NWs. The rapid growth of AgCl NWs on plastic substrate is also discussed. Chapter 4 gives the optoelectronic applications of AgCl NWs from near-zero scattering to full-scattering. Chapter 5 gives the electrochemically reduced Ag NWs and their application of oxygen reduction reaction electrocatalysts

    ๊ฐ€์••์ฆ๊ธฐ๋ฉธ๊ท ๋ฒ•์— ์˜ํ•œ ์น˜๊ณผ์šฉ ์นด๋ฐ”์ด๋“œ ๋ฒ„์˜ ๋ฌผ์„ฑ ๋ณ€ํ™”์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์น˜์˜ํ•™๊ณผ(์น˜๊ณผ์ƒ์ฒด์žฌ๋ฃŒ๊ณผํ•™์ „๊ณต),2008. 8.Maste
    • โ€ฆ
    corecore