53 research outputs found

    Adult-Onset Neuronal Intranuclear Inclusion Disease: First Korean Case Confirmed by Skin Biopsy

    Get PDF
    [No abstract available]ope

    Comparison of 3D Volumetric Subtraction Technique and 2D Dynamic Contrast Enhancement Technique in the Evaluation of Contrast Enhancement for Diagnosing Cushing's Disease

    Get PDF
    Purpose The purpose of this study is to compare the performance of the T1 3D subtraction technique and the conventional 2D dynamic contrast enhancement (DCE) technique in diagnosing Cushing's disease. Materials and Methods Twelve patients with clinically and biochemically proven Cushing's disease were included in the study. In addition, 23 patients with a Rathke's cleft cyst (RCC) diagnosed on an MRI with normal pituitary hormone levels were included as a control, to prevent non-blinded positive results. Postcontrast T1 3D fast spin echo (FSE) images were acquired after DCE images in 3T MRI and image subtraction of pre- and postcontrast T1 3D FSE images were performed. Inter-observer agreement, interpretation time, multiobserver receiver operating characteristic (ROC), and net benefit analyses were performed to compare 2D DCE and T1 3D subtraction techniques. Results Inter-observer agreement for a visual scale of contrast enhancement was poor in DCE (ฮบ = 0.57) and good in T1 3D subtraction images (ฮบ = 0.75). The time taken for determining contrast-enhancement in pituitary lesions was significantly shorter in the T1 3D subtraction images compared to the DCE sequence (P < 0.05). ROC values demonstrated increased reader confidence range with T1 3D subtraction images (95% confidence interval [CI]: 0.94โ€“1.00) compared with DCE (95% CI: 0.70โ€“0.92) (P < 0.01). The net benefit effect of T1 3D subtraction images over DCE was 0.34 (95% CI: 0.12โ€“0.56). For Cushing's disease, both reviewers misclassified one case as a nonenhancing lesion on the DCE images, while no cases were misclassified on T1 3D subtraction images. Conclusion The T1 3D subtraction technique shows superior performance for determining the presence of enhancement on pituitary lesions compared with conventional DCE techniques, which may aid in diagnosing Cushing's disease.ope

    Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward

    Get PDF
    Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and methods: PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results: The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion: The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.ope

    ์™ธ์ƒ์— ๋…ธ์ถœ๋œ ์†Œ๋ฐฉ๊ด€๋“ค์˜ ๋‡Œ ๊ตฌ์กฐ ๋ฐ ํœด์‹๊ธฐ ๋‡Œ๊ธฐ๋Šฅ ๋ณ€ํ™”: ์˜ˆ๋น„ ๊ฒฐ๊ณผ

    Get PDF
    Purpose: To analyze the altered brain regions and intrinsic brain activity patterns in trauma-exposed firefighters without posttraumatic stress disorder (PTSD). Materials and Methods: Resting-state functional MRI (rsfMRI) was performed for all subjects. Thirty-one firefighters over 40 years of age without PTSD (31 men; mean age, 49.8 ยฑ 4.7 years) were included. Twenty-six non-traumatized healthy controls (HCs) (26 men; mean age, 65.3 ยฑ 7.84 years) were also included. Voxel-based morphometry was performed to investigate focal differences in the brain anatomy. Seed-based functional connectivity analysis was performed to investigate differences in spontaneous brain characteristics. Results: The mean z-scores of the Seoul Verbal Learning Test for immediate and delayed recall, Controlled Oral Word Association Test (COWAT) score for animals, and COWAT phonemic fluency were significantly lower in the firefighter group than in the HCs, indicating decreased neurocognitive function. Compared to HCs, firefighters showed reduced gray matter volume in the left superior parietal gyrus and left inferior temporal gyrus. Further, in contrast to HCs, firefighters showed alterations in rsfMRI values in multiple regions, including the fusiform gyrus and cerebellum. Conclusion: Structural and resting-state functional abnormalities in the brain may be useful imaging biomarkers for identifying alterations in trauma-exposed firefighters without PTSD.ope

    Cycle-consistent adversarial networks improves generalizability of radiomics model in grading meningiomas on external validation

    Get PDF
    The heterogeneity of MRI is one of the major reasons for decreased performance of a radiomics model on external validation, limiting the model's generalizability and clinical application. We aimed to establish a generalizable radiomics model to predict meningioma grade on external validation through leveraging Cycle-Consistent Adversarial Networks (CycleGAN). In this retrospective study, 257 patients with meningioma were included in the institutional training set. Radiomic features (n = 214) were extracted from T2-weighted (T2) and contrast-enhanced T1 (T1C) images. After radiomics feature selection, extreme gradient boosting classifiers were developed. The models were validated in the external validation set consisting of 61 patients with meningiomas. To reduce the gap in generalization associated with the inter-institutional heterogeneity of MRI, the smaller image set style of the external validation was translated into the larger image set style of the institutional training set using CycleGAN. On external validation before CycleGAN application, the performance of the combined T2 and T1C models showed an area under the curve (AUC), accuracy, and F1 score of 0.77 (95% confidence interval 0.63-0.91), 70.7%, and 0.54, respectively. After applying CycleGAN, the performance of the combined T2 and T1C models increased, with an AUC, accuracy, and F1 score of 0.83 (95% confidence interval 0.70-0.97), 73.2%, and 0.59, respectively. Quantitative metrics (by Frรฉchet Inception Distance) showed that CycleGAN can decrease inter-institutional image heterogeneity while preserving predictive information. In conclusion, leveraging CycleGAN may be helpful to increase the generalizability of a radiomics model in differentiating meningioma grade on external validation.ope

    Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors

    Get PDF
    OBJECTIVE: To assess whether radiomics features derived from multiparametric MRI can predict the tumor grade of lower-grade gliomas (LGGs; World Health Organization grade II and grade III) and the nonenhancing LGG subgroup. MATERIALS AND METHODS: Two-hundred four patients with LGGs from our institutional cohort were allocated to training (n = 136) and test (n = 68) sets. Postcontrast T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery images were analyzed to extract 250 radiomics features. Various machine learning classifiers were trained using the radiomics features to predict the glioma grade. The trained classifiers were internally validated on the institutional test set and externally validated on a separate cohort (n = 99) from The Cancer Genome Atlas (TCGA). Classifier performance was assessed by determining the area under the curve (AUC) from receiver operating characteristic curve analysis. An identical process was performed in the nonenhancing LGG subgroup (institutional training set, n = 73; institutional test set, n = 37; and TCGA cohort, n = 37) to predict the glioma grade. RESULTS: The performance of the best classifier was good in the internal validation set (AUC, 0.85) and fair in the external validation set (AUC, 0.72) to predict the LGG grade. For the nonenhancing LGG subgroup, the performance of the best classifier was good in the internal validation set (AUC, 0.82), but poor in the external validation set (AUC, 0.68). CONCLUSION: Radiomics feature-based classifiers may be useful to predict LGG grades. However, radiomics classifiers may have a limited value when applied to the nonenhancing LGG subgroup in a TCGA cohort.ope

    Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation

    Get PDF
    The purpose of this study was to establish a high-performing radiomics strategy with machine learning from conventional and diffusion MRI to differentiate recurrent glioblastoma (GBM) from radiation necrosis (RN) after concurrent chemoradiotherapy (CCRT) or radiotherapy. Eighty-six patients with GBM were enrolled in the training set after they underwent CCRT or radiotherapy and presented with new or enlarging contrast enhancement within the radiation field on follow-up MRI. A diagnosis was established either pathologically or clinicoradiologically (63 recurrent GBM and 23 RN). Another 41 patients (23 recurrent GBM and 18 RN) from a different institution were enrolled in the test set. Conventional MRI sequences (T2-weighted and postcontrast T1-weighted images) and ADC were analyzed to extract 263 radiomic features. After feature selection, various machine learning models with oversampling methods were trained with combinations of MRI sequences and subsequently validated in the test set. In the independent test set, the model using ADC sequence showed the best diagnostic performance, with an AUC, accuracy, sensitivity, specificity of 0.80, 78%, 66.7%, and 87%, respectively. In conclusion, the radiomics models models using other MRI sequences showed AUCs ranging from 0.65 to 0.66 in the test set. The diffusion radiomics may be helpful in differentiating recurrent GBM from RN..ope
    • โ€ฆ
    corecore