85 research outputs found

    Increased Innate Lymphoid Cell 3 and IL-17 Production in Mouse Lamina Propria Stimulated with Giardia lamblia

    Get PDF
    Innate lymphoid cells (ILCs) are key players during an immune response at the mucosal surfaces, such as lung, skin, and gastrointestinal tract. Giardia lamblia is an extracellular protozoan pathogen that inhabits the human small intestine. In this study, ILCs prepared from the lamina propria of mouse small intestine were incubated with G. lamblia trophozoites. Transcriptional changes in G. lamblia-exposed ILCs resulted in identification of activation of several immune pathways. Secretion of interleukin (IL)-17A, IL-17F, IL-1Ξ², and interferon-Ξ³ was increased, whereas levels of IL-13, IL-5, and IL22, was maintained or reduced upon exposure to G. lamblia. Goup 3 ILC (ILC3) was found to be dominant amongst the ILCs, and increased significantly upon co-cultivation with G. lamblia trophozoites. Oral inoculation of G. lamblia trophozoites into mice resulted in their presence in the small intestine, of which, the highest number of parasites was detected at the 5 days-post infection. Increased ILC3 was observed amongst the ILC population at the 5 days-post infection. These findings indicate that ILC3 from the lamina propria secretes IL-17 in response to G. lamblia, leading to the intestinal pathology observed in giardiasis.ope

    Characterization of YS-27, an axenic Korean strain of Entamoeba histolytica

    Get PDF
    Characterization of YS-27, an axenic Entamoeba strain, was performed by three different laboratory methods. Zymodeme analysis using starch gel electrophoresis and PCR with species-specific primers showed that YS-27 is a pathogenic Entamoeba which belongs to the group II zymodeme. Pathogenicity of YS-27 was further confirmed by observing the formation of liver abscess in Mongolian gerbils. These results showed that YS-27 is E. hisolytica.ope

    A polo-like kinase modulates cytokinesis and flagella biogenesis in Giardia lamblia

    Get PDF
    Background: Polo-like kinases (PLKs) are conserved serine/threonine kinases that regulate the cell cycle. To date, the role of Giardia lamblia PLK (GlPLK) in cells has not been studied. Here, we report our investigation on the function of GlPLK to provide insight into the role of this PKL in Giardia cell division, especially during cytokinesis and flagella formation. Methods: To assess the function of GIPLK, Giardia trophozoites were treated with the PLK-specific inhibitor GW843286X (GW). Using a putative open reading frame for the PLK identified in the Giardia genomic database, we generated a transgenic Giardia expressing hemagglutinin (HA)-tagged GlPLK and used this transgenic for immunofluorescence assays (IFAs). GlPLK expression was knocked down using an anti-glplk morpholino to observe its effect on the number of nuclei number and length of flagella. Giardia cells ectopically expressing truncated GlPLKs, kinase domain + linker (GlPLK-KDL) or polo-box domains (GlPLK-PBD) were constructed for IFAs. Mutant GlPLKs at Lys51, Thr179 and Thr183 were generated by site-directed mutagenesis and then used for the kinase assay. To elucidate the role of phosphorylated GlPLK, the phosphorylation residues were mutated and expressed in Giardia trophozoites RESULTS: After incubating trophozoites with 5 ΞΌM GW, the percentage of cells with > 4 nuclei and longer caudal and anterior flagella increased. IFAs indicated that GlPLK was localized to basal bodies and flagella and was present at mitotic spindles in dividing cells. Morpholino-mediated GlPLK knockdown resulted in the same phenotypes as those observed in GW-treated cells. In contrast to Giardia expressing GlPLK-PBD, Giardia expressing GlPLK-KDL was defective in terms of GIPLK localization to mitotic spindles and had altered localization of the basal bodies in dividing cells. Kinase assays using mutant recombinant GlPLKs indicated that mutation at Lys51 or at both Thr179 and Thr183 resulted in loss of kinase activity. Giardia expressing these mutant GlPLKs also demonstrated defects in cell growth, cytokinesis and flagella formation. Conclusions: These data indicate that GlPLK plays a role in Giardia cell division, especially during cytokinesis, and that it is also involved in flagella formation.ope

    Functional characterization of the IlpA protein of Vibrio vulnificus as an adhesin and its role in bacterial pathogenesis

    Get PDF
    Vibrio vulnificus is a Gram-negative bacterium that causes a fatal septicemia. One of its virulence factors is a membrane-bound lipoprotein, IlpA, which can induce cytokine production in human immune cells. In the present study, the role of IlpA as an adhesion molecule was investigated. An ilpA-deleted V. vulnificus mutant showed significantly decreased adherence to INT-407 human intestinal epithelial cells, which in turn resulted in reduced cytotoxicity. The DeltailpA mutant recovered the adherence ability of the wild type by complementation in trans with the intact ilpA gene. In addition, pretreatment of V. vulnificus with anti-IlpA polyclonal antibodies resulted in a significant reduction of bacterial adherence. To localize the domain of IlpA required for cytoadherence, three truncated recombinant IlpA polypeptides were constructed and tested for the ability to adhere to human cells by a ligand-binding immunoblot assay and fluorescence microscopy. The polypeptide containing the carboxy (C)-terminal hydrophilic domain exhibited direct binding to INT-407 cells. Therefore, the C-terminal domain of IlpA allows this protein to be an adhesion molecule of V. vulnificus.ope

    Transcriptional Regulatory Cascade for Elastase Production in Vibrio vulnificus LuxO ACTIVATES luxT EXPRESSION AND LuxT REPRESSES smcR EXPRESSION

    Get PDF
    Vibrio vulnificus causes diseases through actions of various virulence factors, including the elastase encoded by the vvpE gene. Through transposon mutagenesis of V. vulnificus, vvpE expression was shown to be increased by luxO mutation. Since the vvpE gene is known to be positively regulated by SmcR via direct binding to the vvpE promoter, the role of LuxO in smcR expression was investigated. The luxAB-transcriptional fusions containing different lengths of the smcR promoter region indicated that the smcR transcription was negatively regulated by LuxO and that a specific upstream region of the smcR gene was required for this repression. Since LuxO is a known member of positive regulators, the negative regulation of smcR transcription by LuxO prompted us to identify the factor(s) linking LuxO and smcR transcription. LuxT was isolated in a ligand fishing experiment using the smcR upstream region as bait, and smcR expression was increased by luxT mutation. Recombinant LuxT bound to a specific upstream region of the smcR gene, -154 to -129 relative to the smcR transcription start site. The expression of luxT was positively regulated by LuxO, and the luxT promoter region contained a putative LuxO-binding site. Mutagenesis of the LuxO-binding site in the luxT promoter region resulted in a loss of transcriptional control by LuxO. Therefore, this study demonstrates a transcriptional regulatory cascade for elastase production, where LuxO activates luxT transcription and LuxT represses smcR transcription.ope

    SmcR and Cyclic AMP Receptor Protein Coactivate Vibrio vulnificus vvpE Encoding Elastase through the RpoS-dependent Promoter in a Synergistic Manner

    Get PDF
    The putative virulence factors of Vibrio vulnificus include an elastase, the gene product of vvpE. We previously demonstrated that vvpE expression is differentially directed by two different promoters in a growth phase-dependent manner. The activity of the stationaryphase promoter (promoter S (PS)) is dependent on RpoS and is also under the positive control of cyclic AMP receptor protein (CRP). In this study, primer extension analyses revealed that SmcR, the Vibrio harveyi LuxR homolog, is also involved in the regulation of vvpE transcription by activating PS. Although the influence of CRP on PS is mediated by SmcR, the level of PS activity observed when CRP and SmcR function together was found to be greater than the sum of the PS activities achieved by each activator alone. Western blot analyses demonstrated that the cellular levels of RpoS, CRP, and SmcR were not significantly affected by one other, indicating that CRP and SmcR function cooperatively to activate PS rather than sequentially in a regulatory cascade. The binding sites for CRP and SmcR were mapped based on a deletion analysis of the vvpE promoter region and confirmed by in vitro DNase I protection assays. The binding sites for CRP and SmcR were juxtapositioned and centered 220 and 198 bp upstream of the transcription start site of PS, respectively. Accordingly, these results reveal that CRP and SmcR function synergistically to coactivate the expression of vvpE by the RpoS-dependent promoter (PS) and that the activators exert their effect by directly binding to the promoter in the stationary phase.ope

    Identification of Vibrio vulnificus Irp and Its Influence on Survival Under Various Stresses

    Get PDF
    An lrp gene encoding a leucine-responsive regulatory protein was identified from Vibrio vulnificus, and its role in the survival of the organism was assessed by analyzing the stress tolerance of the isogenic mutant, in which the lrp gene had been inactivated. The results demonstrated that Lrp contributes to the survival of V. vulnificus, and that their contribution is dependent on the phase of growth.ope

    Identification and Characterization of the Vibrio vuinificus Phosphomannomutase Gene

    Get PDF
    Numerous virulence factors such as O antigen have been proposed to account for the fulminating and destructive nature of V. vulnificus infections. To better characterize the role of O antigen, a pmm gene encoding a phosphomannomutase was identified and cloned from V. vulnificus. The deduced amino acid sequence of the pmm was 42 to 71% similar to that reported from other Enterobacteriaceae. Functions of the pmm gene in virulence were assessed by the construction of an isogenic mutant, whose pmm gene was inactivated by allelic exchanges, and by evaluating its phenotype changes in vitro and in mice. The disruption of pmm resulted in a loss of more than 90% of phosphomannomutase, and reintroduction of recombinant pmm could complement the decrease of phosphomannomutase activity, indicating that the pmm gene encodes the phosphomannomutase of V. vulnificus. There was no difference in the LD50s of the wild-type and the pmm mutant in mice, but the LD50s observed by the mutant complemented with recombinant pmm were lower. Therefore, it appears that PMM is less important in the pathogenesis of V. vulnificus than would have been predicted by examining the effects of injecting purified LPS into animals, but it is not completely dispensable for virulence in miceope

    Positive Regulation of fur Gene Expression via Direct Interaction of Fur in a Pathogenic Bacterium, Vibrio vulnificus

    Get PDF
    In pathogenic bacteria, the ability to acquire iron, which is mainly regulated by the ferric uptake regulator (Fur), is essential to maintain growth as well as its virulence. In Vibrio vulnificus, a human pathogen causing gastroenteritis and septicemia, fur gene expression is positively regulated by Fur when the iron concentration is limited (H.-J. Lee et al., J. Bacteriol. 185:5891-5896, 2003). Footprinting analysis revealed that an upstream region of the fur gene was protected by the Fur protein from DNase I under iron-depleted conditions. The protected region, from -142 to -106 relative to the transcription start site of the fur gene, contains distinct AT-rich repeats. Mutagenesis of this repeated sequence resulted in abolishment of binding by Fur. To confirm the role of this cis-acting element in Fur-mediated control of its own gene in vivo, fur expression was monitored in V. vulnificus strains using a transcriptional fusion containing the mutagenized Fur-binding site (fur(mt)::luxAB). Expression of fur(mt)::luxAB showed that it was not regulated by Fur and was not influenced by iron concentration. Therefore, this study demonstrates that V. vulnificus Fur acts as a positive regulator under iron-limited conditions by direct interaction with the fur upstream region.ope

    Identification of a Novel Microtubule-Binding Protein in Giardia lamblia

    Get PDF
    Giardia lamblia is a protozoan that causes diarrheal diseases in humans. Cytoskeletal structures of Giardia trophozoites must be finely reorganized during cell division. To identify Giardia proteins which interact with microtubules (MTs), Giardia lysates were incubated with in vitro-polymerized MTs and then precipitated by ultracentifugation. A hypothetical protein (GL50803_8405) was identified in the precipitated fraction with polymerized MTs and was named GlMBP1 (G. lamblia microtubule-binding protein 1). Interaction of GlMBP1 with MTs was confirmed by MT binding assays using recombinant GlMBP1 (rGlMBP1). In vivo expression of GlMBP1 was shown by a real-time PCR and western blot analysis using anti-rGlMBP1 antibodies. Transgenic G. lamblia trophozoites were constructed by integrating a chimeric gene encoding hemagglutinin (HA)-tagged GlMBP1 into a Giardia chromosome. Immunofluorescence assays of this transgenic G. lamblia, using anti-HA antibodies, revealed that GlMBP1 mainly localized at the basal bodies, axonemes, and median bodies of G. lamblia trophozoites. This result indicates that GlMBP1 is a component of the G. lamblia cytoskeleton.ope
    • …
    corecore