73 research outputs found

    A Study on Molecular Mechanism of Novel Mitophagy Regulators

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 생λͺ…κ³Όν•™λΆ€, 2015. 2. μ •μš©κ·Ό.CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, I report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both the outer and inner membranes of mitochondria in resting cells. Interestingly, upon induction of mitophagy, CHDH accumulates on the outer membrane in a mitochondrial potential-dependent manner. I found that CHDH is not a substrate of PARK2 but interacts with SQSTM1 independently of PARK2 to recruit SQSTM1 into depolarized mitochondria. The FB1 domain of CHDH is exposed to the cytosol and is required for the interaction with SQSTM1, and overexpression of the FB1 domain only in cytosol reduces CCCP-induced mitochondrial degradation via competitive interaction with SQSTM1. In addition, CHDH, but not the CHDH FB1 deletion mutant, forms a ternary protein complex with SQSTM1 and MAP1LC3 (LC3), leading to loading of LC3 onto the damaged mitochondria via SQSTM1. Further, CHDH is crucial to the mitophagy induced by MPP+ in SN4741 cells. Overall, my results suggest that CHDH is required for PARK2-mediated mitophagy for the recruitment of SQSTM1 and LC3 onto the mitochondria for cargo recognition.ABSTRACT TABLE OF CONTENTS LIST OF FIGURES 1. INTRODUCTION 2. MATERIALS AND METHODS 2.1. Cell culture and transfection 2.2. Plasmids and siRNA 2.3. Measurement of Mito-GFP intensities 2.4. Measurement of enzyme activity and LC-MS 2.5. Immunoprecipitation, western blot and antibodies 2.6. Immunofluorescence and colocalization coefficient 2.7. Flow cytometry 2.8. Mitochondrial DNA quantification 2.9. Mitochondria fractionation 2.10. Proteinase K degradation assay 3. RESULTS 3.1. CHDH is required for PARK2-mediated mitophagy 3.2. Mitophagic activity of CHDH is independent of enzyme activity 3.3. CHDH accumulates on the outer membrane following mitochondrial damage 3.4. CHDH interacts with SQSTM1 independently of PARK2 during mitophagy 3.5. The interaction of CHDH with SQSTM1 brings LC3 to damaged mitochondria for cargo recognition during mitophagy 3.6. CHDH is implicated in MPP+-induced mitophagy in SN4741 dopaminergic cells 4. DISCUSSION 5. REFFERENCES κ΅­λ¬Έ 초둝Docto

    빅데이터 κΈ°μˆ μ„ μ΄μš©ν•œ ν•΄μ–‘κ΅¬μ‘°λ¬Όμ˜ 데이터 λ§ˆμ΄λ‹ 방법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ ν˜‘λ™κ³Όμ •ν•΄μ–‘ν”ŒλžœνŠΈμ—”μ§€λ‹ˆμ–΄λ§μ „κ³΅, 2019. 2. λ…Έλͺ…일.As many products as ships and offshore structures are constructed in the shipyard, and various data are generated and stored in the design or construction stage. Big data technology needs to be applied to process data of large size quickly, obtain meaningful results and use it for decision making. In this paper, we propose a solution to two of the problems that may occur in the shipyard. One of the two problems which can arise in the shipyard has mainly happened in the design stage. Engineers can make the mistake of choosing the wrong material in the design process, and the wrong material selection in the design process can directly lead to a design error. Another problem may arise during the procurement and purchase process. In the absence of additional information such as lead time of material or inventory at the time of procurement, additional time is required to retrieve the data. Both problems arise predominantly from the unskilled. Therefore, the purpose of this study is to establish a 8 system that can inform the engineers about the relationships between materials which can be obtained by association analysis and material requirements which can be obtained by regression analysis. This kind of system can help the engineers to reduce design errors and time consuming due to the procurement process. The information of piping materials used in an offshore structure can be regarded as big data because of their various types and size, and the data mining algorithms based on the big data technology are applied to data related to the offshore structures. To analyze the relationship between materials for design, frequent pattern growth algorithm was used. For material requirement analysis, big data technology-based regression analysis was used to generate a regression model, respectively. Finally, the proposed method was used to check the relationship between materials, and to predict material requirement, and verified the effectiveness of the proposed method by comparing each result with actual cases.μ‘°μ„ μ†Œμ— λ§Žμ€ μ„ λ°•κ³Ό ν•΄μ–‘ ꡬ쑰물듀이 κ±΄μ‘°λ˜λ©΄μ„œ λ‹€μ–‘ν•œ 데이터듀이 섀계 및 건쑰 κ³Όμ •μ—μ„œ μƒμ„±λ˜κ³  λˆ„μ λœλ‹€. λˆ„μ λœ 데이터λ₯Ό λΉ λ₯΄κ²Œ μ²˜λ¦¬ν•˜μ—¬ μ˜μ‚¬μ„€μ •μ— μ΄μš©ν•˜λ €λŠ” ν•„μš”μ„±μ— λ°œμƒν•¨μ— 따라 빅데이터 기술의 λ„μž… ν•„μš”μ„±λ„ ν•¨κ»˜ 컀지고 μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ‘°μ„ μ†Œμ—μ„œ λ°œμƒν•  수 μžˆλŠ” 두 가지 사둀에 λŒ€ν•˜μ—¬ 빅데이터 기반 데이터 λ§ˆμ΄λ‹ 방법을 ν†΅ν•œ 해결책을 μ œμ•ˆν•˜κ³ μž ν•œλ‹€. 첫 번째 λ¬Έμ œμ μ€ 섀계 λ‹¨κ³„μ—μ„œ λ°œμƒν•  수 μžˆλŠ” 문제둜, 섀계 κ³Όμ •μ—μ„œ μ μ ˆν•˜μ§€ λͺ»ν•œ 자재λ₯Ό μ„ μ •ν•˜μ—¬ 그것이 μ˜€μž‘μœΌλ‘œ μ΄μ–΄μ§€λŠ” κ²½μš°μ΄λ‹€. 또 λ‹€λ₯Έ ν•œκ°€μ§€λŠ” ꡬ맀 및 쑰달 κ³Όμ •μ—μ„œ λ°œμƒν•  수 μžˆλŠ” 문제둜, 쑰달 과정을 κ΄€λ¦¬ν•˜κΈ° μœ„ν•œ 자재 κ΄€λ ¨ 좔가적인 정보λ₯Ό κ²€μƒ‰ν•˜λŠ”λ° 좔가적인 μ‹œμˆ˜κ°€ μ†Œμš”λœλ‹€λŠ” 점이닀. 두 가지 문제 λͺ¨λ‘ λ―Έμˆ™λ ¨μžμ—κ²Œμ„œ 주둜 λ°œμƒν•˜λ©°, λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ—°κ΄€μ„± 뢄석을 μ΄μš©ν•œ 자재 μΆ”μ²œκ³Ό νšŒκ·€ 뢄석을 μ΄μš©ν•œ μ†Œμš”λŸ‰ μ˜ˆμΈ‘μ΄λΌλŠ” 90Contents Abstract 7 1. Introduction 9 1.1. Research background 9 1.2. Related works 14 1.3. Target of the study 15 1.4. System configuration 17 2. Data mining method for pipng material 19 2.1. Piping materials of an offshore structure 19 2.2. Association analysis 23 2.2.1. Assotication between piping material for recommendation of associated materials 23 2.2.2. Comparison of association analysis algorithms 25 2.3. Regression analysis 31 2.3.1. Assistance of purchase process by forecasting material requirement 32 2.3.2. Regression model training 35 2.4. Estabilishment of big data framework 46 2.4.1. Big data framework 46 2.4.2. Data processing 47 3. Application to big data framework 49 3.1. Recommendation of associated materials 49 3.1.1. Method of association analysis of piping material 49 3.1.2. Result of analysis and validation 56 3.2. Forecasting of material requirement 63 3.2.1. Method of training regression model 63 3.2.2. Prediction of material requirement and validation 69 4. Conclusion and future works 85 Related Works 86 κ΅­λ¬Έ 초둝 89Maste

    Re-defining Strausss Political Philosophy through Strausss Interpretation of Nietzsche: Theologico-Political Problem and Plato

    No full text
    μŠ€νŠΈλΌμš°μŠ€λŠ” κ·ΌλŒ€μ •μΉ˜μ² ν•™μ˜ μ „κ°œ κ³Όμ •μ—μ„œ ν‡΄ν–‰μ˜ λ§ˆμ§€λ§‰ 물결을 μΌμœΌν‚¨ μž₯본인으둜 λ‹ˆμ²΄λ₯Ό 지λͺ©ν•œλ‹€. 이런 λ§₯λ½μ—μ„œ 슀트라우슀의 λ‹ˆμ²΄ 해석은 λ‹ˆμ²΄ 철학에 λŒ€ν•œ μ‹ λž„ν•œ λΉ„νŒμœΌλ‘œ 이뀄진닀. 슀트라우슀의 λ‹ˆμ²΄ 해석이 ν•©λ‹Ήν•œ κ²ƒμΈκ°€λŠ” λ…Όλž€μ˜ 여지가 μžˆμœΌλ‚˜, 이 λ…Όλ¬Έμ˜ λͺ©μ μ€ 슀트라우슀의 λ‹ˆμ²΄ 해석을 κ°κ΄€μ μœΌλ‘œ ν‰κ°€ν•˜λŠ” 것보닀 슀트라우슀의 λ‹ˆμ²΄ 해석을 톡해 그의 μ •μΉ˜μ² ν•™μ„ 깊이 있고 μ •ν™•ν•˜κ²Œ μ΄ν•΄ν•˜λŠ” 데 μžˆλ‹€. 이λ₯Ό μœ„ν•΄ 이 논문은 μŠ€νŠΈλΌμš°μŠ€μ—κ²Œ μ§€μ†μ μœΌλ‘œ 영ν–₯을 미친 μ‹ ν•™Β·μ •μΉ˜μ  λ¬Έμ œμ™€ ν”ŒλΌν†€ 해석을 μ€‘μ‹¬μœΌλ‘œ 슀트라우슀의 λ‹ˆμ²΄ 해석이 μ–΄λ–»κ²Œ μ „κ°œλ˜κ³  μžˆλŠ”κ°€λ₯Ό κ²€ν† ν•˜μ˜€λ‹€. λ…Όλ¬Έμ˜ 2μž₯은 1920λ…„λŒ€μ™€ 1930λ…„λŒ€μ— 슀트라우슀의 μ‹ ν•™Β·μ •μΉ˜μ  λ¬Έμ œκ°€ μ–΄λ–€ λ³€ν™”λ₯Ό κ²ͺκ³  있으며 κ·Έ λ³€ν™”λŠ” 슀트라우슀의 λ‹ˆμ²΄ 해석과 μ–΄λ–€ 연관성이 μžˆλŠ”κ°€λ₯Ό λ°ν˜”μœΌλ©° 3μž₯은 νŒŒλΌλΉ„μ•ˆ μ „νšŒλ₯Ό κ²½ν—˜ν•œ 슀트라우슀의 ν”ŒλΌν†€ 해석이 슀트라우슀의 λ‹ˆμ²΄ 해석에 μ–΄λ–€ 영ν–₯을 λ―Έμ³€λŠ”κ°€λ₯Ό μ„€λͺ…ν–ˆλ‹€. 특히 λΉ„μ „μ£Όμ˜ 전톡에 λŒ€ν•œ 슀트라우슀의 해석을 μ£Όλͺ©ν•˜λ©°, μ™œ 슀트라우슀의 λ‹ˆμ²΄ 해석이 μ‹ λž„ν•œ λΉ„νŒμ—μ„œ 긍정적 ν‰κ°€λ‘œ μ „ν™˜ν–ˆλŠ”κ°€λ₯Ό ν•΄λͺ…ν•˜κ³ μž ν–ˆλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ 논문은 μ΄λŸ¬ν•œ 슀트라우슀의 λ‹ˆμ²΄ 해석이 슀트라우슀 μ •μΉ˜μ² ν•™μ˜ 정체성과 μ–΄λ–€ 연관성이 μžˆλŠ”κ°€λ₯Ό μ •λ¦¬ν•˜μ˜€λ‹€.N

    닀쀑 μ‚¬μš©μž 닀쀑 μ†‘μˆ˜μ‹  μ•ˆν…Œλ‚˜ μ‹œμŠ€ν…œμ—μ„œ μ œλ‘œν¬μ‹± 빔포밍과 κ²°ν•©λœ μŠ€μΌ€μ€„λ§ 기법

    No full text
    Thesis(master`s)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :전기곡학뢀,2005.Maste

    A module system independent of base languages

    No full text
    1

    μ„œλ¬Έ

    No full text

    Calculation of Semileptonic Form Factor for BΛ‰β†’Dβˆ—β„“Ξ½Λ‰\bar B\to D^\ast \ell \bar \nu Decay Using the Oktay-Kronfeld Action

    No full text
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ λ¬Όλ¦¬Β·μ²œλ¬Έν•™λΆ€(물리학전곡), 2018. 8. 이원쒅.We study the calculation of BΛ‰β†’Dβˆ—β„“Ξ½Λ‰\bar{B}\to D^\ast \ell \bar{\nu} semileptonic form factor using the lattice QCD technique. Our first target is the zero recoil process which is gold-plated channel to determine the flavor mixing between bottom and charm: VcbV_{cb} of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. The simulation is done on the Nf=2+1+1N_{f}=2+1+1 MILC Highly-improved staggered-quark (HISQ) lattices where the lattice spacing a\approx 0.12~\fm, and the sea pion mass M_\pi\approx 300~\MeV. For valence quarks, we use the HISQ action for the light and strange quarks and the Oktay-Kronfeld (OK) action for the bottom and charm quarks. Here the OK action is improved version of the Fermilab action such that the bilinear operators are tree-level matched to QCD through \CO(\lambda^3) in HQET power counting where λ∼aΞ›βˆΌΞ›/(2mQ)\lambda\sim a\Lambda\sim \Lambda/(2m_Q) and mQm_Q is the heavy quark mass. We present preliminary results of the \BtoDst semileptonic form factor at zero recoil. For the OK action inputs, we determine the critical hopping parameter \kcrit nonperturbatively, and tune the hopping parameters ΞΊb\kappa_b and ΞΊc\kappa_c for physical bottom and charm.1 Introduction 1 1.1 CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Complex phase in CKM matrix . . . . . . . . . . . . . . . . 2 1.1.2 CP violation phase . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Wolfenstein parametrization . . . . . . . . . . . . . . . . . . 3 1.2 CKM Matrix Determination . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Leptonic decay of charged pseudoscalar meson . . . . . . . . 5 1.2.2 Semi-leptonic decay . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 VtqV_{tq} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.4 More on exclusive BΛ‰β†’Dβˆ—β„“Ξ½Λ‰\bar{B}\to D^\ast \ell \bar{\nu} decays . . . . . . . . . . . . . . 7 1.3 Lattice Gauge Theory . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 QCD on the lattice . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 VcbV_{cb} on the lattice . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Lattice Fermion Actions 13 2.1 Naive Fermion Action . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Doubling symmetry . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Naive staggered action . . . . . . . . . . . . . . . . . . . . . 15 2.2 Highly Improved Staggered Quarks . . . . . . . . . . . . . . . . . . 15 2.2.1 FN-type action . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Fat7 smearing . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Lepage term . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Naik term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.5 HISQ action . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.6 Phase factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.6.1 Phase-absorbed staples . . . . . . . . . . . . . . . 22 2.2.6.2 Phase-absorbed longlink . . . . . . . . . . . . . . . 23 2.2.7 HISQ coefficients for the MILC code . . . . . . . . . . . . . 24 2.2.7.1 Tadpole improvement . . . . . . . . . . . . . . . . 25 2.2.7.2 Boundary condition . . . . . . . . . . . . . . . . . 25 2.3 Fermilab Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Wilson fermion action . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Clover action . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 Ξ³5\gamma_5-hermiticity . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Fermilab action . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.5 Tadpole improved action . . . . . . . . . . . . . . . . . . . . 30 2.4 Oktay-Kronfeld Action . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Ξ³5\gamma_5-hermiticity . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.2 Tadpole improvement . . . . . . . . . . . . . . . . . . . . . 33 3 Correlation Functions 39 3.1 Quark Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Naive fermion propagator . . . . . . . . . . . . . . . . . . . 39 3.1.2 Naive fermion propagator for staggered quark . . . . . . . . 40 3.2 Meson Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Wilson-Wilson meson . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Wilson-Staggered meson . . . . . . . . . . . . . . . . . . . . 42 3.2.3 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . 44 3.3 3-point Correlation Function . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 Naive spectator with sequential inversion . . . . . . . . . . 45 3.3.2 Coherent sequential source . . . . . . . . . . . . . . . . . . . 47 3.3.3 3-point function with a Staggered spectator . . . . . . . . . 49 3.3.4 3-point function: heavy-quark spectator . . . . . . . . . . . 49 3.3.5 Current improvement . . . . . . . . . . . . . . . . . . . . . 50 3.4 Discrete Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 Reflection parity for 3-point functions . . . . . . . . . . . . 52 3.5 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.1 Constant fit of the ratio of the correlation function . . . . . 55 3.5.2 Covariance matrix estimation . . . . . . . . . . . . . . . . . 56 4 Tuning of the Hopping Parameters in Oktay-Kronfeld Action 59 4.1 Nonperturbative Determination of ΞΊcrit\kappa_{crit} . . . . . . . . . . . . . . . . 60 4.1.1 Simulation details: Iteration . . . . . . . . . . . . . . . . . . 61 4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.3 Correlator fit results . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Nonperturbative Tuning of ΞΊb\kappa_b and _x0014_ΞΊc\kappa_c . . . . . . . . . . . . . . . . 67 4.2.1 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.2 Fermilab interpretation: Kinetic mass . . . . . . . . . . . . 68 4.2.3 Tuning strategy . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.4 More on HQET inspired fitting function . . . . . . . . . . . 70 4.2.4.1 Error propagation . . . . . . . . . . . . . . . . . . 72 4.2.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.6 Correlator fit results . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4 Hyperfine Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.1 HQET expansion . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.2 Generalized masses . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.3 Fit and results . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 _x0016_BΛ‰β†’Dβˆ—β„“Ξ½Λ‰\bar{B}\to D^\ast \ell \bar{\nu} Semileptonic Form Factor at Zero Recoil 99 5.1 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.1.1 Valence light quark: HISQ . . . . . . . . . . . . . . . . . . . 100 5.1.2 Valence heavy quark: OK action . . . . . . . . . . . . . . . 100 5.1.3 Improved currents . . . . . . . . . . . . . . . . . . . . . . . 101 5.2 Spectral Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3 Ground State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 Analysis on CA1Bβ†’Dβˆ—C^{B\to D^\ast}_{A_1} . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2 Analysis of R . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3.3 Summary on ground state analysis . . . . . . . . . . . . . . 107 5.4 Excited State Analysis . . . . . . . . . . . . . . . . . . . . . . . . 109 5.4.1 BB and Dβˆ—D^\ast meson 2 + 2 excited states . . . . . . . . . . . . 109 5.4.2 CJXβ†’YC^{X\to Y}_J Simultaneous fit . . . . . . . . . . . . . . . . . . . . 110 5.4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6 Conclusion and Future Works 117 A Gauge Ensemble 119 B MILC Library Convention 121 B.1 Standard MILC Phases . . . . . . . . . . . . . . . . . . . . . . . . 121 B.2 Gamma Matrices in MILC Code . . . . . . . . . . . . . . . . . . . 121 B.3 Gamma Matrices of OK Inverter in QOPQDP . . . . . . . . . . . . 122 B.4 Conversion From FNAL to MILC Representation . . . . . . . . . . 123 C Heavy-heavy Current Improvement 125 C.1 Convention in the Code . . . . . . . . . . . . . . . . . . . . . . . . 125 C.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 D Staggered Chiral Perturbation for Bβ†’Dβˆ—B\to D^\ast Form Factor 129 D.1 Bβ†’Dβˆ—B\to D^\ast_x0003_ Zero Recoil . . . . . . . . . . . . . . . . . . . . . . . . . . 129 D.1.1 NLO PQ rSChPT . . . . . . . . . . . . . . . . . . . . . . . . 129 D.1.2 Inputs for NLO: Summary . . . . . . . . . . . . . . . . . . . 131 D.1.3 Beyond the NLO . . . . . . . . . . . . . . . . . . . . . . . . 131 D.2 Bβ†’Dβˆ—B\to D^\ast Nonzero Recoil . . . . . . . . . . . . . . . . . . . . . . . . . 132 D.2.1 NLO full QCD rSChPT . . . . . . . . . . . . . . . . . . . . . 132 D.2.2 NLO full QCD fit function . . . . . . . . . . . . . . . . . . . 133 D.2.3 Beyond the NLO full QCD fit function . . . . . . . . . . . . 134 D.2.4 NLO PQ rSChPT . . . . . . . . . . . . . . . . . . . . . . . . 134 D.2.5 Beyond the NLO PQ fit function . . . . . . . . . . . . . . . 135 D.3 Valence Spectators for the Production . . . . . . . . . . . . . . . . 135 E Computational Cost of Oktay-Kronfeld Action 137 F Decoupling of m1 139 F.1 HQET Lagrangian at the Leading Order . . . . . . . . . . . . . . 139 F.2 m1 in the HQET Hamiltonian . . . . . . . . . . . . . . . . . . . . . 139 Bibliography 143Docto
    • …
    corecore