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Abstract
Data Mining Method for Offshore Structure

based on Big Data Technology

Sung-Woo Park
Interdisciplinary Program in Offshore Plane Engineering
The Graduate School

Seoul National University

As many products as ships and offshore structures are constructed in the shipyard, and
various data are generated and stored in the design or construction stage. Big data
technology needs to be applied to process data of large size quickly, obtain meaningful
results and use it for decision making. In this paper, we propose a solution to two of the

problems that may occur in the shipyard.

One of the two problems which can arise in the shipyard has mainly happened in the
design stage. Engineers can make the mistake of choosing the wrong material in the design
process, and the wrong material selection in the design process can directly lead to a design
error. Another problem may arise during the procurement and purchase process. In the
absence of additional information such as lead time of material or inventory at the time of
procurement, additional time is required to retrieve the data. Both problems arise

predominantly from the unskilled. Therefore, the purpose of this study is to establish a



system that can inform the engineers about the relationships between materials which can
be obtained by association analysis and material requirements which can be obtained by
regression analysis. This kind of system can help the engineers to reduce design errors and

time consuming due to the procurement process.

The information of piping materials used in an offshore structure can be regarded as
‘big data’ because of their various types and size, and the data mining algorithms based on
the big data technology are applied to data related to the offshore structures. To analyze the
relationship between materials for design, ‘frequent pattern growth algorithm’ was used.
For material requirement analysis, big data technology-based regression analysis was used

to generate a regression model, respectively.

Finally, the proposed method was used to check the relationship between materials, and
to predict material requirement, and verified the effectiveness of the proposed method by

comparing each result with actual cases.

Keywords: Big data, Data mining, Offshore structure, piping design, Association

analysis, Regression analysis.

Student number: 2017-20003



1. Introduction

1.1. Research background

(1) Necessity of big data technology

When manufacturing products in the shipbuilding and offshore structure industries, it
takes two main steps: engineering and construction. Once the construction is completed, it
is delivered to the operators and the operational phase begins. At each step and phase,
various types of data are produced, and the shipyards are making effort to store and process
the generated data for use in decision making. In the case the Korean shipyards, in the
meantime, if data produced by each discipline are separately collected and processed, and
the data which is necessary for decision making are made. Now a day, there is a need to
automatically create the data which is necessary for decision making form the database.
This is due to the problem of data reliability and processing speed. First, there is possibility
that the data will be distorted in favor of the discipline. Second, depending on organization,
flow of data; collecting, processing, and reporting can take a long time. In order to solve
problems that arise because people directly deal with data, there is a need to process data

using computer technology such as big data or data mining.

The shipyards use a variety of information during decision making. In terms of
engineering, they use engineering progress, ratio of error, completeness of engineering. In
another hand, for procurement, they use lead time of equipment or material, stock

management, material requirement, progress of project for decision making.

Figure 1 is briefly describing data produced from shipbuilding and offshore industry



and how it is processed and used for decision making.

’ Shipbuilding and offshore industry}

//[A)esign o Constrliction

® Drawings
® Experiment

~@® Production
gle Performance

1: 3 ® Operation
® Materials 3

v

@ Database % Data processing ]

| Decision making

Engineering Management

Status of engineering progress
Error check

Completeness of engineering
Comparison of design and product

Estimate lead-time of material
Inventory management
Estimate material requirement
Status of project progress

Figure 1 Data produced from shipyard

Table 1 is comparing the data processing technology; traditional data processing and
big data technology. Traditional data processing technology has some disadvantage. First
one is slow processing time. There is limitation of processing unit in traditional data
processing, and it cause bottleneck for the data processing. Second one is limitation of
memory. The size of data is getting bigger and bigger. So, it requires a lot of memory to
process such a big data. The last one is that it required post-processing step to show result

of analysis to make people understand.

The big data technology is different. Due to its characteristics; distributed processing, it

shows faster processing time compared with traditional data processing. When we use big
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data technology, each cluster is sharing their processing unit and memory. So, we don’t
have limitation of memory, too. This characteristic makes us possible to stream large size
of data in real time. In terms of visualization, big data technology has interactive
visualization function and it makes visualization easier compared with traditional
technology. This study aims to apply these advantages of big data technology to the

shipbuilding and offshore industry, especially for offshore structure.

Table 1 Comparison of data processing between traditional technology and big data technology

Traditional data processing Big data technology
- Slow processing time - Fast processing by distributed
- Limitation of memory processing
- Post-processing for visualization - Large data streaming and processing
- Easy visualization

(2) Things to consider during engineering and material procurement of

offshore structures

In this chapter, we will look at the appropriate problems to apply Big Data technology
in two steps in building offshore structures, engineering and procurement. To construct an
offshore structure, these two steps are very important. If the engineering is not done
properly, the correct production cannot be constructed. And if there is any problem with
procurement, construction will be delayed and not be done on time. Due to these reasons,
many things regarding engineering and procurement must be considered during
manufacturing offshore structure. is describing problem from engineering and procurement
process of an offshore structure and things to consider. In engineering, materials meet

project specification, materials meet the given pressure or temperature should be

11



considered. In addition, piping support that can make pipeline overcome its weight should
be included into the consideration. In terms of procurement, timing of purchase of many
materials, lead time, materials in stock should be considered. Therefore, the engineer or the
purchasing manager needs a lot of experience in order to proceed all the processes smoothly.
It takes additional time to search for the possibility of error in engineering and material
information to buy while observing various conditions. Figure 2 is summarizing these

problems

Piping engineering |

Material procurement

ERP
for
Material

+ Detail descriptio
+ Lead time
+ Target date

Piping
Design
CAD tool

+ Etc Purchase

? . Material meets the project spec ? . Ordering material
*  Materials meet the given pressure *  Material with long lead time
+  Materials meet the given temperature +  Stock management materials
Materials needed to support piping Material-to-Material Association

Figure 2 Problem occur during piping engineering and material procurement

These problems can usually be solved by many experiences. Experienced engineers and
procurement personnel are already aware of problems that may arise during the engineering
or purchase process, and in case of problems, they may already know the solutions or can

find the solutions easily.
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Table 2 Related works

Related Works Year Application Data Data Mining Remark
technology
Lietal. 2015 Big Data in product lifecycle management - - the existing applications of “Big
Data” in PLM are summarized
Tapedia et al. 2016 Data mining for various Internet of Things applications RDBMS - No application
Ham et al. 2016a Procurement management of shipyard equipment Azure Multidimensional regression
Boosted decision tree regression, Neural network
regression
Ham et al. 2016b | Machine Learning Application for using Shipyard Big Azure Decision tree regression
Data
Ham 2016 Offshore plant's outfitting procurement management RDBMS Multidimensional regression
Saabith et al. 2016 Apriori algorithms on the Hadoop MapReduce platform Hadoop Association analysis (Apriori algorithm)
Zhang et al. 2017 Product lifecycle management Proposed - No application
framework
Lietal. 2017 Smart manufacturing Hadoop Proposed algorithm
Lee 2017 Reference Model for Big Data Analysis in Shipbuilding - - No application
Industry
Kim et al. 2017 Weight estimation of FPSO topside Big data Multidimensional regression
(Hadoop)
Musalem et al. 2018 Market basket analysis insights to support category - multidimensional scaling and clustering
management
Changhai et al. 2018 Factors correlation mining on maritime accidents RDBMS Association analysis (Apriori algorithm)
Abbasian et al. 2018 Improving early OSV design robustness Big data Clustering
(Hadoop)
Griva et al. 2018 Analyzing customer visit - Clustering
He et al. 2018 Impact of urban growth pattern - Association analysis (Apriori algorithm)
Park et al. 2018 Text mining for transportation management plan - Association analysis (Apriori algorithm)
Szymkowiak et al. 2018 Applying market basket analysis to official statistical - Association analysis (Apriori algorithm)
data
Ohetal. 2018 Estimation of material requirement for offshore Big data Multidimensional regression
structure (Hadoop)
This Study 2018 Data mining of data from offshore structure based on big Big data Association analysis (Frequent patterns growth
data technology (Hadoop) algorithm)
Multidimensional regression
13
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1.2. Related works

It is examined related works to see if there were similar problems. Table 2 is listing
related works. In various industries, big data or data mining technology is used to solve the
problems of each industry. However, there have been very few application researches that
applied big data technology to real problems in the shipbuilding and offshore industry. is
summarizing related work in terms of their application, data processing technology and
data mining algorithm which they used. There are two categories in related works. One is
that research focus on data mining mythology to solve a specific problem in an industry.
Another one is that adopts big data technology to find meaningful data from unclassified

data.

First category include study such as Li et al. (2015) which summarized the existing
applications of "Big Data" in product lifecycle management. Tapedia et al. (2016)
researched on data mining for various Internet of Things application. Ham et al. (2016) is
related to machine learning application for using big data from shipyard. Ham (2016) is
another research regarding procurement management of shipyard. This study is for
methodology of data mining algorithm based on multidimensional regression. Zhang et al.
(2017) proposed a framework for product lifecycle management. Musalem et al. (2018)
[supports category management using market basket analysis insights. In terms of maritime,
Changhai et al. (2018) suggests factors correlation mining on maritime accidents. This
study uses association analysis. Griva et al. (2018) used clustering for analyzing customer

visit.

Also, following three studies are using association analysis for their main algorithm. He

14



et al. (2018) is about impact of urban growth pattern. Park et al. (2018) studies text mining
for transportation management plan. Szymkowiak et al. (2018) applies market basket

analysis to official statistical data.

Ham et al. (2016a) is about procurement management of shipyard. This study is based
on big data technology. Saabith et al. (2016) studies apriori algorithms on the Hadoop
MapReduce platform which is one of main big data technology. Li et al. (2017) proposed
an algorithm based on Hadoop ecosystem for smart manufacturing. Lee (2017) propose a

reference model for big data analysis in shipbuilding industry.

Kim et al. (2017) is about weight estimation of FPSO (Floating, Production, Storage
and Offloading) using multidimensional regression based on Hadoop ecosystem. In terms
of design, Abbasian et al. (2018) suggests how to improve early OSV (Offshore Support
Vessel) design using clustering on Hadoop. At last, Oh et al. (2018) estimates material

requirement for offshore structure based on Hadoop.

The purpose of this study is to study data mining applications based on Big Data

Technology for information on offshore structures.

1.3. Target of the study

Looking back at the problems which are mentioned in the previous chapter, there are a
lot of things to consider in the engineering and procurement process, and user experience
is required to prevent any kind of engineering error and to save time. Without enough

experience, there is significant potential for engineering error and additional time required

15



to search material information. Figure 3 is summarizing proposal of this study to solve the

problems.

v" Things to Consider during Engineering and Material Procurement of Offshore Structures
?

¢« Material meets the project spec ?
»  Materials meet the given pressure
» Materials meet the given temperature

Materials needed to support piping

Ordering material

Material with long lead time
Stock management materials
Material-to-Material Association

v" Problems during Engineering and Material Procurement of Offshore Structures

« A lot of experience required for the smooth progress
+ Significant potential for design errors
+ Additional time required to search appropriate materials

v" Troubleshoot with Material Recommendations and Requirement Estimation

. s Database of . . Estimated
Find association . . Find material
association . schedule of
between requirement .
R between material
materials . trend \
materials requirement

Recommendation of materials for
subsequent engineering

Material requirement estimation
for procurement

Figure 3 Target of study

In this study, we propose providing information through data mining based on big data
technology as solution of the problem. In the case of engineering, we use association
analysis between various materials to recommend materials suitable for the engineering.
For procurement process, we will make a way to save time by analyzing and predicting the
required amount of material needed at each point in time. In the other words, by data mining
the data related to offshore structure and extracting the knowledge that is helpful for

engineering and procurement, we aim to create a basis system that supports the scarce

16
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experience.

1.4. System configuration

Figure 4 shows system configuration of this study. First, there is input module which is

to understand information related to offshore structure, especially its materials. There are

several types of information such as type of material, material selection, schedule & rating

and data from 3D CAD (Computer aided design) tools.

@ Input module

(@ Data mining module

Type of material |
Pipe E:Flange |:_
Elbow Etc. ]

Material selection |

Association analysis

@ Application

[

ASME, ASTM NOV, DNV

Carbon steel inl ) Multi-dimension linear regression
arhon stee Stainless stee I—P Multi-dimension non-linear regression

Schedule & Rating |

|—bBore size

Project defined special type

3D CAD system |

Thickness

Regression analysis

||

Input data

t: Type of material t: Schedule & Rating
Material selection 3D CAD system

Data pre-processing |

|—> Data reduction

t: Data reduction
Mapping unique number

g
E
E

5

Pipe & Branch \::Lacatian
Model database, Connection

I—b Apriori algorithm
I—b Frequent pattern growth algorithm

Data mining |

JC

s

(® Big data module

I—b Forecasting of material requirement
I—b ion of associated

Data processing
using Hive? and
Kylin3

Data storing
using Hadoop?!

Data processing
using Spark®

Data pre-processing

i:: Piping material list
Material selection Data cube generation

i:: Machine learning
Association analysis

Application |

I—b Visualization of result

Figure 4 System configuration
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We also have data mining module. It includes two main function; association analysis
and regression analysis. The association analysis is to find relationships between materials
and return the information to users, so the users can find appropriate materials during their
engineering job. Regression analysis part trains a regression model from material
requirement of offshore structures. Trained regression model is used to predict material
requirement of new offshore structure. Big data module is basis of two modules. It is
including data storage unit and data processing unit. In this study, Hadoop and its
ecosystem are used as big data technology and details will be described later. And these

three parts consist the big data framework.

The last one is application. In this application, all actions are taken to process and
analyze the data such as getting input data, pre-processing, data mining and visualization.
As user check the visualized result from the application, they can see the data to use in

decision making, including engineering information such as material association.

18



2. Data mining method for pipng material

This chapter describes data mining methods using piping materials. First, the reason
why the piping material is used as the source of the big data will be explained, and how to
solve the problems that may occur during the construction process of the offshore structure
by using the piping materials will be explained. We used association analysis and
regression analysis to solve the two problems mentioned above. Association analysis can
be used as a basis of system that identify material relationship and recommend materials
that are likely to be used with the materials used by engineers during engineering phase.
Regression analysis aims to learn the requirements of the material during construction of
the offshore structures and then to predict the material requirements of the next project so

that it can help to make good purchase plan.

2.1. Piping materials of an offshore structure

Piping related data is diverse, and the amount of data accumulated in various offshore
structures is enormous. The cumulative data can be advantageously speeded up by applying
big data technology rather than traditional data processing methods. Figure 5 is about the
information belonging to the piping materials used in offshore structures. Since the piping
materials are used not only with piping but also with various materials such as flanges,
elbows and tees, the combinations are very diverse. In addition, different materials should
be used for each system according to the design and operation specifications of offshore

structures. Materials such as FRP and plastic as well as metal materials such as carbon steel

19



and stainless steel may be used, and each material should meet the standards provided by
ASTM and ASME. Likewise, it should have the thickness and diameter to fit the
specification. Based on this information, the designer enters the information into the 3D
cad system and starts the piping design work. As the piping design progresses, each
material contains location information, orientation information, and connection

information, which makes the information very complicated.

Types of material Material selection Schedule & Rating CAD system

*  Carbon steel
[— 2 | . Stainless steel
| . I . Duplex
- = . Fiber

: ‘Wall Thicki
Plastic ol

L= <= <=

Various types *  Morethan 10 *  Various type of schedule * 100,000 lines from
of piping component standards including and Rating a offshore structure
Including special types ASTM, ASME, API *  Thickness of pipe *  Connection
for specific project *  Many classification *  Out diameter of pipe *  Location

such as NOV, DNV, +  Special type for specific *  Orientation

etc project

Various types of
materials

Figure 5 Data from piping information

Figure 6 shows an example where piping information is combined. A pipe consists of
several branches, each branch being listed in order of the materials used, as shown in the
figure. Considering the flange as one of the starting materials, one flange contains
information about the specifications, pressure, size, material, and connection type of the
material, and additionally, the connection information. Depending on the connection
information, whether the pipe is manufactured and installed, and whether the flange is
installed directly on the site, additional information will be generated, and the information

will be listed and managed.
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List of piping material
Module Pipe Type in CAD Typel Material P::s;::;e l(!;::)(s::; Detail description
Module A Pipe 1 FLAN Flange GRE 150 6 Heavy duty flange, Flat face, GRVE, #150, 6", NORSOK certified
Module A Pipe 2 FLAN Flange GRE 150 2 Heavy duty flange, Flat face, GRVE, #150, 1.5", NORSOK certified
Module A Pipe 3 FLAN Flange GRE 150 2 Heavy duty flange, Flat face, GRVE, #150, 1.5", NORSOK certified
Module A Pipe 4 FLAN Flange GRE 150 2 Heavy duty flange, Flat face, GRVE, #150, 1.5", NORSOK certified
Module A Pipe 5 FLAN Flange GRE 150 10 Heavy duty flange, Flat face, GRVE, #150, 10", NORSOK certified
Module A Pipe 6 FLAN Flange GRE 150 10 Heavy duty flange, Flat face, GRVE, #150, 10", NORSOK certified

Figure 6 Example of data produce from piping component

You can measure the size of the materials used in a single offshore structure by using

statistical analysis. Figure 7 is a statistic for the major materials used in an offshore

structure. As can be seen from the figure, various materials are used extensively. In the

case of elbow, 3 5549 pieces of 337 kinds are used, and in the case of the next most

commonly used flanges, 17323 pieces of 348 kinds are used.
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Figure 7 Statistics of piping components
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2.2. Association analysis

In this chapter, we will explore data mining methods called association analysis and

how association analysis can be applied to data mining of offshore structures.

2.2.1. Assotication between piping material for recommendation of

associated materials

In the case of association analysis, it is a data mining algorithm that is mainly used for
market basket analysis. We will examine how the algorithm works and how it can be
applied to the association analysis of pipe materials and the material recommendation

algorithm.

(1) Market basket analysis

The market basket analysis is one of the data analysis methods that are often used in
retail data analysis. After consumers shop at the supermarkets or marts, they track what
items are in the shopping cart and analyze the items that appear together to provide various
insights. The shopping cart analysis mainly analyzes the items included in one shopping
cart, the items purchased together, and finds out how the items are related to the buyer.
Also, it can find items that are likely to be purchased together but are missing. These are
summarized in Figure 8. Similar rules can be applied to offshore structures. Assuming a
single shopping cart is a single pipe, each item contained in the shopping cart can be
regarded as a pipe material used to construct the pipe. This will allow you to track which

items are used together in a single piping, and to make recommendations for items that will
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appear but not. Furthermore, it is possible to compare the characteristics of the offshore
structure and the offshore structure that frequently occur with specific combinations and

find out what correlation there is.

Market basket analysis I

*  Types of items included in a
basket

* Iltemspurchased together

+  Relationship between
customer's information and
purchasing item

* Iltemsthat are likely to be
purchased together but are
missing

Types of materials included in
one pipe line
¢ Materials used together

*  Relationship between
|:> l :%IO |:> specifications of the project

and materials used
|| l.l +  Material that is likely to be

used together but is missing
«p
L@

Figure 8 Market basket analysis of piping materials

(2) Principal of association analysis

Affinity analysis works in the following order: Assume first that there is a set of items

like Table 3. First,

a. Check each itemset and count total amount of each itemset.

b. Check the support which is the probability that an item contains in an itemset.

c. Check the confidence which is conditional probability that an itemset having an
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item with another one

d. Find all the rules that X = Y with minimum support and minimum confidence that

given by user

In this case, when given minimum support is 50% and minimum confidence is 50%,

frequent pattern is itemset of beer and diaper with support 3.

Table 3 Example itemset for market basket analysis

Id Items bought

1 Beer, Nuts, Diaper

2 Beer, Coffee, Diaper

3 Beer, Diaper, Eggs

4 Nuts, Eggs, Milk

5 Nuts, Coffee, Diaper, Eggs, Milk

2.2.2. Comparison of association analysis algorithms

(1) Camparison of pattern mining algorithms and association mining

algorithms

There are various algorithms that can perform association analysis. In this case, we must
apply simple pattern mining algorithm and association analysis algorithm separately. The
pattern mining algorithm aims to pick out items with a high frequency of occurrence in
several item sets. The result is a set of items which appears most or more than the frequency
specified by the user. However, in the case of association analysis, there is a difference in
that the relationship between the items can be analyzed together because the conditional

probabilities of specific items are calculated and presented together. Typical pattern mining
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algorithms and association analysis algorithms are summarized in Table 4.

Representative association analysis algorithms include apriori, frequent pattern growth
algorithm, and top-k non-redundant association rule algorithm. In apriori algorithm, the
pattern is analyzed, and the association is extracted by using array. The other two
algorithms analyze the pattern with the tree type data structure supported by each algorithm
and extract the association. Especially, in the case of FP-growth algorithm and top-k non-
redundant association rule algorithm, unlike apriori, it is advantageous in that the
processing speed is much faster because the pattern candidate is not generated while
reading the database every time. Pattern mining has a traditional ECLAT, and recently

algorithms such as PrePost and FIN have been developed to speed up.

The purpose of this study is to find the relation between the piping material items and
to recommend the material to the designer through it. Therefore, we do not use the pattern
mining algorithm that finds the simple combination of items, but association analysis

algorithm was used.

In the next section, we show the process of determining which algorithm is used in this
study through comparison of results and performance between association analysis

algorithms.
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Table 4 Comparison of association analysis algorithms and pattern mining algorithms

[Association analysis

[Frequent pattern mining

Top-K Non-redundant

Name [Apriori FP-Growth . L. [ECLAT PrePost+ [FIN
association rules
Depth ﬁr_st search & PPC-tree structure: Construct the POC-tree
Breadth first search & intersection of - . .
. . .. define top-K rather than . IN-list and identify all
Technique |[Apriori property (for  [Divide and conquer transactions .
. confidence Pruning strategy: subsequent frequent
pruning) to generate - )
. . superset equivalence  [item sets
candidate itemset
Database Each time a candidate ) times only ) times only Few times (best case = Only 1 time Only 1 time
scan item set generated 2)
[Execution time is
Time considerable as time is |Less than Apriori Similar with Less than Apriori Less than Less than
consumed in scanning [algorithm [FP growth algorithm  [algorithm FP growth algorithm  [FP growth algorithm
database
Data . . . . . .
[Horizontal Horizontal Horizontal [Vertical Vertical Horizontal
format
Storage . Pre-Order Coding
structure Array Tree (FP tree) Tree Array IN-list (POC trec)
FP-growth becomes
. . . more efficient and is  [when the minimum
Too many candidate  [FP-tree is expensive ..
. ) depends on redundancy . . faster when minimum [support becomes small,
itemset to build L. Required virtual . . .
Drawback . output is different support is small the runtime of FIN is
Requires large memory [Consumes more K "oy memory
pace memo by input 'k PrePost+ consumes a  [lesser compared to
P Y bit more memory than [Prepost
FP-growth
Use large itemset No need to scan PrePost+ performs best [FIN run faster than
& INo candidate INo candidate database each time a P
Advantage[property. . . . . . compared to FP- PrePost and FP growth
. generation generation candidate itemset is
Easy to implement growth overall
generated
Runtime [134ms 26ms 20ms 111ms 32ms 49ms
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(2) Comparison of association algorithms in terms of results

In this chapter, we examine the results of the association analysis algorithm. First, we

examined the results of the association analysis using Table 5 as the example.

Table 5 Example itemset

Id Items bought

1 Beer, Nuts, Diaper

2 Beer, Coffee, Diaper

3 Beer, Diaper, Eggs

4 Nuts, Eggs, Milk

5 Nuts, Coffee, Diaper, Eggs, Milk

Table 6 is the result of the apriori algorithm. Support is the result of the ratio, the
strongest combination being beer = diaper combination. This can be confirmed by
confidence, which means that if the confidence is 1, the combination appears for every

number of cases.

Table 6 Result of apriori algorithm

Item1 Item2 Support Confidence
Beer Diaper 0.5 1

Diaper Beer 0.5 0.75

Coffee Diaper 0.33333333 0.66666667
Diaper Coffee 0.33333333 0.5

Coffee Milk 0.33333333 0.66666667
Milk Coffee 0.33333333 0.66666667
Diaper Eggs 0.33333333 0.5

Eggs Diaper 0.33333333 0.66666667
Diaper Nuts 0.33333333 0.5

Nuts Diaper 0.33333333 0.66666667




The following (Table 7) is the analysis result of the top-k non-redundant algorithm. In

the case of top-k non-redundant algorithm, the goal is to find the combination of the

user's input K value. It is important to note that support is represented by counting all

occurrences, and combinations that do not appear depending on the value of K may also

occur. Similarly, beer - diaper combination was the most frequent.

Table 7 Result of top-k non-redundant algorithm

Sets Support Confidence
Milk ==> Nuts SUP: 2 1
Coffee ==> Diaper SUP: 2 1
Milk ==> Eggs SUP: 2 1
Milk ==> Nuts Eggs SUP: 2 1
Eggs Milk ==> Nuts SUP: 2 1
Nuts Eggs ==> Milk SUP: 2 1
Nuts Milk ==> Eggs SUP: 2 1
Beer ==> Diaper SUP: 3 1

Finally, we examine the results of the frequent pattern growth algorithm (Table 8). In

the case of this algorithm, the user will set the minimum support, and the frequencies

below it will be truncated. The analysis is performed on several item sets, and the result

is the beer - diaper combination like the other algorithms.
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Table 8 Result of FP-growth algorithm

Item1 Item2 Confidence
Beer Diaper 1

Coffee Milk 0.666666667
Diaper Eggs 0.5

Eggs, Milk Nuts 1

Eggs, Nuts Milk 1

Milk, Nuts Eggs 1

Nuts Eggs, Milk 0.666666667

As we have seen, all algorithms have the same results in terms of finding associations

between items, although there are slightly different parts, such as how to handle support.

(3) Comparion of association algorithms in terms of runtime

Performance can be confirmed by comparing the execution time of each algorithm
(Figure 9). The graph compares the execution times for the same piping material dataset.
Compared with the FP-growth algorithm, the top-k algorithm shows better runtime
performance. The top-k algorithm may have different associations in the results depending

on the k values. So, in this study, FP-growth algorithm was used
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Figure 9 Runtime test of association analysis algorithms

The frequent pattern growth algorithm searches the entire database twice. In the first
search, a list of items is created in descending order of appearance frequency by removing
the items that appear below the minimum occurrence frequency for each item set in each
row. In the second database search process, a frequent pattern tree is created by using the
item set of the entire database based on the list as the created items. Once the target item is
determined, the frequent pattern tree generated based on the target item is searched

backwards and the association is analyzed.

2.3. Regression analysis

This chapter discusses how regression analysis can be applied to data mining of

information from an offshore structure.
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2.3.1. Assistance of purchase process by forecasting material

requirement

Although there are various methods for applying regression analysis to data mining of
offshore structures, this study tries to go in the direction of helping procurement and
purchasing process. First, we analyze the procurement process that arises from the
construction of offshore structures. After examining how regression analysis can help in

this process, we examine what regression analysis can be applied.

(1) Method of assistance of purchase process

Figure 10 shows the procurement process that the shipyard mainly takes in building
offshore structures. First, the offshore structure is divided into several modules after FEED
stage. A production schedule is set up for each module, and a list of materials used for each
module is created. A material requirements plan can be established by combining the
production schedule and list of materials, and the material purchase plan can be established

by applying the separately confirmed lead time to the material requirement plan.
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e Offshore Plant Modulization per Module Checking Lead Time

1st Module Material @: 100 EA
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Offshore Plant A 2nd Module 27 Module «E Materia G2 3005 Material @ - 3 months
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Material @: 300 EA
3rd Module ~E Material @: 400 EA Material ® - 6 months
3rd Module Material 3: 100 EA

REERd Engineering and Design

9 Production Scheduling per Module eatepallRequienentElas ing

per Schedule
overa“ 2017.05 2019.02 overa“ 2017.05 2017.11 2018.04 overa"
schedule schedule schedule
2018.05
1st Module Material @ 100 EA 200 EA 300 EA Material @®
2017.11 2018.11
2nd Module Material @ 200EA 300 EA 400 EA
2019.02 .

3rd Module Material ® 300EA || 400EA 100 EA

Figure 10 Procurement plan process of offshore structure

In the shipyard, the process described above should be carried out simultaneously for
several projects as shown in Figure 11. Therefore, it may be difficult to formulate a plan
for the same material that is required for several offshore structures at the same time. In
this case, by using the data of the offshore structure, it is possible to predict the material
requirements of the project to be carried forward by arranging the materials already
consumed by the process schedule and creating the regression model. We think it can help

procurement activities.
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9 Material Purchase for All Projects

Offshore Plant A Offshore Plant B Offshore Plant C Purchase

Overall  [016.22007.08207.08 201710 2019.02]| | Qyerall  [017.002017.102018.08 21808 2019.08)| | Overall  [2017.002018022018.08 2019.02 201812 + Considering the purchase
schedule schedule schedule schedules of all the projects
Material © 0088 Materlsl @ Matacsl D + Considering the surplus
Material @ fes. 300EA es| | Material @ es, 300EA ee| | Material @ e, 300 EA .. materials
Material @ | | a00ea || 100en Material ® | | aooea || 100ea Material @ 10088 * Assisted by predicted

material requirement

(1) Feeo” jum(2) (3 O O O @ (®

“FEED: Front-End Engineering and Design

Material requirement of reference project

Time ~
30 40 50 60 70 80 90 Prediction of

Project A 9 68 178 | 242 | 180 | 75 32 material requirement

ProjectB | 17 77 | 201 | 312 | 255 | 85 34
] Project C 10 59 168 | 239 | 187 73 29 [>
2 | projectD | 12 | 92 [ 177 | 282 [ 231 ] 91 | 30
CE Pro]ectF 14 97 219 | 327 | 262 | 109 39
E Project G | 10 | 109 | 223 [ 329 | 283 [ 115 | 36 Regression analysis
..E ProjectH | 16 91 184 | 268 | 217 86 30
< Project | 7 93 190 | 295 | 231 920 31

Project ) 15 82 191 | 253 | 226 87 28

Projectk | 11 | 64 | 146 | 212 | 188 | &7 | 19 Material requirement of reference project

Figure 11 Necessity of prediction of material requirement

(2) Principal of regression analysis

A regression analysis is a set of statistical processes for estimating the relationship
among variables. It is basically about between a dependent variable and one or more

independent variables. The regression analysis is helpful for statistical prediction such as
a. Time variable data
b. Result of theoretical experiment
c. Modeling of cause and effect relationship

Equation 1 is basic function of a regression analysis and main purpose of regression

analysis is to find a line which minimize sum of squares residual which is RSS = e? +
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Figure 12 shows the basic concept of regression analysis.
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Figure 12 Concept of regression analysis

2.3.2. Regression model training

There are several ways to construct a regression model. In this chapter, we describe the

regression model we tried in this study and explain how we constructed the regression
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model.

(1) Regression analysis in time series

The easiest way to predict material requirements through regression analysis is to
analyze trends over time. Table 9 summarizes the material requirements when the process
progresses for a certain period for each offshore structure. This table can be drawn by
plotting the graph (Figure 13) with the horizontal axis as the time axis for the regression
analysis. You can draw a line that minimizes the error value at each point, then it is possible
to identify the trends of the offshore structure materials used at each time point. Advantage
of predicting in time series is that we can predict material requirements even when precise
requirements are not specified. But there is also disadvantage; various specifications and

characteristics of each offshore structures cannot be reflected.

Table 9 Material consumption of offshore structures

Time
30 40 50 60 70 80 90
Project A 9 68 178 242 180 75 32
Project B 17 77 201 312 255 85 34
s ProjectC 10 59 168 | 239 187 | 73 29
= ProjectD 2 92 177 282 231 91 30
§ Project F 14 97 219 327 262 109 39
£  ProjectG 10 109 223 329 283 115 36
% Project H 16 91 184 268 217 86 30
A | ProjectI 7 93 190 295 231 90 31
Project J 15 8 191 253 226 87 28
Project K 11 64 146 212 188 67 19
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Figure 13 Material consumption trend of offshore structures

(2) Regression analysis for project characteristics

In order to overcome the shortcomings of the time-domain regression analysis, the
independent variables of the regression analysis should be come from the characteristics of
offshore structures. The regression model is composed only n-order polynomial. The
advantage of regression analysis using characteristics of offshore structures as independent
variables is that it is possible to predict various offshore structures as characteristics can be
implemented. Disadvantage is that it is impossible to predict where requirement data for
the desired point in time is not exist. Specification and related figures for each offshore

structure are used as independent variables. One of the variables is main dimension of an
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offshore structure such as length, depth and draft. Also, we used storage capacity and
production capacity including oil, gas and water. Other variables are total light weight of
the offshore structure and number of people on board. The depth of well is also used as our
independent variable. Table 10 lists the various independent variables used in this study

and their values.

(3) Regression model by neural network

A regression model can be constructed using an artificial neural network. For
comparison with traditional regression models, we construct a regression model by
constructing an artificial neural network and compare the results. The neural network
consists of a fully connected layer. The activation function is Relu, the hidden layer is 2,
and the node is 15 for each layer. The input and output values are constructed as regression
models. The input values are defined as material requirements for offshore structure and
period, and material requirements for process period as output values. Figure 14 is showing

the structure of artificial neural network.

>« Activate function: Relu
* Hidden layer: 2

| t
npu * Nodes: 15

. Project specifications
*  Material requirement per schedule

Output

Figure 14 Structure of neural network
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Table 10 Independent variables

Project L B D T DWT SC OP GP WP CREW WD TLWT

(m) (m) | (m) | (m) | (ton) (MMBBL) (MMCFD) (MMCFD) (MMBWPD) (person) | (mm) | (ton)
Project 1 214.7 | 38 23.7 | 18 88326 0.56 0.06 12 0.25 50 105 6200
Project 2 214.7 | 382 | 222 | 16 60000 0.42 0.057 53 0.057 77 84 2500
Project 3 232 41.5 | 235 16 92800 0.58 0.089 38 0.122 60 126 6000
Project 4 273 50 28 18.8 ' 180000 14 0.003 35 0.174 84 366 11000
Project 5 2764 | 45 26.6 | 19.7 | 105000 0.94 0.22 840 0.063 116 320 15000
Project 6 300 59.6 | 30.5 @ 22.8 @ 343000 2 0.27 280 0.18 140 1400 23500
Project 7 285 60 323 | 244 | 340660 2.2 0.25 400 0.525 100 1180 23000
Project 8 296 63 323 | 24 375600 2.2 0.21 340 0.15 100 1220 30000
Project 9 3124 | 60 33.2 | 24.3 | 329000 2 0.24 280 0.265 190 1365 30000
Project 10 305.1 58 32 234 | 312500 2 0.225 170 0.1 70 1030 22000
Project 11 260 46 25.8 18.5 142000 0.9 0.1 80 0.1 80 390 8000
Project 12 319 58 31 23.4 | 360000 1.77 0.24 400 0.45 120 1310 24000
Project 13 320 584 | 32 24 337859 2.2 0.25 450 0.12 100 1462 35000
Project 14 310 61 30.5 | 23.5 | 321000 2 0.225 530 0.42 240 1325 37000
Project 15 320 61 32 24.7 | 353200 2 0.18 176.6 0.1 180 750 27700
Project 16 250.2 | 34 19.1 12.8 | 43276 0.28 0.14 100 0.12 70 450 4500
Project 17 253 42 232 | 15 103000 0.6 0.07 110 0.022 55 85 5000
Project 18 3349 | 437 | 27.7 @ 214 | 228033 1.5 0.1 52 0.02 76 383 3500
Project 19 2454 | 39.6 | 20.6 | 14.7 | 94238 0.65 0.035 100 0.018 85 75 1900
Project 20 362 60 283 | 23 356400 1.3 0.081 75 0.05 100 700 4500
Project 21 271.8 | 46 26.6 18 150000 0.94 0.13 150 0.18 80 120 12000
Project 22 271 44 224 | 17 138900 1.04 0.08 85 0.032 100 70 5500
Project 23 337 545 | 27 21 273191 2 0.15 162 0.2 100 785 14000
Project 24 3286 | 545 | 27 21 273622 1 0.15 210 0.251 194 1035 14000
Project 25 217.2 | 38 23 17 85943 0.45 0.1 75 0.3 90 113 6000
Project 26 325 61 32,5 | 25.6 @ 320000 1.9 0.22 150 0.382 240 800 32000
Project 27 3463 | 573 | 285 | 229 | 322911 2 0.14 35 0.325 46 1200 14000
Project 28 295 50.6 | 29 19.9 128000 0.95 0.085 671 0.02 126 350 16000
Project 29 271.7 | 46 26.6 18.2 148192 0.95 0.08 53 0.06 89 134 12000
Project 30 2423 | 42 21.1 14.9 | 105000 0.66 0.06 85 0.065 96 350 4500
Project A 285 60 323 | 244 | 340,660 2.2 0.25 400 0.525 100 1,010 | 23,000
Project B 318.8 | 56 29.5 19.8 | 255,271 1.6 0.18 71 0.232 110 1,260 14,500
Project C 305 61 32 24 350,000 2 0.22 250 0.319 240 1,200 | 37,478
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Acrtificial neural network is used by learning by using input value and output value.

Figure 15 shows the loss value of learning the artificial neural network for the flange.
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Figure 15 Loss during training of neural network
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Figure 16 shows the prediction of the result using the artificial neural network learned

on the flange of schedule 50
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Figure 16 Prediction result of neural network

(4) Comparison of different regression models

Regression analysis varies according to the degree of each independent variable.
Equation 2 shows a simple polynomial regression equation. Equation 3 shows a quadratic
regression, and Equation 4 shows a cubic regression. In addition, we can make regression

equation using log or exponential function.
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MaterialRequirement =

Xg XL+ X xB+X,xD+X; xT 4+ X, x DWT +
X5 X SC 4 X x OP + X, x GP + X; xWP +

Xg x CREW + X, xXWD + X, x TLWT +x,,

MaterialRequirement =
Xox L+ X x L2+ %X, xB+X,xB?+X,xD+xxD*+
Xg X T + X, xT? + X x DWT + X, x DWT ? + X, x SC + X, x SC* +

X, XOP + X 3 x OP? + X, x GP + X, x GP? + X, WP + X, xWP? +

X3 X CREW + X, x CREW? + X,y WD + X,, xWD? +
X,y X TLWT + X, x TLWT 2 4 X,,

MaterialRequirement =

Xo X L+ X x L + X, x L* + X, x B+ X, x B? + %, x B +

Xs X D+ X; x D? 4 Xg x D%+ X xT + X, x T2 4 %, x T2+

X, X DWT + X, x DWT? + x, x DWT® +

X5 X SC + X6 X SC? + X, x SC® + X,y x OP + X3 x OP? + X,, x OP® +
Xpy X GP + Xy, X GP? + X,5 X GP? + X, xWP + X,5 XWP? + X, xWP® +
X,; X CREW + X,g x CREW ? + X,, x CREW ® +

Xgo XWD + Xgy xXWD? + X, xXWD? + Xy x TLWT + X5 x TLWT ? + Xoo x TLWT ® + X,

Equation 2

Equation 3

Equation 4

However, for the regression equation to have a correct predictive value, correlation

analysis should be performed for each variable and it should be confirmed whether there is

any correlation. Figure 17 shows the independent variables used in this study plotted
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against each other, and the Table 11 summarizes the correlation values. The correlation

analysis used here is Pearson correlation coefficient.
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Figure 17 Correlation analysis

Table 11 Pearson correlation coefficient

L B D T DWT | SC | OP | GP | WP | CREW | WD | TLWT
L 1.00 | 0.80 ] 0.71 ] 0.79 1 0.83 | 0.76 | 0.50 | 0.25 | 0.22 | 0.44 0.69 | 0.52
B 1.00 [ 092 | 0.94 | 096 | 0.92 | 0.71 | 0.38 | 0.46 | 0.58 0.86 | 0.83
D 1.00 | 0.96 | 0.88 | 0.90 | 0.74 | 0.45 | 0.45 | 0.52 0.79 | 0.86
T 1.00 | 0.94 1091 | 0.74 | 0.39 | 0.50 | 0.55 0.82 | 0.82
DWT 1.00 ] 093 | 0.71 | 0.25 | 0.48 | 0.49 0.89 | 0.77
SC 1.00 | 0.74 ] 0.33 | 0.46 | 0.43 0.86 | 0.82
OP 1.00 | 0.59 | 0.53 | 0.51 0.83 | 0.84
GP 1.00 | 0.18 | 0.41 0.40 | 0.56
WP 1.00 | 0.41 0.56 | 0.53
CREW 1.00 0.48 | 0.68
WD 1.00 | 0.81
TLWT 1.00
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As a result of the correlation analysis, there were cases where each independent variable
had a linear relationship, but it was not certain whether there was any other nonlinear
relationship. Therefore, the second and third polynomials were constructed, and their
values were compared to confirm accuracy. Table 12 is a regression analysis of the flanges
of the project A and summarizes the errors of the predicted values. As can be seen in the

table, the linear regression shows the most accurate value.

Table 12 Prediction error of regression models for flange

Schedule Error ratio (%)
Actual Linear 2nd 3rd DL

30 14 6.07 59.86 70.09 55.97
40 98 23.63 72.99 78.00 32.84
50 221 24.73 63.19 23.00 3.64
60 339 7.92 0.43 27.08 2.67
70 264 1.38 80.45 95.58 15.54
80 110 2.34 16.58 63.57 1.24
90 39 27.28 118.70 326.25 7.02
Average of error ratio 13.34 58.89 97.65 16.99

Regarding the pipe materials of the project A, regression analysis was performed to
check the error value of the result. Table 13 summarizes the results. Again, linear regression

showed the most accurate predictions.
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Table 13 Prediction error of regression models for pipe

Schedule Error ratio (%)
Actual Linear 2nd 3rd DL

30 67 2.09 4.99 0.18 7.29
40 537 8.61 19.06 51.21 6.76
50 1545 2.24 50.88 51.00 6.17
60 1947 14.48 29.67 38.61 3.12
70 1545 1.23 7.41 11.77 9.77
80 739 8.52 43.76 80.80 5.93
90 336 4.29 39.85 157.83 20.60
Average of error ratio 5.92 27.94 55.92 8.52

As shown in Figure 18, the prediction of the pipeline of the project A is plotted as a
graph and it can be confirmed that the predicted value of the linear regression is accurate

for almost all cases. However, the prediction using the artificial neural network was the

most accurate at the 60% processing time, which is the largest requirement.
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2.4. Estabilishment of big data framework

This chapter introduces the big data framework for applying the various data mining

analysis methods described above.

2.4.1. Big data framework

The big data framework used in this study is based on the Hadoop ecosystem. Figure 19
shows the framework used in this study. The big data framework is based on Hadoop's
HDFS (Hadoop Distributed File System), which supports the ability to distribute large files,
a hive that supports functions such as relational databases, sparks that can implement
various machine learning algorithms through distributed processing computing and
zeppelin that can be configured as an analytical notebook environment. Here, the notebook
environment refers to a work environment in which a screen capable of inputting anything
such as a word processor on the Webpage, a code is written and executed, and a result is

confirmed by repeating the result check and the code modification.

In addition, we use kylin, which to create data cubes based on HBase, which is free of
additional input and possible to store data without index and store large amount of data.

And, kylin is one of the OLAP tools supported by big data environment.
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Apache Zeppelin
* Notebook environment for data processing, search, analysis and visualization

* Support for multi-user and various programming language such as Python and Scala

¥
Apache Spark Apache Kylin
+ Distributed computing framework « Support dataset for multidimensional
+ Suppert various machine learning algorithms analysis (OLAP)
. v
Apache Hive Apache HBase

+ Data base of data in HDFS + NoSQL based, save data without index

* Processing by Iinkinig Hive and Spark + Possible to write daita

HDFS(Hadoop Distributed File System)

- Distributed data storage system

+ Block structured file system: File is seperated to blocks and stored to distributed server

- =
L[

(® Big data framework

Data Storing Data Processing Data Processing
Using Hadoop! Using Hive? and Kylin® Using Spark®
t: Type of material t: Schedule & Rating b Data pre-processing E: Machine learning
Material selection 3D CAD system Data cube generation Association analysis

Figure 19 Big data framework

2.4.2. Data processing

The piping material list includes the type, material, size and thickness of each material,

and various reference materials required to complete the design. To do this, data cubes

(multidimensional data) must be created from the file source to speed up data retrieval for

the required content and apply search results to machine learning algorithms. The original

data stored on the HDFS is transmitted as a hive to create a data table. The data table can

be quickly retrieved for a desired item, and a data cube can be generated by extracting only

necessary items by selecting a column to be included in the analysis.

Spark supports data mining through a variety of machine learning algorithms based on
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distributed processing computing capabilities. Python, and Scala to support data-mining
techniques in a user-friendly environment. Associativity analysis and regression analysis
can also be implemented on sparks, and the results can be viewed in real-time, And the
results of the regression model can be obtained. A typical data pre-processing is

summarized in Figure 20.

Example of piping material data analysis required for offshore structures I

Columns of piping material list I Data cube creation

I Medule : Module number | Pipe : Unique number of each | Module : Module number I
pipe line - -
Typel : Name of material

I Typel : Name of material || Bore size : Size of bore | | Material : Quality of material I

Material : Quality of material Pressure : Maximum pressure .
I 4 I| P | | Data mining by Spark |<—
Data processing of Piping material list ! { }
—| * Input data: Piping material list of an offshore structure |
. . Data cube .
Data input to Big Data transferred X Data mining by
—> . creation by Check the Result
data framework to Big data base Spark
OLAP*
] |
(® Big data framework
Data Storing Data Processing Data Processing
Using Hadoop? Using Hive?) Using Spark®
Type of material t: Schedule & Rating i:: Data pre-processing Machine learning
Material selection 3D CAD system Data cube generation Association analysis

Figure 20 Data processing
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3. Application to big data framework

In this chapter, we will explain the case of applying the data mining method described

in Chapter 2 as an application of Big Data Framework.

3.1. Recommendation of associated materials

Using the association analysis of piping materials through association analysis, it is

possible to establish the basis of a system that recommends related materials.

3.1.1. Method of association analysis of piping material

(1) Overview of association analysis of piping material

In the overall process (Figure 21), first, a branch is regarded as a shopping cart, and the
association analysis is performed by using the list of the materials required for the
information of the offshore structure, the specification and type of the material, and the

pipeline or the branch. The analysis results can be verified against actual cases.
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» Material associativity

» Associated material recommendation

Associate analysis

1. Scanning data
2. Selecting frequent items
3. Creating tree using the frequent items

4. Searching frequent pattern using the tree

Analyzing material associativity using Frequent-
Pattern growth algorithm

.

1 Data pre-processing |
» Information of offshore structure

» Piping material specification

- Material type

« Piping material per branch

L

A

___________________________________________________________

Figure 21 Overview of association analysis

(2) Input data of association analysis

The piping material consists of hierarchy in one branch on a three-dimensional design

tool, and the designer can extract it into a list. Figure 22 shows this.
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* Material list of each pipe branch

PIPESMLS BE A312 TP316/316L+#10S 6M 4"
ELBOW 45-LR SMLS A403-WP316/316L-S+NA BE #10S 4"
B h PIPESMLS BE A312 TP316/316L+#10S 6M 4"
Pipe 1 ranch 1 ELBOW 45-LR SMLS A403-WP316/316L-S+NA BE #10S 4"
PIPESMLS BE A312 TP316/316L+#10S 6M 4"
WELD-OUTLET A182-F316/316L+ BE #105-40S 4"X1"
Branch2 |
Branch3 |

~
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Figure 22 Extracting material list from CAD tool

(3) Preprocessing of input data

The extracted list must be preprocessed since it cannot be directly input to the

association analysis algorithm. Each material has a unique description for each material
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and a mapping number is created based on the description so that one unique number per

material can be assigned. Since the shipyard usually uses material numbers for each

material, it is safe to omit the mapping process when this study is applied at the shipyard.

Figure 23 shows the process of generating and mapping unigue numbers for each material.

« Material list of each pipe branch

PIPE SMLS BE A312 TP316/316L+#10S 6M 4"

ELBOW 45-LR SMLS A403-WP316/316L-S+NA BE #10S 4"

PIPE SMLS BE A312 TP316/316L+#10S 6M 4"

Branch 1
Pive 1 ELBOW 45-LR SMLS A403-WP316/316L-S+NA BE #10S 4"
Ipe
P PIPESMLS BE A312 TP316/316L+#10S 6M 4"
WELD-OUTLET A182-F316/316L+ BE #105-40S 4"X1"
Branch2 |
Branch3| .
« Mapping table for each material
Mapping Numberfltem Number|ltem description In script description

4074 PIPE1 PIPE GRVE 2420C TAPEREND 10" Pipe GRE 10"

A075 PIPE2 PIPE GRVE 2420C TAPEREND 6" Pipe GRE 6" 1

4076 PIPE3 PIPE GRVE 2420C TAPEREND 1" Pipe GRE1" 1

4077 PIPE4 PIPE GRVE 2420C TAPEREND 1.1/2" Pipe GRE 1.5" 1

4078 PIPES PIPE GRVE 2420C TAPEREND 4" Pipe GRE4" 1

4079 PIPE6 PIPESMLS BE A106 GR.B+S6+NACE#X5 6M 2" Pipe Carbon Steel 2"

4080 PIPE7 PIPESMLS BE A312 TP316/316L+NACE #10S 6M 2" Pipe Stainless Steel2"

A081 PIPEE PIPE SMLS BE A312 TP316/316L+NACE #10S 6M 3" Pipe Stainless Steel3"

4083 PIPE10  |PIPESMLS BE A312 TP316/316L+NACE #10S 6M 4" Pipe Stainless Steeld4" 1

A084 PIPE11 PIPE SMLS BE A312 TP316/316L+NACE #40S 6M 1" Pipe Stainless Steel1"

4085 PIPE12 PIPESMILS BE A312 TP316/316L+NACE #40S 6M 3/4" Pipe Stainless Steel4" 2

4086 PIPE13 PIPE SMILS BE A106 GR.B+56+NACE#XS 6M 1.1/2" Pipe Carbon Steel 1.5"

4087 PIPE 14 PIPE SMILS BE A106 GR.B+S6+NACE#160 6M 3/4" Pipe Carbon Steel 4" 1

4083 PIPE16  |PIPESMLS BE A333-6+NACE#160 6M 2" Pipe Low Temperature Carbon Steel 2" 1

4090 PIPE17 |PIPESMLS BE A333-6+NACE#STD 6M 3" Pipe Low Temperature Carbon Steel 3"

+ Material data for association analysis
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Branch No. [ltem 1| Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Item 8 | Item 9 |Item 10
Branch 1 2514 4089
Bﬁnch 2 1898 1899 1900 4126 4127 4991 5976
Branch 3 1844 4079
Branch 4 2514 4089
Bra_nch 5 1374 1947] 2472 4150
Branch 6| 1943 4025 4150 4879
Branch 7 1274 1942 1943 4150 4879
Branch 8| 1374 1942 2472 4150
Bﬁnch 9 1941 2018 2475 4029 4038 4152 4173 4193 4938 4939
L_Branch 10] 1855 2434 4091

Figure 23 Mapping unique number to each material
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Example

Material list of each pipe branch

Material

ELBOW 90-LR SMLS A815 UNS 531803+S7+NABE #105 2"

?LANGE—WN RF A182-F51+NACE #150 #40S 3/4"

FLANGE-WN RF A182-F51+NACE #150 #1065 2"

FLANGE-WN RF A182-F51+NACE#300 #105 4"

Branch 1

Pipe 1 PIPE SMLS BE A790 UNS S31803+NACE #10S 6M 2"

PIPE SMLS BE A790 UNS S31803+NACE #40S 6M 3/4"

PIPE SMLS BE A790 UNS S31803+NACE #40S 6M 1.1/2"

RED-ECC SMLS A815 UNS S21803+57+NA BE #10S 4"X2"

[TEE-RED SMLS A815 LMNS S31803+S7+N BE #105-4052"X3/4" NS

Branch 2 |......

Mapping table for each material

:'Epplng Full Discription Example Description IShort Description|

| 1353ELBOW 90-LR SMLS A815 UNS S31803+57+NA BE #10S 2" Elbow Duplex2"1 Elbow 26
2411FLANGE-WNRF A182-F51+NACE#150 #405 3/4" Flange Duplex4" 1 Flange 27
2546FLANGE-WN RF A182-FS1+NACE #150 #10S 2" Flange Duplex2" 2 Flange 162

2547 FLANGE-WN RF A182-F51+NACE #300 #10S 4" Flange Duplex4" 2 Flange 163
A095PIPESMLS BE A790 UNS S21803+NACE #10S 6M 2" Pipe Duplex2" PIPE22
A10APIPESMLS BE A790 UNS £31803+NACE #405 6M 3/4" Pipe Duplex4"1 PIPE 34
A4167PIPESMLS BE A790 UNS 531803+NACE #405 6M 1.1/2" Pipe Duplex1.5" PIPES4
A963RED-ECC SMLS ABL5 UNS S31803+57+NA BE #105 4"X2" Reducer Duplex4" 3 Reducerlls
5904TEE-RED SMILS AB15 UNS 531803+57+N BE #105-405 2"X3/4" NS [Reducing Tee Duplex4" 1 [TEE 120

gt

Material data for association analysis

Item1 |item2 |ltem3 |[ltem4 [ltem5 |ltem6 [|item7 |ltem 8

Item 9

Branch 1 1853 2411 2546 2547 4095 4107 4167 4963

5904

Figure 24 Example of preprocessing

Figure 24 shows an example of how input values of association analysis are generated

from a list of materials.
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(4) Appling association algorithm

As soon as an input value that can be input to the association analysis is generated, the
association analysis can be started. Because the pattern growth algorithm is used for the
association analysis, the input values are scanned twice, and finally the material-specific
associations are output as a result (Figure 25). The input values used in this study are
summarized in Table 14. The results of the association analysis are as shown in Table 15,

and examples are shown in Table 16.

Table 14 Number of inputs

No. of branch No. of material types No. of items
2591 449 35786

Table 15 Number of outputs

Association type Count Confidence mean
1:1 80 0.934363829
2:1 144 0.952661667
3:1 82 0.961845735
4:1 17 0.970306297
Total 323 0.951389919

Table 16 Example of outputs

Branch Associations

Branch 1 [4085,1838,4080] =>[5800], 1.0
Branch 2 [4085,1838,4080] =>[2395], 1.0
Branch 3 [1374,4025,1942] =>[4150], 1.0
Branch 4 [1830] =>[4076], 1.0
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Branch5 | [1855] => [4091], 0.9858156028368794
Branch 6 | [4027,2474,1951] => [4148], 1.0
Branch7 | [2391,1838] => [4080], 0.9735849056603774

Branch8 | [1955] => [4078], 1.0

Branch 9 [1955] =>[2388], 0.9733333333333334

Branch 10 | [1374,1942,1943] => [4150], 1.0
Branch 11 | [1374,1942,1943] => [2472], 0.8674698795180723
Branch 12 | [1374,2472] => [4150], 1.0

Branch 13 | [4869,4084] => [1906], 0.8688524590163934

Branch 14 | [4869,4084] =>[2391], 0.9344262295081968

Branch 15 | [4118,1838] => [4080], 1.0

1. Scan DB once, find frequent 1-itemset (single item pattern)
Sort frequent items in frequency descending order, f-list

Scan DB again, construct FP-tree

ID Items bought (ordered) Freqguent items
1 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
24 {a, b, ¢, f; I, m, 0} if, ¢, a, b, m} e
3 ib, [, h, j, 0, w} if; b} support=3
4 {b, ¢, k, s, p} {c, b, p}
5 {a, f, c, e, I, p, m, n} {f, ¢, a, m, p}

Header Table

Item frequency head

f 4 ==

“ 4 ==

a 3 -

b 3 —

m 3 -

P 3

c
a fc:3

+  Find Patterns — b fca:1, f1, c:7
m fca:2 fcab:1
P fcam:2, cb:1

____________________________________________________________

Figure 25 Process of FP growth algorithm
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3.1.2. Result of analysis and validation

In order to verify the results of the association analysis, we compared the design model
of the actual offshore structure and verified whether the material was used as a result of the

correlation analysis.

(1) Relationship for one piping component

The 1: 1 association results are relatively simple. Most of the welded sets of materials
appeared, and as a result, there was also a relatively low association. Table 17 shows the 1.

1 association results, and the actual examples can be found in Figure 26.

Table 17 Result of 1:1 association

Used material Recommended material | Confidence

1 | Flange Carbon Steel | Pipe Carbon Steel 2inch | 0.98
2inch 1
2 | Tee Carbon Steel 2inch 1 | Pipe Carbon Steel 2inch | 0.89

3 | Elbow Carbon Steel 2inch | Pipe Carbon Steel 2inch | 0.96
2
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Pipe

Tee Pipe Elbow

Figure 26 Figure of 1:1 association

(2) Relationship for two piping components

In the case of 1: 2 associativity, it is common to connect pipes of different sizes. In other
words, the use of materials such as tee and the reducer are the result of the association
analysis. Table 18 shows the results of the 1: 2 association analysis, and actual examples

for each can be found in Figure 27 and Figure 28.

Table 18 Results of 1:2 associations

Used material 1 Used material 2 Recommended Confidence
material

1 | Pipe Carbon Steel | Reducer Carbon | Pipe Carbon Steel | 1
1.5inch Steel 2inch 2inch

2 | Elbow Carbon Steel | Elbow Carbon Steel | Pipe Carbon Steel | 1
2inch 1 2inch 2 2inch

3 | Reducing Tee Carbon | Pipe Carbon Steel | Pipe Carbon Steel | 1
Steel 4inch 1 4inch 1 2inch

4 | Reducing Tee Carbon | Elbow Carbon Steel | Pipe Carbon Steel | 1
Steel 4inch 1 2inch 2 2inch
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Reducer

Elbow 45
Elbow 90 degree

Figure 27 Figure of 1:2 associations 1
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3 Reducing tee 4inch x 2inch

Pipe 4inch Pipe 4inch

Pipe 2inch

Elbow

Figure 28 Figure of 1:2 associations 2

(3) Relationship for three and more piping components

For 1: 3 associations and further associations, we have shown a more complex shape of
the piping design. As a result of the correlation analysis, it was confirmed that not only the
size of piping, but also other materials were added. Table 19 shows the results of the 1: 3
association analysis, and Table 20 shows the results of the 1: 4 association analysis. Figure
29 shows the actual cases of 1: 3 association analysis results, and all the material sets shown

in the same figure are 1: 4 associations.
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Table 19 Result of 1:3 associations

Used material 1 | Used Used Recommended | Confidence
material 2 material 3 material
1 | Reducing Tee | Flange Elbow Pipe  Carbon | 1
Carbon Steel | Carbon Steel | Carbon Steel | Steel 2inch
4inch 1 4inch 1 2inch 2
2 | Reducing Tee | Pipe Carbon | Flange Pipe  Carbon | 1
Carbon Steel | Steel 4inch 1 | Carbon Steel | Steel 2inch
4inch 1 4inch 1
3 | Reducing Tee | Pipe Carbon | Elbow Pipe  Carbon | 1
Carbon Steel | Steel 4inch 1 | Carbon Steel | Steel 2inch
4inch 1 2inch 2
Table 20 Result of 1:4 association
Used Used Used Used Recommended | Confidence
material 1 | material 2 | material 3 | material 4 | material
* | Reducing | Pipe Flange Elbow Pipe 1
Tee Carbon Carbon Carbon Carbon  Steel
Carbon Steel Steel Steel 2inch
Steel 4inch 1 4inch 1 2inch 2
4inch 1
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 Flange dinch /= Reducing tee 4inch x 2inch

Pipe 2inch

Figure 29 Example of 1:3 and more associations

(4) Different configuration using same piping components

In the present study, the values used as the input values of the correlation analysis did
not include the position or orientation information of each material. Therefore, one of the
disadvantages is the result of the same association, but there are cases where other design
features are seen. As you can see in Table 21, all the combinations used the same material,

but they all show different shapes as shown in Figure 30.
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Table 21 Result of same association with different configuration

Used material 1 Used material 2 Recommended Confidence
material
1 | Tee Carbon Steel | Elbow Carbon Steel | Pipe Carbon  Steel | 1
4inch 1 4inch 1 4inch
2 | Elbow Carbon Steel | Pipe Carbon Steel | Tee Carbon Steel 4inch | 1
4inch 1 4inch 1
3 | Pipe Carbon Steel | Tee Carbon Steel | Elbow Carbon Steel | 1

4inch

4inch 1

4inch 1

.
S

Figure 30 Example of same association with different configuration
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3.2. Forecasting of material requirement

This chapter explains the prediction of material requirements as an application example

of regression analysis.

3.2.1. Method of training regression model

(1) Overview of regression analysis

The overall process of regression analysis is as follows. First, we check the material
requirements by information of marine structure, material specification, process progress
rate and process progress rate. Since each ocean structure has different air, the process is
divided into 10 stages and normalized. It is possible to predict the material requirements
using the regression model by confirming the material requirements for each process
divided into 10 steps, constructing the regression equation together with the independent

variables. Figure 31 shows the process briefly.

(2) Data pre-processing

The characteristics of each offshore structure and the material requirements based on
the process are composed of tables, but they must be vectorized because they cannot be
used directly in the regression analysis algorithm of Big Data. Figure 32 illustrates the

process.
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Process of Regression Analysis

| Output |

- Estimated material requirement by schedule

- Estimated total material requirement

- - ™
Regression Analysis | °
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Creating equations for material requirement
estimation by schedule

.

| Input |I WT lifetime Ruildina  Production Rlack Elanae To Pracese  Elanne uicane

» Project information
 Material specification
* Process rate

« Material usage by schedule

IV 10176.6 4500 10 1.9 0.06 85 857 69 390

o e = - ———————

Figure 31 Overview of regression analysis
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* Information of pipe material per projects

L B D T DWT  |SC OP GP WP CREW (WD TLWT
214.7| 38 23.7| 18| 88326 0.56 0.06 12 0.25 50 105 6200
214.7| 38.2] 22.2) 16| 60000 0.42] 0.057 53| 0.057 77 841 2500

232 41.5 23.5] 16| 92800 0.58] 0.089 38| 0.122 60 126] 6000
273 50 28 18.8| 180000, 1.4 0.003 35| 0.174 84 366 11000
276.4 45 26.6) 19.7] 105000, 0.94 0.22 840| 0.063 116 320{ 15000
300 59.6] 30.5 22.8| 343000 2 0.27 280 0.18 140 1400] 23500
285 60 32.3] 24.4]1 340660, 2.2 0.25 400 0.525 100 1180 23000
296 63| 32.3] 24| 375600 2.2 0.21 340 0.15 100 1220 30000
312.4 60 33.2) 24.3] 329000 2 0.24 280] 0.265 190 1365| 30000
305.1 58 32 23.4] 312500 2| 0.225 170 0.1 70| 1030f 22000
260 46 25.8 18.5]| 142000 0.9 0.1 80 0.1 80 390{ 8000
319 58] 31 23.4] 360000, 1.77 0.24 400 0.45 120 1310 24000
320 58.4 32 24| 337859 2.2 0.25 450 0.12 100[ 1462| 35000
310 61 30.5 23.5| 321000 2| 0.225 530 0.42 240] 1325 37000
320 61 32 24.7] 353200 2 0.18] 176.6 0.1 180 750{ 27700
250.2, 34 19.1] 12.8] 43276 0.28 0.14 100 0.12 70 450{ 4500
253 42| 23.2] 15] 103000 0.6 0.07 110] 0.022 55 85| 5000
334.9 437 277 21.4] 228033 1.5 0.1 52 0.02 76 383 3500

\

¥pyspark
df_pipe_train_30.show()

w o h & W b

-

-

-

-

-

-

-

- Converted data set for big data framework

Figure 32 Data pre-processing
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(3) Process of regression analysis

The main characteristics and characteristics of the offshore structures are used as

independent variables and are listed in Table 22.

Table 22 List if independent variables

Independent variables

L,B,D, T Length, Breadth, Depth, Design draft
DWT Dead weight

SC Storage Capacity

op Capacity of oil production

GP Capacity of gas production

WP Capacity of water production
CREW Number of people on board

WD Depth of well

TLWT Total light weight

In addition, because regression models could not be constructed for all materials, we
constructed a regression model for some of the commonly used materials and verified the

results. Selected materials are listed in Table 23.

Table 23 List of selected materials

Material Material Specification
Type Size (inch) Rating (1b.) Material
Pipe Bevel end 2 150 A106, A333
Gasket Ring 2 150 S31600
Flange Flat face 2 150 A105
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Elbow

90LR

150

A420

Table 24 shows the coefficients of the independent variables for the flanges resulting

from the regression analysis.

Table 24 Independent coefficient of flanges

30 40 50 60 70 80 90

Intercept | -2.35491 | -10.6242 | 5.383355 | -26.3825 | -24.9733 | 8.894943 | 3.720724
L 0.000988 | -0.00225 | 0.029334 | 0.084208 | 0.043846 | 0.020021 | O

B 0.002387 | 0.281861 | 0 0.258499 | 0.415164 | -0.0133 0

D 0.205286 | 0.549592 | 0.454995 | 1.375445 | 1.978814 | 0 0

T 0.049735 | -0.12802 | -0.08624 | -0.33576 | -1.64132 | -0.12983 | O

DWT 0 -9.5E-07 | -2E-05 -1.9E-05 | -2.9E-05 | -2.4E-06 | -4.4E-07
SC 0 3.303434 | 0.672518 | -10.6488 | 3.075268 | 0 -0.58476
0) 4 0 -10.7896 | -93.302 -98.5861 | 9.699344 | 0 -18.5386
GP 0.001779 | 0.007572 | 0.005793 | O 0.00162 | 0 0.00349
WP 0.090645 | 21.09809 | 37.07509 | 8.851151 | -11.4474 | 3.597445 | 11.14415
CREW 0.006916 | -0.04614 | -0.09847 | -0.06479 | -0.05053 | -0.02197 | O

WD 0 -0.00248 | -0.00531 | -0.01021 | -0.00898 | -0.00146 | O
TLWT 0 9.99E-05 | 0.001565 | 0.001994 | 0.000727 | 0.000545 | 0.000153
Total 0.006937 | 0.069499 | 0.179467 | 0.282462 | 0.217365 | 0.07842 | 0.028745

Table 25 shows the coefficients of the independent variables for the pipes resulting from

the regression analysis.

Table 25 Independent coefficient of pipes

30 40 50 60 70 80 920
Intercept | 2.763106 | -0.13688 | -23.0232 | 66.76461 | -160.252 | -67.1476 | 0.840811
L 0.00511 |0 0.566197 | 0.346327 | 0.705048 | 0.717023 | 0.102042
B -0.02812 | 0.072089 | -2.73168 | 2.488504 | -1.48228 | -2.19195 | -1.03249
D 0.124403 | 1.783403 | 3.586186 | 7.608348 | 4.090884 | 1.011188 | -0.61073
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T -0.07457 | -0.61454 | -1.26908 | -14.0691 | 0.516898 | -0.02641 | 0.115644
DWT -1.7E-06 | -1E-05 -5.2E-05 | -4.4E-05 | -0.0002 | -9.6E-05 | -3.2E-06
SC 0.195779 | -3.29253 | -24.5505 | -10.7245 | -5.55367 | -15.6308 | 7.683652
opP -4.38283 | -224.865 | -24.7717 | -1135.05 | -235.004 | 117.2546 | -1.60437
GP 0 -0.00405 | 0.046101 | O -0.03374 | 0.00178 | 0.012919
WP -0.265 -20.8476 | 125.4781 | 48.51439 | 13.16729 | 73.37606 | 19.01546
CREW 0 -0.04151 | -0.5131 0.352579 | 0.016162 | 0 -0.05616
WD -0.00161 | -0.02177 | -0.05617 | 0.007599 | -0.05207 | -0.02272 | -0.0074

TLWT 0.000318 | 0.002898 | 0.008752 | 0.00679 | 0.008007 | 0.002289 | 0.001823
Total 0.008288 | 0.078734 | 0.201093 | 0.26761 | 0.210618 | 0.08918 | 0.045128

Table 26 shows the coefficients of the independent variables for the elbows resulting

from the regression analysis.

Table 26 Independent coefficient of elbows

30 40 50 60 70 80 90

Intercept | 0.257623 | -0.47093 | 8.143629 | 6.059641 | -4.72313 | -7.97326 | 7.583179
L 0 0 0 0.080344 | 0.010211 | 0 0.005739
B 0 0 0 -0.07603 | 0.026005 | 0.045294 | 0

D 0 0 0 -0.18553 | 0.156848 | 0.181472 | -0.22621
T 0 0 -0.29599 | -1.13062 | -0.0662 0.07013 | -0.11883
DWT 0 0 -1.1E-05 | -4E-05 0 1.86E-06 | -3.2E-06
SC 0.004405 | 0.164868 | 2.518829 | 5.480446 | 1.077122 | 1.825238 | -0.11728
0) 0 0 -7.18311 | -40.4571 | 23.80224 | 16.61222 | -27.3259
GP 0 -0.00045 | -0.00399 | 0 -0.00647 | 0 0.001644
WP 0 -2.85201 | O 22.03516 | -9.27685 | -8.56748 | 2.889399
CREW 0 0 0 -0.01429 | -0.02158 | -0.0325 0.000353
WD 0 0 0.000622 | 0 0 -0.00194 | 0

TLWT 9.19E-06 | 0 0.000109 | 0.000728 | O 0 0.00035
Total 0.009599 | 0.055307 | 0.185162 | 0.361003 | 0.229834 | 0.101977 | 0.034817

Table 27 shows the coefficients of the independent variables for the gaskets resulting

from the regression analysis.
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Table 27 Independent coefficient of gaskets

30 40 50 60 70 80 920
Intercept | 0.227524 | 1.47806 | 1.335523 | -10.7364 | -10.7352 | -60.2235 | -8.08722
L 0 0 -0.01563 | -0.0061 0.016726 = 0.224226 | 0.033557
B 0 0 0.00255 | 0.043321 | 0.004448 @ -0.51823 | -0.20417
D 0 0 0.189179 | 0.55973 | 0.188448 0 0.709573
T 0 0 0.097932 | 0.375867 | 0.471132 | 1.329683 | 0.543606
DWT 0 -49E-07 | 5.92E-07 | 0 0 -9.4E-05 | -5.3E-05
SC 0 0 0.266544 | -0.55597 | -2.58916 | O 0.988007
op 0.077116 = 23.52354 | 2.032974 | -1.08663 | 25.11834 | -15.8886 @ 2.659015
GP 0 -0.00718 | -0.01232 | -0.00799 | -0.03124 | -0.04755 | -0.03746
WP 0 -9.98467 | -19.8898 | -15.6206 | -20.3443 | 0 -24.2108
CREW 0 -0.0217 | 0.000312 | -0.04711 | -0.02368 @ -0.0233 -0.12778
WD 0 0 -0.00242 | -0.0064 -0.00772 | -0.01773 | -0.00848
TLWT 4.91E-07 | 0.000182 ' 0.000533 | 0.000593 @ 0.001506 @ 0.003187 @ 0.002019
Total 0.009526 = 0.041597 | 0.044463 | 0.088238 | 0.175775 | 0.360982 | 0.205637

3.2.2. Prediction of material requirement and validation

The regression model can be constructed by using the coefficients of the independent

variables obtained from the previous regression analysis, and it can be used to predict the

material requirements again.

(1) Predicted material requirement of test project 1

Table 28 is a table showing the material requirements at the time of the process for the

first test project.
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Table 28 Prediction of test project 1

Type Schedule Total
30 40 50 60 70 80 90 usage
Flange | 15 121 276 366 260 107 50 1195
Pipe | 66 583 1580 | 2229 | 1564 | 676 322 7019
Elbow | 4 19 77 169 82 33 23 407
Gasket 6 8 34 66 145 74 337

A graph of the material requirements at the time of the process is shown in Figure 33.

The other materials showed the highest amount in the 60 percent process section, and the

gasket showed the highest requirement in the 80 process, showing a trend like the actual.
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Table 29 and Figure 34 compare the predicted value of the regression model and the

predicted value of the artificial neural network with the actual value for the flange.

Table 29 Comparison of flange prediction for test project 1

30 40 50 60 70 80 90
Actual | 14 98 221 339 264 110 39
Linear | 15 121 276 366 260 107 50
DL 6 130 213 330 305 109 36
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Figure 34 Trend of predicted flange for test project 1
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Table 30 and Figure 35 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the pipe.

Table 30 Comparison of pipe prediction for test project 1

30 40 50 60 70 80 90
Actual | 67 537 1545 1947 1545 739 336
Linear | 66 583 1580 2229 1564 676 322
DL 72 501 1450 2008 1394 695 267
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Figure 35 Trend of predicted pipe for test project 1
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Table 31 and Figure 36 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the elbow. There are many differences

in the prediction results of the neural network.

Table 31 Comparison of elbow prediction for test project 1

30 40 50 60 70 80 90
Actual 4 20 75 154 90 36 16
Linear 4 19 77 169 82 33 23
DL 4 37 63 139 134 58 19
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Figure 36 Trend of predicted elbow for test project 1
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Table 32 and Figure 37 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the gasket.

Table 32 Comparison of gasket prediction for test project 1

30 40 50 60 70 80 90
Actual 4 19 19 38 77 139 89
Linear 4 6 8 34 66 145 74
DL 11 21 31 55 86 124 119
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(2) Predicted material requirement of test project 2

Table 33 is a table showing the material requirements at the point of the process for the

second test project. We can check the trend of prediction by Figure 38

Table 33 Prediction of test project 2

Type Schedule Total
30 40 50 60 70 80 90 usage
Flange 13 89 211 320 253 95 34 1016
Pipe 56 509 1211 1953 1343 542 252 5867
Elbow 2 11 44 82 49 20 11 219
Gasket 5 23 32 53 103 189 120 524
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Figure 38 Trend of test project 2
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Table 34 and Figure 39 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the flange. There are many differences

in the prediction results of the neural network.

Table 34 Comparison of flange prediction for test project 2

30 40 50 60 70 80 90

Actual 9 100 205 306 260 106 33

Linear 13 89 211 320 253 95 34

DL 4 108 199 246 247 79 31
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Figure 39 Trend of predicted flange for test project 2
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Table 35 and Figure 40 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the pipe.

Table 35 Comparison of pipe prediction for test project 2

30 40 50 60 70 80 90
Actual 59 471 1295 1884 1354 530 295
Linear 56 509 1211 1953 1343 542 252
DL 60 427 1240 1808 1253 612 227
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Figure 40 Trend of predicted pipe for test project 2
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Table 36 and Figure 41 compare the predicted value of the regression model with the
predicted value of the artificial neural network for the elbow. There are many differences

in the prediction results of the neural network.

Table 36 Comparison of elbow prediction for test project 2

30 40 50 60 70 80 90
Actual 2 10 38 75 48 20 8
Linear 2 11 44 82 49 20 11
DL 5 27 45 84 94 37 15
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Figure 41 Trend of predicted elbow for test project 2
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Table 37 and Figure 42 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the gasket.

Table 37 Comparison of gasket prediction for test project 2

30 40 50 60 70 80 90

Actual 5 26 31 57 108 181 108

Linear 5 23 32 53 103 189 120

DL 4 29 31 42 96 165 141
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Figure 42 Trend of predicted gasket for test project 2
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(3) Predicted material requirement of test project 3

Table 38 shows the material requirements at the point of time for the third test project.

Figure 43 is summarizing the trend of prediction

Table 38 Prediction of test project 3

Type Schedule Total

30 40 50 60 70 80 90 usage

Flange 17 114 297 457 337 131 48 1402

Pipe 81 737 1756 2679 1943 756 376 8329

Elbow | 11 61 211 414 253 109 50 1110

Gasket | 11 47 69 115 236 458 263 1201
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Figure 43 Trend of test project 3

80



Table 39 and Figure 44 compare the predicted value of the regression model with the
predicted value of the artificial neural network for the flange. Both predictive models have

good results

Table 39 Comparison of flange prediction for test project 3

30 40 50 60 70 80 90
Actual 11 55 221 404 265 122 30
Linear 11 61 211 414 253 109 50
DL 13 72 199 407 286 109 46
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Figure 44 Trend of predicted flange for test project 3
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Table 40 and Figure 45 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the pipe.

Table 40 Comparison of pipe prediction for test project 3

30 40 50 60 70 80 90
Actual 24 137 277 432 327 129 45
Linear 17 114 297 457 337 131 48
DL 7 151 285 413 367 139 47
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Figure 45 Trend of predicted pipe for test project 3
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Table 41 and Figure 46 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the elbow.

Table 41 Comparison of elbow prediction for test project 3

30 40 50 60 70 80 90
Actual | 80 639 1838 2476 1838 879 240
Linear | 81 737 1756 2679 1943 756 376
DL 85 624 1736 2367 1782 827 343
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Figure 46 Trend of predicted elbow for test project 3
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Table 42 and Figure 47 compare the predicted value of the regression model with the

predicted value of the artificial neural network for the gasket. In most cases, the accuracy

of the regression model was high, but the accuracy of the artificial neural network was high

at the peak.

Table 42 Comparison of gasket prediction for test project 3

30 40 50 60 70 80 90
Actual 10 44 68 123 233 403 233
Linear 11 47 69 115 236 458 263
DL 16 51 71 129 224 416 276
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Figure 47 Trend of predicted gasket for test project 3
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4. Conclusion and future works

In these days, big data technology and knowledge mining from data become important.
So, this research performed to apply big data technology for shipbuilding and offshore
industry. Big data technology was applied to the analysis of an offshore structure related
data. Various data mining and machine learning algorithms were applied. The results all fit
well with the actual design or situation. The model for prediction has shown considerable

accuracy.

In association analysis, we can confirm the piping materials used together, and | think
that we can make a system that recommends the material to the designer based on this.
Regression analysis was able to predict material requirements very accurately and develop

algorithms to build material requirements planning and procurement plans based on this.

For future works, each algorithm is going to be advanced. The machine learning

algorithm will be applied to other examples
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