5 research outputs found

    ๋น„ํ–‰์กฐ๊ฑด๊ณผ ๋Œํ’์˜ ์˜ํ–ฅ์„ ๊ณ ๋ คํ•œ Blade Element Momentum Theory์™€ ์ฟผ๋“œ๋กœํ„ฐํ˜• ๋ฌด์ธ ๋น„ํ–‰์ฒด์˜ ๋™์—ญํ•™ ๊ฒฐํ•ฉ ํ•ด์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ์‹ ์ƒ์ค€.New industries such as reconnaissance, surveillance, and courier services are attracting attention as demand and supply of unmanned aerial vehicles increase. Accordingly, many related technologies of unmanned aerial vehicles are being developed. Among them, quadrotor unmanned aerial vehicle (UAV), which is the most famous, is widely used. The vision arrival, and departure algorithm, and many other new technologies have been used to facilitate the use of UAV in urban areas, such as courier transportation or reconnaissance. However, there is a high risk of falling due to crosswinds or shear flows between buildings in urban areas. Therefore, this thesis aims at realistic flight prediction capability by combination between six degree of freedom flight dynamics and precision aerodynamics while considering gust as significant influencing factor. Transformation procedure into the wind frame is conducted to analyze gust. Hover, forward flight, and climb of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering rigid blade flapping. In addition, coupled analysis between 6-degree-of-freedom (DOF) flight and BEMT is attempted. Reliability of the software, XFOIL, is demonstrated by comparison against CFD. Validation for hover, forward flight, and climb condition is attempted using the present BEMT. The experimental environment for the target UAV and verification for hover are performed. In addition, experimental equipment is designed for the wind tunnel test and the experiment will be performed. Through the dynamic characteristics of the HILS system provided by DJI and the parameter estimation, the present 6 degree of freedom simulation that can estimate the gain of the black box type flight controller is constructed.๋ฌด์ธ๋น„ํ–‰์ฒด์˜ ์ˆ˜์š” ๋ฐ ๊ณต๊ธ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์ •์ฐฐ, ๊ฐ์‹œ, ํƒ๋ฐฐ๋“ฑ์˜ ์ƒˆ๋กœ์šด ์‚ฐ์—…์ด ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ฌด์ธ๋น„ํ–‰์ฒด์˜ ๊ด€๋ จ๋œ ๋งŽ์€ ๊ธฐ์ˆ ๋“ค์ด ๊ฐœ๋ฐœ๋˜๋Š” ์‹ค์ •์ด๋ฉฐ ๊ทธ ์ค‘์—์„œ๋„ ๊ฐ€์žฅ ๋ณต์žกํ•˜์ง€ ์•Š์€ ํ˜•ํƒœ์ธ ์ฟผ๋“œ๋กœํ„ฐ ๋ฌด์ธ๊ธฐ๊ฐ€ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด ๋ฌด์ธ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋„์‹ฌ์ง€์—์„œ ํƒ๋ฐฐ ์šด์†ก ํ˜น์€ ์ •์ฐฐ ๋“ฑ์— ์šฉ์ดํ•˜๊ฒŒ ์“ฐ๊ธฐ ์œ„ํ•ด ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•œ ๋น„์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์ถœ ๋„์ฐฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ๊ทธ ์™ธ์˜ ๋งŽ์€ ์‹ ๊ธฐ์ˆ ๋“ค์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋‚˜ ๋„์‹ฌ์ง€์˜ ๋ฌด์ธ ๋น„ํ–‰์ฒด ์šด์šฉ์—ฌ๊ฑด์ƒ ๊ฑด๋ฌผ ์‚ฌ์ด๋ฅผ ํ๋ฅด๋Š” ์ธกํ’ ์ด๋‚˜ ์ „๋‹จ๋ฅ˜ ๋“ฑ์— ์˜ํ•˜์—ฌ ์ถ”๋ฝํ•  ์œ„ํ—˜์„ฑ์ด ๋†’๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ทธ๋Ÿฌํ•œ ์œ„ํ—˜์„ฑ์„ ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•ด, ์ฟผ๋“œ๋กœํ„ฐํ˜• ๋ฌด์ธ๋น„ํ–‰์ฒด์˜ ๊ณต๋ ฅ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ 6 ์ž์œ ๋„ ํ•ด์„์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋Œํ’ ๋ฐ ๋น„ํ–‰ ์กฐ๊ฑด๋“ค์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ”๋žŒ์˜ ์ขŒํ‘œ๊ณ„ ๋ณ€ํ™˜ ๊ฐœ๋…์„ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ๊ฐ•์ฒด ๋ธ”๋ ˆ์ด๋“œ ํ”Œ๋ž˜ํ•‘ ์šด๋™๋ฐฉ์ •์‹์„ ๊ณ ๋ คํ•œ ๊นƒ ์š”์†Œ ๋ฐ ์šด๋™๋Ÿ‰ ์ด๋ก ์„ ์ด์šฉํ•ด ๊ฐœ๋ณ„ ๋กœํ„ฐ์˜ ์ œ์ž๋ฆฌ, ์ „์ง„, ์ƒ์Šน ๋น„ํ–‰์„ ํ•ด์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ XFOIL์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณต๋ ฅ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜์˜€๊ณ  ์ด๋ฅผ ์ „์‚ฐ์œ ์ฒด์—ญํ•™ ํ•ด์„์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ BEMT๋ฅผ ์ด์šฉํ•˜์—ฌ ์ œ์ž๋ฆฌ, ์ƒ์Šน, ์ „์ง„ ๋น„ํ–‰ ์กฐ๊ฑด์— ๋Œ€ํ•ด ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ชฉํ‘œ ๊ธฐ์ฒด์ธ DJI Matrice 100์˜ ๋ธ”๋ ˆ์ด๋“œ์˜ ์‚ผ์ฐจ์› ์Šค์บ๋‹์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๋กœํ„ฐ์˜ ์ œ์ž๋ฆฌ ๋น„ํ–‰ ํŠน์„ฑ์„ ๋น„๊ต ๋ฐ ๊ฒ€์ฆํ•˜์˜€์œผ๋ฉฐ, ์ถ”๊ฐ€ ํ’๋™์‹คํ—˜์„ ์œ„ํ•ด ์‹คํ—˜์žฅ๋น„๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋˜ํ•œ DJI์—์„œ ์ œ๊ณตํ•˜๋Š” HILS ์‹œ์Šคํ…œ์˜ ๋™ํŠน์„ฑ ํŒŒ์•…๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์„ ํ†ตํ•ด ๋ธ”๋ž™๋ฐ•์Šค ํ˜•ํƒœ์ธ ๋น„ํ–‰ ์ œ์–ด๊ธฐ์˜ ๊ฒŒ์ธ์„ ์ถ”์ • ๊ฐ€๋Šฅํ•œ 6 ์ž์œ ๋„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค.Chpater 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objectives and Thesis Overview 5 Chpater 2 Theoretical Background 6 2.1 Modified Blade Element Momentum Theory 6 2.1.1 Lift and Drag aerodynamic coefficient table 10 2.1.2 Frame Transformation 14 2.1.3 Aerodynamic Loads Calculation using Blade Element Momentum Theory 20 2.1.4 Blade Element Momentum Theory considering Rigid Blade Flapping 25 2.2 Hybrid Analysis between Blade Element Momentum Theory and Flight Dynamics 29 2.2.1 Quad-rotor Flight Dynamics 29 2.2.2 Coupled Quadrotor Dynamics with Blade Element Momentum Theory 33 2.3 System Identification and Parameter Estimation 35 Chpater 3 Results 41 3.1 XFOIL Verification 41 3.2 Blade Element Momentum Theory verification for hover, climb, and forward flight condition 45 3.3 Coupled Flight Dynamics Simulation Result 59 3.4 Experiment Setting and Result 63 3.4.1 Individual Rotor Thrust Test 63 3.4.2 Hardware Simulation in Loop and Experiment setting for Flight Test 68 Chpater 4 Conclusion and Future Works 78 4.1 Conclusion 78 4.2 Future Works 79 Reference 80 ๊ตญ๋ฌธ์ดˆ๋ก 84Maste

    ๋กœํ„ฐ ๊ฐ„์˜ ๊ณต๊ธฐ์—ญํ•™์  ๊ฐ„์„ญ์„ ๊ณ ๋ คํ•œ ์‹ค์‹œ๊ฐ„ ๋‹ค์ค‘๋กœํ„ฐ UAV ๋น„ํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ•ญ๊ณต์šฐ์ฃผ๊ณตํ•™๊ณผ, 2023. 8. ์‹ ์ƒ์ค€.A multirotor unmanned aerial vehicle (UAV) has advantages such as ease of manufacture and control. Due to those advantages, UAV has been widely used in the civil and military field. Recently, as the demand for operating UAV in urban is increased, the major usage of UAV is changed from personal hobbies to commercial operations which are related to urban infrastructure. However, it is not straightforward to operate UAV in urban because of the risks such as instability of flight and crash accidents due to the gust. For quantifying those risks, it is important to predict the transient behavior of UAV accurately. Thus, this dissertation is focused on the development of a real-time multirotor UAV flight simulation that is capable of ensuring the accuracy of dynamic behavior. The following considerations will be applied in the present flight simulation to enhance its prediction accuracy. First, the rotor aerodynamic analysis will be proposed to predict the aerodynamic loads of the rotor. The dynamic inflow approach and and rigid blade flapping will be considered in this rotor anaylsis. However, since the dynamic inflow approach was developed only for a single rotor, a novel formulation that is efficient and simple will be derived to evaluate the aerodynamic interference among the rotors. Then, the flight dynamics and the proposed rotor aerodynamics will be integrated for establishing the relevant flight simulation. Several constraints such as the rotational speed of the rotor and fuselage tilting angle limitation which are obtained by the trim anaylsis will be applied to the present flight simulation. Furthermore, a straightforward approach to estimate an unidentified gust will be developed and implemented for the present simulation. The verification procedure for the present flight simulation will be performed step by step. The results obtained by the present rotor aerodynamics will be compared and validated by the experimental result and high-fidelity analysis for both an isolated rotor and multirotor configurations. Then, the components such as the controller, and dynamic characteristics will be evaluated. Based on this, the proposed flight simulation will be compared against the flight test. Particulary, the gust experiment which corresponds to the urban environment will be used to evaluate the present simulation. Further, the influence of the rigid blade flapping, aerodynamic interference, and gust intensity will be investigated and analyzed. It is found that a suitable rotor aerodynamic analysis is an important consideration to estimate the transient behavior of UAV.๋‹ค์ค‘๋กœํ„ฐ ๋ฌด์ธํ•ญ๊ณต๊ธฐ(UAV)๋Š” ์ œ์กฐ ๋ฐ ์ œ์–ด๊ฐ€ ์šฉ์ดํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์žฅ์ ๋“ค๋กœ ์ธํ•ด, ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ๋Š” ๋ฏผ๊ฐ„ ๋ฐ ๊ตฐ์‚ฌ ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค. ์ตœ๊ทผ, ๋„์‹œ์—์„œ์˜ ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ ์šด์˜์— ๋Œ€ํ•œ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ์˜ ์ฃผ์š” ์šฉ๋„๊ฐ€ ๊ฐœ์ธ ์ทจ๋ฏธ์—์„œ ๋„์‹œ ์ธํ”„๋ผ์™€ ๊ด€๋ จ๋œ ์ƒ์—…์  ์šด์˜์œผ๋กœ ๋ณ€๊ฒฝ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œํ’์œผ๋กœ ์ธํ•œ ๋น„ํ–‰ ๋ถˆ์•ˆ์ •, ์ถ”๋ฝ ์‚ฌ๊ณ  ๋“ฑ์˜ ์œ„ํ—˜ ๋•Œ๋ฌธ์— ๋„์‹ฌ์—์„œ ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ๋ฅผ ์šด์šฉํ•˜๋Š” ๊ฒƒ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ๋Œํ’๊ณผ ๊ด€๋ จ๋œ ์œ„ํ—˜์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•ด UAV์˜ ๋™์  ๊ฑฐ๋™์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์€ ๋™์  ๊ฑฐ๋™์˜ ์ •ํ™•์„ฑ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์ค‘๋กœํ„ฐ ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ ๋น„ํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‚ฌํ•ญ๋“ค์„ ๋ณธ ๋น„ํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์ ์šฉํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ๋กœํ„ฐ์˜ ๊ณต๊ธฐ์—ญํ•™ ํ•˜์ค‘์„ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ์ด ์šฉ์ดํ•œ ๋กœํ„ฐ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด ๋กœํ„ฐ ๋ถ„์„์—์„œ๋Š” ๋™์  ์œ ์ž…๋ฅ˜ ๊ธฐ๋ฒ•๊ณผ ๊ฐ•์„ฑ ๋ธ”๋ ˆ์ด๋“œ ํ”Œ๋žฉํ•‘์ด ๊ณ ๋ ค๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ๋™์  ์œ ์ž…๋ฅ˜ ๊ธฐ๋ฒ•์€ ๋‹จ์ผ ๋กœํ„ฐ์— ๋Œ€ํ•ด์„œ๋งŒ ๊ฐœ๋ฐœ๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋กœํ„ฐ ๊ฐ„์˜ ๊ณต๊ธฐ์—ญํ•™์  ๊ฐ„์„ญ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ํšจ์œจ์ ์ด๋ฉฐ ๊ฐ„๋žตํ™”๋œ ์ƒˆ๋กœ์šด ๋ฐฉ์‹์˜ ์ •์‹ํ™”๋ฅผ ์œ ๋„ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๋น„ํ–‰ ์—ญํ•™๊ณผ ์ œ์•ˆ๋œ ๋กœํ„ฐ ๊ณต๊ธฐ ์—ญํ•™์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋น„ํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ํŠธ๋ฆผ ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€ ๋กœํ„ฐ์˜ ํšŒ์ „ ์†๋„ ๋ฐ ๋™์ฒด ํ‹ธํŒ… ๊ฐ๋„ ์ œํ•œ๊ณผ ๊ฐ™์€ ๋ช‡ ๊ฐ€์ง€ ์ œ์•ฝ ์กฐ๊ฑด์ด ํ˜„์žฌ ๋น„ํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์ ์šฉ๋œ๋‹ค. ๋˜ํ•œ, ํ˜„์žฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•ด ์‹๋ณ„๋˜์ง€ ์•Š์€ ๋Œํ’์„ ์ถ”์ •ํ•˜๋Š” ๊ฐ„๋‹จํ•œ ์ ‘๊ทผ๋ฒ•์„ ๊ฐœ๋ฐœ ๋ฐ ์ ์šฉํ•˜์˜€๋‹ค. ํ˜„์žฌ ๋น„ํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ๋Œ€ํ•œ ๊ฒ€์ฆ ์ ˆ์ฐจ๋Š” ๋‹จ๊ณ„๋ณ„๋กœ ์ˆ˜ํ–‰๋œ๋‹ค. ํ˜„์žฌ ๋กœํ„ฐ ๊ณต๊ธฐ์—ญํ•™์—์„œ ์–ป์€ ๊ฒฐ๊ณผ๋Š” ๋‹จ์ผ ๋กœํ„ฐ์™€ ๋‹ค์ค‘ ๋กœํ„ฐ ๊ตฌ์„ฑ์— ๋Œ€ํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ ๊ณ ์ถฉ์‹ค๋„ ๋ถ„์„๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„๊ต ๋ฐ ๊ฒ€์ฆ์ด ์ˆ˜ํ–‰๋œ๋‹ค. ๊ทธ๋Ÿฐ ์ดํ›„, ์ œ์–ด๊ธฐ ๋ฐ ๋™์  ํŠน์„ฑ๊ณผ ๊ฐ™์€ ๊ตฌ์„ฑ ์š”์†Œ์— ๋Œ€ํ•œ ๊ฒ€์ฆ์ด ์ˆ˜ํ–‰๋œ๋‹ค. ํ•ด๋‹น ๊ฒ€์ฆ์„ ํ†ตํ•ด ์–ป์–ด์ง„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ œ์•ˆ๋œ ๋น„ํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๋น„ํ–‰ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ต๋œ๋‹ค. ํŠนํžˆ, ๋„์‹ฌ ํ™˜๊ฒฝ์„ ๋ชจ์‚ฌํ•œ ๋Œํ’ ์‹คํ—˜์€ ํ˜„์žฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„์˜ ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ฐ•์ฒด ๋ธ”๋ ˆ์ด๋“œ ํ”Œ๋žฉํ•‘, ๊ณต๊ธฐ์—ญํ•™์  ๊ฐ„์„ญ, ๊ทธ๋ฆฌ๊ณ  ๋Œํ’ ๊ฐ•๋„์— ๋Œ€ํ•œ ์˜ํ–ฅ๋“ค์ด ์กฐ์‚ฌ ๋ฐ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ์˜ ๋™์  ๊ฑฐ๋™์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ ํ•ฉํ•œ ๋กœํ„ฐ ๊ณต๊ธฐ์—ญํ•™ ํ•ด์„๊ธฐ๋ฒ•์ด ์ค‘์š”ํ•œ ๊ณ ๋ ค์‚ฌํ•ญ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.Abstract i Contents iii List of Figures vi List of Tables x 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 3 1.2.1 Investigation for a rotor aerodynamics 3 1.2.2 Aerodynamic interference among the rotors 5 1.2.3 Flight dynamics with the rotor aerodynamcis 9 1.3 Objectives and Scopes 12 1.4 Outline of Dissertation 14 2 Rotor Aerodynamic Analysis considering Aerodynamic Interference 16 2.1 Formulation for an isolated rotor 16 2.1.1 Brief investigation of BEMT 16 2.1.2 Enhancement for the rotor aerodynamic analysis 20 2.2 Extened formulation for the aerodynamic interference among the rotors 27 2.2.1 Existing analytical approaches using the simple vortex theory 27 2.2.2 Aerodynamic interference based on the dynamic vortex tube 29 3 Establishment for the Multirotor UAV Flight Simulation 44 3.1 Mathmatical description of the flight dynamics 44 3.1.1 limitation of the conventional UAV flight simulation 44 3.1.2 Flight dynamics combined with the present rotor aerodynamics 46 3.2 Definition of the Control Law and Gust Estimation 55 3.2.1 Control law 55 3.2.2Gust estimation 56 4 Verification for the Rotor Aerodynamics 61 4.1 Results for an isolated rotor aerodynamics 61 4.1.1Predictions of the force, moment, and drag 61 4.1.2Effect of the rigid blade flapping on forward flight 68 4.2 Results for the aerodynamic interference among the rotors 74 4.2.1 Evaluation of the analytical formulation 74 4.2.2 Further numerical results 81 4.2.3 Further investigation of the aerodynamic interference for a multirotor UAV 100 5 Verification of the Multirotor UAV Flight Simulation 112 5.1 Introduction of the verification procedure 112 5.2 Validation of modules in flight simulation 115 5.2.1 Specification of the UAV 115 5.2.2 Validation for the aerodynamics of the target rotor 118 5.2.3 Verification of the dynamic characteristics of the target UAV based on system identification 122 5.2.4 Estimation of the fuselage aerodynamics 130 5.3 Present simulation results 132 5.3.1 Trim analysis result 132 5.3.2 Validation of the present simulation 138 5.4V alidation of the gust experiment 147 5.4.1 Description of the gust experiment 147 5.4.2 Validation of the proposed gust estimation 151 5.4.3Comparison between the proposed simulation and flight test 158 5.5 Further investigation of the present flight simulation 165 5.5.1 Effect of the rigid blade flapping and aerodynamic interference among the rotors 165 5.5.2 Investigation of the transient behavior due to gust while increased intensity 172 6 Conclusion 184 Reference 188 Appendix 207 ์ดˆ๋ก 213๋ฐ•

    ํŒŒํ„ฐ ํŒฝ๋Œ€๋ถ€ ์•”์ข…์˜ ์„ ์ข…-์„ ์•”์ข… ์ง„ํ–‰์—์„œ E-cadherin, ฮฒ-catenin ๋ฐœํ˜„๊ณผ ์œ ์ „์ž ๋ถˆ์•ˆ์ •์„ฑ ๋ฐ ๋Œ€๋ฆฝ ์œ ์ „์ž ์†Œ์‹ค ๋ถ„์„

    No full text
    Thesis (doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๋ณ‘๋ฆฌํ•™์ „๊ณต,2000.Docto

    Progression of genetic alterations in ampulla of vater carcinoma

    No full text
    Thesis (master`s)--:์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๋ณ‘๋ฆฌํ•™์ „๊ณต,1998.Maste
    corecore