7 research outputs found

    Activation of G Proteins by Aluminum Fluoride Enhances RANKLMediated Osteoclastogenesis

    Get PDF
    Receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis is accompanied by intracellular Ca2+ mobilization in a form of oscillations, which plays essential roles by activating sequentially Ca2+/calmodulin-dependent protein kinase, calcineurin and NFATc1, necessary in the osteoclast differentiation. However, it is not known whether Ca2+ mobilization which is evoked in RANKL-independent way induces to differentiate into osteoclasts. In present study, we investigated Ca2+ mobilization induced by aluminum fluoride (AlF4-), a G-protein activator, with or without RANKL and the effects of AlF4- on the osteoclastogenesis in primary cultured mouse bone marrow-derived macrophages (BMMs). We show here that AlF4- induces intracellular Ca2+ concentration ([Ca2+]i) oscillations, which is dependent on extracellular Ca2+ influx. Notably, co-stimulation of AlF4- with RANKL resulted in enhanced NFATc1 expression and formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells. Additionally, we confirmed that mitogen-activated protein kinase (MAPK) is also activated by AlF4-. Taken together, these results demonstrate that G-protein would be a novel modulator responsible for [Ca2+]i oscillations and MAPK activation which lead to enhancement of RANKL-mediated osteoclastogenesis.ope

    The extracellular signal-regulated kinase mitogen-activated protein kinase/ribosomal S6 protein kinase 1 cascade phosphorylates cAMP response element-binding protein to induce MUC5B gene expression via D-prostanoid receptor signaling.

    Get PDF
    Mucus hypersecretion is a prominent feature of respiratory diseases, and MUC5B is a major airway mucin. Mucin gene expression can be affected by inflammatory mediators, including prostaglandin (PG) D(2,) an inflammatory mediator synthesized by hematopoietic PGD synthase (H-PGDS). PGD(2) binds to either D-prostanoid receptor (DP1) or chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). We investigated the mechanisms by which PGD(2) induces MUC5B gene expression in airway epithelial cells. Western blot analysis showed that H-PGDS was highly expressed in nasal polyps. Similar results were obtained for PGD(2) expression. In addition, we could clearly detect the expressions of both H-PGDS and DP1 in nasal epithelial cells but not CRTH2. We demonstrated that PGD(2) increased MUC5B gene expression in normal human nasal epithelial cells as well as in NCI-H292 cells in vitro. S5751, a DP1 antagonist, inhibited PGD(2)-induced MUC5B expression, whereas a CRTH2 antagonist (OC0459) did not. These data suggest that PGD(2) induced MUC5B expression via DP1. Pretreatment with extracellular signal-regulated kinase (ERK) inhibitor (PD98059) blocked both PGD(2)-induced ERK mitogen-activated protein kinase (MAPK) activation and MUC5B expression. Proximity ligation assays showed direct interaction between RSK1 and cAMP response element-binding protein (CREB). Stimulation with PGD(2) caused an increase in intracellular cAMP levels, whereas intracellular Ca(2+) did not have such an effect. PGD(2)-induced MUC5B mRNA levels were regulated by CREB via direct interaction with two cAMP-response element sites (-921/-914 and -900/-893). Finally, we demonstrated that PGD(2) can induce MUC5B overproduction via ERK MAPK/RSK1/CREB signaling and that DP1 receptor may have suppressive effects in controlling MUC5B overproduction in the airway.ope

    Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway

    Get PDF
    BACKGROUND: Zinc, an essential trace element, inhibits osteoclast differentiation in vitro and in vivo. The molecular mechanism for the inhibitory effect of zinc, however, is poorly understood. The purpose of this study was to investigate the effect of zinc and determine its molecular mechanism on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in mouse bone marrow-derived monocyte cells (BMMs) and RAW264.7 cells. RESULTS: In BMMs, zinc treatment during osteoclast differentiation decreased RANKL-induced osteoclast formation in a dose-dependent manner. We show that zinc suppressed the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1). Zinc also accumulated phospho-Nfatc1 (p-Nfatc1) in the cytosol in a dose-dependent manner and inhibited the translocation of Nfatc1 to the nucleus in RAW264.7 cells. Zinc suppressed the activities of Nfatc1 in the nucleus without changing the activities of NF-κB in RAW264.7 cells. In contrast, calcineurin activity decreased in response to zinc but its protein level was unchanged. RANKL-induced Ca2+ oscillations were inhibited by zinc treatment, but phospho-phospholipase Cγ1 (p-PLCγ1), the upstream signaling molecule of Ca2+ oscillations, was unaffected. Moreover, a constitutively active form of Nfatc1 obviously rescued suppression of osteoclastogenesis by zinc. CONCLUSIONS: Taken together, these results demonstrate for the first time that the inhibitory effect of zinc during osteoclastogesis is caused by suppressing the Ca2+-Calcineurin-NFATc1 signaling pathway. Thus, zinc may be a useful therapeutic candidate for the prevention of bone loss caused by NFATc1 activation in osteoclasts.ope

    Effects of Progesterone (P4), 17β-estradiol (E2), Melatonin and Serotonin (5-HT) on the mRNA Expression of Reproduction-related Genes in the Pituitary Cells of Eels (Anguilla japonica)

    No full text
    어류의 번식은 뇌에서 분비되는 다양한 신경호르몬과 뇌하수체에서 분비되는 생식소 자극 호르몬에 의해 조절된다. 극동산 뱀장어(Anguilla japonica)의 번식도 이 호르몬들의 작용에 의해 조절되지만 성 성숙 시 신경호르몬이 뇌하수체 호르몬을 조절하는 방법은 완전히 밝혀지지 않았다. 이전 연구에 의하면 progesterone (P4), melatonin 및 serotonin (5-HT) 등과 같은 신경호르몬이 일부 어류의 번식 과정 조절에 관여하는 것으로 밝혀졌다. 본 연구에서는 뱀장어의 뇌하수체를 초대 배양하였고, 안정화된 뇌하수체 세포에 P4, 17β-estradiol (E2), melatonin 및 5-HT를 처리하였다. 이후 처리된 호르몬의 작용이 뇌하수체 세포에서 번식 관련 호르몬인 FSHβ, LHβ, GH 및 SL mRNA 발현에 어떤 영향을 미치는지 조사하였다. 본 연구를 수행한 결과, P4는 뇌하수체 세포에서 FSHβ와 LHβ 발현을 증가시켰고, melatonin은 FSHβ와 LHβ 뿐만 아니라 GH와 SL의 발현을 증가시켰다. 하지만 5-HT는 이 유전자의 mRNA 발현에 유의한 영향을 미치지 않았다. 이상의 결과는 P4 또는 melatonin이 뱀장어의 초기 성 성숙에 중요한 역할을 할 수 있음을 의미한다.22Nkc

    Chitinase activates protease-activated receptor-2 in human airway epithelial cells

    No full text
    Mammalian chitinase released by airway epithelia is thought to be an important mediator of disease manifestation in an experimental model of asthma. However, the intracellular signaling mechanisms engaged by exogenous chitinase in human airway epithelial cells are unknown. Here, we investigated the direct effects of exogenous chitinase from Streptomyces griseus on Ca(2+) signaling in human airway epithelial cells. Spectrofluorometry was used to measure intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-AM-loaded cells. S. griseus chitinase induced dose-dependent [Ca(2+)](i) increases in normal human bronchial epithelial cells and promoted [Ca(2+)](i) oscillations in H292 cells. Chitinase-induced [Ca(2+)](i) oscillations were independent of extracellular Ca(2+), suggesting that the observed [Ca(2+)](i) increases were due to Ca(2+) release from intracellular stores. Accordingly, after depleting endoplasmic reticulum (ER) Ca(2+) with the ER Ca(2+) ATPase inhibitor, thapsigargin, chitinase-mediated [Ca(2+)](i) increases were abolished. Treatment with the phospholipase C (PLC) inhibitor U73122 or the 1, 4, 5-trisinositolphosphate (IP(3)) receptor inhibitor 2-APB attenuated chitinase-induced [Ca(2+)](i) increases. Desensitization of protease-activated receptor-2 (PAR-2) by repetitive agonist stimulation or siRNA-mediated PAR-2 knock-down revealed that chitinase-mediated [Ca(2+)](i) increases were exclusively mediated by PAR-2 activation. Finally, chitinase was found to cleave a model peptide representing the cleavage site of PAR-2 and enhanced IL-8 production. These results indicate that exogenous chitinase is a potent proteolytic activator of PAR-2 that can directly induce PLC/IP(3)-dependent Ca(2+) signaling in human airway epithelial cells.ope

    Comparable Incidence of Hepatocellular Carcinoma in Chronic Hepatitis B Patients Treated with Entecavir or Tenofovir

    No full text
    Background/aims: Adherence to medication and maintained virologic response (MVR) are related to the risk of adverse clinical outcomes. This study aimed to compare the efficacy of entecavir (ETV) and tenofovir disoproxil fumarate (TDF) in relation to the adverse clinical outcomes among chronic hepatitis B (CHB) patients stratified according to adherence to medication and MVR. Methods: A total of 1794 treatment-naive CHB patients treated with ETV (n = 894) or TDF (n = 900) for > 1 year were identified. Results: Adherence rates were significantly higher in the TDF than in the ETV (93.4% vs. 89.1%, respectively; P < 0.001). The MVR of ETV and TDF were 64.5% and 71.7%, respectively (P = 0.001). The MVR of ETV and TDF in the good adherence group were 72.1% and 76.4%, respectively (P = 0.083); in the poor adherence group, the MVR of ETV and TDF were 63.0% and 54.0%, respectively (P = 0.384) Multivariate analysis showed that the risk of HCC and death or transplantation was similar between groups (HR 0.826, 95% CI 0.522-1.306; P = 0.413 and HR 0.636, 95% CI 0.258-1.569; P = 0.325, respectively) after adjusting for adherence to medication and MVR. In the 589 propensity-matched pairs of patients, risk of HCC and death or transplantation was similar between treatment groups after stratification according to adherence rates and MVR. Conclusions: After adjustment for adherence and MVR, ETV, and TDF did not differ in terms of the risk of HCC and death or transplantation in all patients and propensity score-matched cohorts
    corecore