31 research outputs found

    Impact of Age-Related Genetic Differences on the Therapeutic Outcome of Papillary Thyroid Cancer

    Get PDF
    The incidence of papillary thyroid carcinoma (PTC) has been increasing worldwide. PTC is the most common type of differentiated thyroid cancer and usually shows good prognosis. However, some PTC is driven to advanced stage by epithelial-mesenchymal transition (EMT)-mediated drug resistance, which is particularly noticeable in pediatric patients. There are limited options for systemic treatment, necessitating development of new clinical approaches. Here, we aimed to clarify genetic differences due to age of patients with PTC, and thereby aid in developing novel therapeutics. Patients with biochemically and histologically confirmed PTC were included in this study. PTC cells were acquired from young and older patients showing drug resistance, and were compared via microarray analysis. Cellular proliferation and other properties were determined after treatments with lenvatinib and sorafenib. In vivo, tumor volume and other properties were examined using a mouse xenograft model. Lenvatinib-treated group showed obvious suppression of markers of anti-apoptosis, EMT, and the FGFR signaling pathway, compared with control and Sorafenib-treated group. In the xenograft models, lenvatinib treatment induced significant tumor shrinkage and blocked the proto-oncogene Bcl-2 (B cell lymphoma/leukemia gene-2) and FGFR signaling pathway, along with reduced levels of EMT markers, compared with control and Sorafenib-treated group. Our findings clarify the age-dependent characteristics of pediatric PTC, giving insights into the relationship between young age and poor prognosis. Furthermore, it provides a basis for developing novel therapeutics tailored to the age at diagnosis.ope

    Lactobacillus plantarum CBT LP3 ameliorates colitis via modulating T cells in mice

    Get PDF
    Lactobacillus plantarum has been identified as a probiotic bacterium owing to its role in immune regulation and maintenance of intestinal permeability. Here, we investigated the anti-colitic effects and mechanism of L. plantarum CBT LP3 (LP3). This in vivo study was performed using dextran sodium sulfate (DSS) to induce colitis in mice. Mice were randomly divided into three groups: a control supplied with normal drinking water, a DSS-treated group followed by oral administration of vehicle, and a DSS-treated group gavaged with LP3 daily for 7 days following DSS administration. An analysis of macrophages and T cell subsets harvesting from peritonium cavity cells and splenocytes was performed using a flow cytometric assay. Gene expression and cytokine profiles were measured using quantitative reverse transcriptase polymerase chain reaction. The administration of LP3 significantly attenuated disease activity and histolopathology compared to control. LP3 had anti-inflammatory effects, with increased induction of regulatory T cells and type 2 helper T cells in splenocytes and restoration of goblet cells accompanied by suppression of proinflammatory cytokine expressions. These findings suggest that L. plantarum CBT LP3 can be used as a potent immunomodulator, which has significant implications for IBD treatment.ope

    Discovery of Pharmaceutical Composition for Prevention and Treatment in Patient-Derived Metastatic Medullary Thyroid Carcinoma Model

    Get PDF
    Medullary thyroid carcinoma (MTC) is a well-known neuroendocrine carcinoma, derived from C cells of the thyroid gland. Additionally, MTC is an uncommon aggressive carcinoma that metastasizes to lymph nodes, bones, lungs and liver. For MTC, the 10-year general survival ratio of patients with localized disease is about 95%, whereas that of patients with local phase disorder is around 75%. Only 20% of patients with distant metastasis to lung at diagnosis survive 10 years, which is notably lower than survival for well-differentiated thyroid carcinoma (WDTC). The management of MTC with distant metastasis to lung could be re-surgery or chemotherapy. In this research, we planned to assess the in vitro and in vivo combinational anticancer effect of a novel combination of low-dose cisplatin and sorafenib in patient-derived MTC. The patient-derived MTC cell lines YUMC-M1, M2, and M3 were isolated and treated with a combination of cisplatin and sorafenib or either agent alone. Cisplatin and sorafenib acted in combination to forward tumor restraint compared with each agent administered alone at a low dose. Therefore, a combination of cisplatin and sorafenib could be a new therapeutic approach for MTC.ope

    Inhibition of endoplasmic reticulum chaperone protein glucose-regulated protein 78 potentiates anti-angiogenic therapy in renal cell carcinoma through inactivation of the PERK/eIF2α pathway

    Get PDF
    Tumor microenvironments are characterized by decreased oxygen and nutrition due to the rapid and progressive nature of tumors and also stresses induced by several anti-tumor therapies. These intense cell stressors trigger a protective cell survival mechanism heralded by the unfolded protein response (UPR). The UPR is induced by an accumulation of unfolded proteins in the endoplasmic reticulum (ER) following cell starvation. Although the ER stress response is implicated in cytoprotection, its precise role during anti-angiogenic therapy remains unclear. One of the major proteins involved in ER stress is glucose-regulated protein 78 (GRP78), which binds to unfolded proteins and dissociates from membrane-bound ER stress sensors. To determine the role of ER stress responses during anti-angiogenic therapy and the potential role of GRP78 in combined therapy in renal cell carcinoma (RCC), we used GRP78 overexpressing or knockdown RCC cells under hypoxic or hypoglycemic conditions in vitro and in animal models treated with sunitinib. Here, we report that GRP78 plays a crucial role in protecting RCC cells from hypoxic and hypoglycemic stress induced by anti-angiogenic therapy. Knockdown of GRP78 using siRNA inhibited cancer cell survival and induced apoptosis in RCC cells in vitro and also resulted in ER stress-induced apoptosis and hypoxic/hypoglycemic stress-induced apoptosis by inactivating the PERK/eIF-2α pathway. Finally, GRP78 knockdown showed potent suppression of tumor growth and enhanced the antitumor effect of sunitinib in RCC xenografts. Our findings suggest that GRP78 may serve as a novel therapeutic target in combination with anti-angiogenic therapy for the management of RCC.ope

    Drug Discovery Using Evolutionary Similarities in Chemical Binding to Inhibit Patient-Derived Hepatocellular Carcinoma

    Get PDF
    Drug resistance causes therapeutic failure in refractory cancer. Cancer drug resistance stems from various factors, such as patient heterogeneity and genetic alterations in somatic cancer cells, including those from identical tissues. Generally, resistance is intrinsic for cancers; however, cancer resistance becomes common owing to an increased drug treatment. Unfortunately, overcoming this issue is not yet possible. The present study aimed to evaluate a clinical approach using candidate compounds 19 and 23, which are sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) inhibitors, discovered using the evolutionary chemical binding similarity method. mRNA sequencing indicated SERCA as the dominant marker of patient-derived anti-cancer drug-resistant hepatocellular carcinoma (HCC), but not of patient-derived anti-cancer drug-sensitive HCC. Candidate compounds 19 and 23 led to significant tumor shrinkage in a tumor xenograft model of anti-cancer drug-resistant patient-derived HCC cells. Our results might be clinically significant for the development of novel combinatorial strategies that selectively and efficiently target highly malignant cells such as drug-resistant and cancer stem-like cells.ope

    VEGF-C induced by TGF- β1 signaling in gastric cancer enhances tumor-induced lymphangiogenesis

    Get PDF
    BACKGROUND: The role of TGF-β1 in lymph node metastasis and lymphangiogenesis, one of the most important steps of gastric cancer dissemination, is largely unknown. The goal of this study was to investigate the role of TGF-β1 signaling and its molecular mechanisms involved in lymphangiogenesis of gastric cancer. METHODS: Two gastric cell line models, MKN45 and KATOIII, were selected for this study. The protein expression of TGF-β1 pathway molecules and VEGF-C were examined with western blot, or ELISA according to TGF-β1 treatment. To explore whether Smad3 binds to the specific DNA sequences in the VEGFC promoter, we performed an electrophoretic mobility shift assay. Lymphatic tube forming assay and gastric cancer xenograft mouse models were also used to elucidate the effect of TGF-β1 on lymphangiogenesis. RESULTS: TGF-β1 induced the activation of Smad2/3 and Smad pathway-modulated VEGF-C expression in gastric cancer cell line models. Phosphorylated and activated Smad3 in the nucleus bound to the promoter of VEGFC in KATO III cells. Of note, in MKN45 cells, the Smad-independent AKT pathway was also activated in response to TGF-β1 and induced VEGF-C expression. Inhibition of TGF-β1 signaling down-regulated the expression of VEGF-C. We also confirmed, through tube forming assay and tumor xenograft mouse model, that TGF-β1 increased lymphatic formation, while TGF-β1 inhibition blocked lymphangiogenesis. CONCLUSION: Smad-dependent and -independent TGF-β1 pathways induce VEGF-C, which make lymphangiogenesis around tumor. These findings suggest that TGF-β might be a potential therapeutic target for preventing gastric cancer progression and dissemination.ope

    Potential Therapeutic Agents against Paclitaxel-And Sorafenib-Resistant Papillary Thyroid Carcinoma

    Get PDF
    Thyroid carcinoma, a disease in which malignant cells form in the thyroid tissue, is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for nearly 80% of total thyroid carcinoma cases. However, the management of metastatic or recurrent therapy-refractory PTC is challenging and requires complex carcinoma therapy. In this study, we proposed a new clinical approach for the treatment of therapy-refractory PTC. We identified sarco/endoplasmic reticulum calcium ATPase (SERCA) as an essential factor for the survival of PTC cells refractory to the treatment with paclitaxel or sorafenib. We validated its use as a potential target for developing drugs against resistant PTC, by using patient-derived paclitaxel- or sorafenib-resistant PTC cells. We further discovered novel SERCA inhibitors, candidates 7 and 13, using the evolutionary chemical binding similarity method. These novel SERCA inhibitors determined a substantial reduction of tumors in a patient-derived xenograft tumor model developed using paclitaxel- or sorafenib-resistant PTC cells. These results could provide a basis for clinically meaningful progress in the treatment of refractory PTC by identifying a novel therapeutic strategy: using a combination therapy between sorafenib or paclitaxel and specific SERCA inhibitors for effectively and selectively targeting extremely malignant cells such as antineoplastic-resistant and carcinoma stem-like cells.ope

    Anti-Cancer SERCA Inhibitors Targeting Sorafenib-Resistant Human Papillary Thyroid Carcinoma

    Get PDF
    Thyroid cancer is generally curable and, in many cases, can be completely treated, although it can sometimes recur after cancer therapy. Papillary thyroid cancer (PTC) is known as one of the most general subtypes of thyroid cancer, which take up nearly 80% of whole thyroid cancer. However, PTC may develop anti-cancer drug resistance via metastasis or recurrence, making it practically incurable. In this study, we propose a clinical approach that identifies novel candidates based on target identification and validation of numerous survival-involved genes in human sorafenib-sensitive and -resistant PTC. Consequently, we recognized a sarco/endoplasmic reticulum calcium ATPase (SERCA) in human sorafenib-resistant PTC cells. Based on the present results, we detected novel SERCA inhibitor candidates 24 and 31 via virtual screening. These SERCA inhibitors showed remarkable tumor shrinkage in the sorafenib-resistant human PTC xenograft tumor model. These consequences would be clinically worthwhile for the development of a new combinatorial strategy that effectively targets incredibly refractory cancer cells, such as cancer stem cells and anti-cancer drug-resistant cells.ope

    Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer

    Get PDF
    Thyroid cancer (TC) includes tumors of follicular cells; it ranges from well differentiated TC (WDTC) with generally favorable prognosis to clinically aggressive poorly differentiated TC (PDTC) and undifferentiated TC (UTC). Papillary thyroid cancer (PTC) is a WDTC and the most common type of thyroid cancer that comprises almost 70-80% of all TC. PTC can present as a solid, cystic, or uneven mass that originates from normal thyroid tissue. Prognosis of PTC is excellent, with an overall 10-year survival rate >90%. However, more than 30% of patients with PTC advance to recurrence or metastasis despite anti-cancer therapy; consequently, systemic therapy is limited, which necessitates expansion of improved clinical approaches. We strived to elucidate genetic distinctions due to patient-derived anti-cancer drug-sensitive or -resistant PTC, which can support in progress novel therapies. Patients with histologically proven PTC were evaluated. PTC cells were gained from drug-sensitive and -resistant patients and were compared using mRNA-Seq. We aimed to assess the in vitro and in vivo synergistic anti-cancer effects of a novel combination therapy in patient-derived refractory PTC. This combination therapy acts synergistically to promote tumor suppression compared with either agent alone. Therefore, genetically altered combination therapy might be a novel therapeutic approach for refractory PTC.ope

    The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells

    Get PDF
    BACKGROUND: Recent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression. In addition, autophagy control is emerging to prevent cancer cell survival. Autophagy breaks down the unnecessary cytoplasmic components into anabolic units and energy sources, which are the most important sources for making the ATP that maintains homeostasis in cancer cell growth and survival. Therefore, the glucose analog 2-deoxyglucose (2DG) has been used as an anticancer reagent due to its inhibition of glycolysis. METHODS: Prostate cancer cells (PC3) were treated with 2DG for 6 h or 48 h to analyze the changing of cell cycle and autophagic flux. Rapamycin and LC3B overexpressing vectors were administered to PC3 cells for autophagy induction and chloroquine and shBeclin1 plasmid were used to inhibit autophagy in PC3 cells to analyze PC3 cells growth and survival. The samples for western blotting were prepared in each culture condition to confirm the expression level of autophagy related and regulating proteins. RESULTS: We demonstrated that 2DG inhibits PC3 cells growth and had discriminating effects on autophagy regulation based on the different time period of 2DG treatment to control cell survival. Short-term treatment of 2DG induced autophagic flux, which increased microtubule associated protein 1 light chain 3B (LC3B) conversion rates and reduced p62 levels. However, 2DG induced autophagic flux is remarkably reduced over an extended time period of 2DG treatment for 48 h despite autophagy inducing internal signaling being maintained. The relationship between cell growth and autophagy was proved. Increased autophagic flux by rapamycin or LC3B overexpression powerfully reduced cell growth, while autophagy inhibition with shBeclin1 plasmid or chloroquine had no significant effect on regulating cell growth. CONCLUSION: Given these results, maintaining increased autophagic flux was more effective at inhibiting cancer cell progression than inhibition of autophagic flux, which is necessary for the survival of PC3 cells. Autophagic flux should be tightly regulated to maintain metabolic homeostasis for cancer cell growth and survival in PC3 cells and is a suitable target for cancer therapy.ope
    corecore