9 research outputs found
A Study on Higher Education and Labor Market Transition of Young People
๋ณธ ์ฐ๊ตฌ๋ 1์ฐจ๏ฝ11์ฐจ ํ๊ตญ๊ต์ก๊ณ ์ฉํจ๋(KEEP) ์์๋ฃ๋ฅผ ์ฐ๊ฒฐํ์ฌ ๊ต์ก-๊ณ ์ฉ ์ด๋ ฅ ๋ฐ์ดํฐ๋ฅผ ๊ตฌ์ถํ๊ณ ๊ทธ ํ์ฉ ๋ฐฉ๋ฒ์ ์ ์ํ๋ ๊ธฐ์ ์ ์ฐ๊ตฌ(technical study)์ด๋ค. ๊ตฌ์ถํ ์ด๋ ฅ ๋ฐ์ดํฐ์ ์๋ status_history ๋ณ์๋ ๊ณ ๋ฑ๊ต์ก ์งํ์ฌ๋ถ, ์ฌํ ์ค์ธ ํ๊ต ๋ฐ ์ต์ข
ํ๋ ฅ ์ดํ ์ทจ์
์ฌ๋ถ ์ ๋ณด๊ฐ ๋ชจ๋ ํฌํจ๋์ด ์๋ค. ๋ ๋ค๋ฅธ ๋ณ์์ธ job_history ๋ณ์๋ ์ทจ์
ํ ํ๋ณธ์ ๋ํด ์ผ์๋ฆฌ ํํ ๋ฐ ๊ทผ๋ฌดํํ๋ฅผ ์ฐ๊ฒฐํ ์ ๋ณด๋ฅผ ๋ด๊ณ ์๋ค. ์ด์ ๊ฐ์ ๊ต์ก-๊ณ ์ฉ ์ด๋ ฅ ๋ฐ์ดํฐ๋ฅผ ์ด์ฉํ๋ฉด ์คใ๊ณ ๋ฑํ์๋ค์ ๋ํ์กธ์
ํ ๋
ธ๋์์ฅ ์ง์ถ๊น์ง์ ๊ฒฝ๋ก๋ฅผ ๋ฒ์ฃผํํ์ฌ ๊ตฌ๋ถํ ์ ์๋ ์ฅ์ ์ด ์๋ค. ๋ํ ๊ฐ๋ณ ์ฐ๊ตฌ์๋ค์ด ์ด๋ ฅ ๋ฐ์ดํฐ์ ํฌํจ๋ ๋ณ์์ ์์ ์ ๊ด์ฌ ๋ณ์๋ฅผ ๋ณํฉํ์ฌ ์ฐ๊ตฌ์ฉ ๋ฐ์ดํฐ๋ฅผ ์์ฝ๊ฒ ๋ง๋ค ์ ์๋ค. ๊ต์ก-๊ณ ์ฉ ๋ฐ์ดํฐ์ ํ์ฉ ๋ฐฉ๋ฒ์ ์์์ ์ผ๋ก ๋ณด์ฌ์ฃผ๊ธฐ ์ํด ๊ณ 3 ์ฝํธํธ์ ์ค3 ์ฝํธํธ์ ๋
ธ๋์์ฅ ์ง์ถ ์ด๋ ฅ์ ํ์์ ์ฐ๊ตฌ๋ฐฉ๋ฒ์ ํตํด ๋น๊ต ๋ถ์ํ๋ค. KEEP ๊ด๋ จ ์ฐ๊ตฌ์๋ค์ ์ํด ์ ์๋ค์ด ๊ตฌ์ถํ ์ด๋ ฅ ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ๋ ๋ฐฉ๋ฒ์ ํฌํจํ๋ Stata ์ฝ๋ฉ์ ๋ถ๋ก์์ ์ ์ํ๋ค.This study aims to construct and provide the education-employment history data using Korean Education & Employment Panel (KEEP)'s 1st-11th waves. Among the generated variables, "status-history" contains the higher education path, college/ university name, and current employment status after the final education. And, the job-history variable for employed persons includes job type along with working status. Using this data set, we can distinguish and categorize the labor market participation history of middle and high school students in the early waves. Through exploratory research methods, we can compare labor market participation and performance of the two cohorts (middle and high-school students). In the Appendix, we offer detailed STATA codes describing how to utilize this history data for other related researches
A Study on the Cross-over Risk and Potential Demand for Reverse Annuity Mortgage
๋ณธ ์ฐ๊ตฌ์ ๋ชฉ์ ์, ์ฒซ์งธ, ์ญ๋ชจ๊ธฐ์ง์ํ์ ๋ด์ฌํ โCross-over Risk (COR),โ ์ฆ ๋ง๊ธฐ ์ ๋์ถ์ด์ก์ด ์ฃผํ๊ฐ๊ฒฉ์ ์ํ ํ ํ๋ฅ ๊ณผ ์ด๋ฅผ ๊ณ ๋ คํ ๊ฐ์ฐ๊ธ๋ฆฌ๋ฅผ ์ํ์ค๋ฆฝ์ ์ธ ๋ชจํ์ ์ฌ์ฉํ์ฌ ์ถ์ ํ๊ณ , ๋์งธ, ์ํ๋ฆฌ์คํฌ๋ฅผ ๊ณ ๋ คํ ์์ฅ ํ๋๋ฐฉ์์ ๋
ผ์ํ๋๋ฐ ์๋ค. ๋ถ์์ ์ฃผ์ ๊ฒฐ๊ณผ๋ก, ์ญ๋ชจ๊ธฐ์ง์ COR๊ณผ ์ํํ๋ ๋ฏธ์์ ์ฐจ์
์์ ์ฐ๋ น์ด ๋ฎ์์๋ก ๋์์ง๋ฉฐ, ์ฃผํ๊ฐ๊ฒฉ์ ๋ณ๋์ฑ์ด ํฐ ๊ฐ๋จ, ๋ถ์ฐ, ๋๊ตฌ์์๋ ๊ฐ๋ถ๊ณผ ๋์ ์ง์ญ๋ณด๋ค ์ํ ํ๋ฆฌ๋ฏธ์์ด 0.23~0.28%p ์ ๋ ๋๊ฒ ์ถ์ ๋๋ค. 2005๋
๋
ธ๋ํจ๋์๋ฃ๋ฅผ ์ด์ฉํ์ฌ ์ถ์ ํ ์ฐ๋ฆฌ๋๋ผ ์ญ๋ชจ๊ธฐ์ง์ ์ ์ฌ์์๋ ์ด 63์กฐ์์ด๋ฉฐ (ํธ์๋ก๋ 53๋งํธ๋ก), ํ์ฌ 6์ต ์ดํ๋ก ๊ท์ ๋์ด ์๋ ์ต๋ ์ฃผํ๊ฐ๊ฒฉ์ 9์ต ์ดํ๋ก ์กฐ์ ํ์์ ๊ฒฝ์ฐ ์ ์ฌ์์๊ฐ 5% ์ ๋์ ์ํญ ์์นํจ๊ณผ๋ฅผ ๋ณด์ด๊ณ ์์ผ๋, ์ ํ์ฐ๋ น์ ๋ฎ์ถ์์ ๊ฒฝ์ฐ ๋งค์ฐ ํฐ ์ฆ๊ฐํญ์ ๋ณด์ด๊ณ ์๋ค. ์ด์ ๊ด๋ จํ์ฌ ์ญ๋ชจ๊ธฐ์ง์ํ์ ์ค์
์ฐ๊ธ๊ณผ ์ฐ๊ณํ์ฌ ์ค์
์ธ๊ตฌ์ ์๋๋ณด์ ์๋จ์ผ๋ก ์ฌ์ฉํ ๊ฒฝ์ฐ ์ฝ 10%์ ์์์์นํจ๊ณผ๊ฐ ์๋ ๊ฒ์ผ๋ก ์ถ์ ํ์๋ค.2
Empirical Analysis on Mortgage Choice in Korea: Focusing Two-stage Consumer Choices
๋ณธ ๋
ผ๋ฌธ์ ์ฐ๋ฆฌ๋๋ผ ์ฃผํ๊ธ์ต์์ฅ์์ ๊ณ ์ ๊ธ๋ฆฌ-๋ณ๋๊ธ๋ฆฌ ๋ชจ๊ธฐ์ง ์ ํ์ ๊ฒฐ์ ์์ธ์ ๋ฏธ์์ ์๋ฃ๋ฅผ ์ด์ฉํ์ฌ ๋ถ์ํ๋ค. ์ค์ฆ๋ถ์์ ์ํ ๊ณ๋ ๋ชจํ์ 2๋จ๊ณ์ ์๋น์ ์ ํ์ ๊ฐ์ ํ๋ค. ์ฒซ์งธ, ๊ณ ์ ๊ธ๋ฆฌ-๋ณ๋๊ธ๋ฆฌ ์ํ๊ฐ ์ ํ์ ๊ฒฐ์ ์์ธ์ ์ดํญ๋ก์ง๋ชจํ์ ์ด์ฉํ์ฌ ๋ถ์ํ๊ณ , ๋์งธ, ๊ณ ์ ๊ธ๋ฆฌ ์ํ์ ์ ํํ๋ค๋ ์ ์ ํ์ ์์ ๊ณ ์ ๊ธ๋ฆฌ-์ค๊ณํ ๊ณ ์ ๊ธ๋ฆฌ ์ํ ๊ฐ ์ ํ์ ๊ฒฐ์ ์์ธ์ ์ค์ฒฉ๋ก์ง๋ชจํ์ ์ด์ฉํ์ฌ ๋ถ์ํ๋ค. ์ค์ฆ๋ถ์์์ ๊ณ ๋ ค๋ ์ค๋ช
๋ณ์๋ ์ฃผํ๊ฐ๊ฒฉ, ์ด์์จ ๋ฑ์ ์์ฅ๋ณ์์ ๋ชจ๊ธฐ์ง์ํ ๋ฐ ์๋น์์ ํน์ฑ, ๊ทธ๋ฆฌ๊ณ ๊ฐ๋ณ ๋์ถ ์ฐจ์์ ๊ธ๋ฆฌ์คํ๋ ๋(๊ณ ์ ๊ธ๋ฆฌ vs. ๋ณ๋๊ธ๋ฆฌ) ๋ฑ์ด๋ค. ์ฃผํ๊ธ์ต๊ณต์ฌ๊ฐ 2004๋
~2010๋
๊ธฐ๊ฐ ๋์ ์์ํ ๋ชจ๊ธฐ์ง ๋์ถ ๋ฐ์ดํฐ๋ฅผ ์ฌ์ฉํ ์ค์ฆ๋ถ์ ๊ฒฐ๊ณผ, ์ฐ๋ฆฌ๋๋ผ์ ๊ณ ์ ๊ธ๋ฆฌ-๋ณ๋๊ธ๋ฆฌ ์ํ ์ ํ์ ์ธ๊ตญ๊ณผ ๋ง์ฐฌ๊ฐ์ง๋ก ๋ ์ข
๋ฅ์ ๋์ถ์ํ๊ฐ ๊ธ๋ฆฌ ๊ฒฉ์ฐจ, ์๋ ๋ฐ ๊ฐ๊ตฌ์ ํ ๋ณ์๊ฐ ํต๊ณ์ ์ผ๋ก ์ ์ํ ๊ฒฐ์ ์์ธ์ธ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ์ฐ๋ฆฌ๋๋ผ์ ์๋น์์ ํ์ ์์ด์ ํน์ดํ ์ฌํญ์ 50~60๋ ์ฐจ์
์๊ฐ ๊ณ ์ ๊ธ๋ฆฌ๋ฅผ ์ ํํ ํ๋ฅ ์ด ํ์ ํ๊ฒ ๋ฎ๊ณ , ๊ธ๋ก๋ฒ๊ธ์ต์๊ธฐ๋ฅผ ์ ํํ์ฌ ๊ฒฝ์ ๋ณ์์ ์ํฅ์ด ๋ฌ๋ผ์ก๋ค๋ ์ฌ์ค์ด๋ค. ๋ง์ง๋ง์ผ๋ก, ์ค์ฆ๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ์ด๋ก ๊ด๋ จ ์ ์ฑ
์์ฌ์ ์ ๋
ผ์ํ์๋ค.2
A Predictive Model for the Employment of College Graduates Using a Machine Learning Approach
๋ณธ ์ฐ๊ตฌ๋ ๋จธ์ ๋ฌ๋์ ๋๋ค ํฌ๋ฆฌ์คํธ ๊ธฐ๋ฒ์ ์ด์ฉํ์ฌ ๋์กธ์์ ์ทจ์
์ฌ๋ถ์ ์ทจ์
์ ์ง์ ์์ธกํ๋ ๋ชจํ์ ์ ์ํ๋ค. ์ ํต์ ํ๊ท๋ถ์์์๋ ์ค๋ช
๋ณ์์ ์ธ์์ฑ์ด๋ ์ค์ฐจํญ ๋ถํฌ์ ๋ํ ์ ์ฝ์ด ์์ง๋ง ๋จธ์ ๋ฌ๋ ์ ๊ทผ๋ฒ์ ์ด๋ฌํ ์ ์ฝ์์ ์๋์ ์ผ๋ก ์์ ๋ก์ด ํธ์ด๋ค. ๋ณธ ์ฐ๊ตฌ์์ ์ฌ์ฉํ ์์ธก์ธ์์๋ ๋์กธ์์ ๊ฐ๊ด์ ํน์ฑ ๋ณ์๋ฟ ์๋๋ผ ์ทจ์
๊ด๋ จ ํ๋ก๊ทธ๋จ ์ฐธ์ฌ ์ฌ๋ถ, ์ผ์๋ฆฌ ์ ํ ์ ๊ณ ๋ ค์ฌํญ, ๊ฐ์ ๋น๋ ๋ณ์ ๋ฑ ์๋ต์๊ฐ ์ฃผ๊ด์ ์ผ๋ก ํ๊ฐํ๋ ํน์ฑ๊น์ง ํฌํจ๋์ด ์๋ค. ๋ถ์๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด, ๊ฐ๊ด์ ๋ฐ ์ฃผ๊ด์ ์์ธก์ธ์๋ฅผ ๋ชจ๋ ์ฌ์ฉํ๋ ๋ชจํ์ด ๊ฐ๊ด์ ์์ธก์ธ์๋ง ์ฌ์ฉํ ๋ชจํ์ ๋นํด ์ทจ์
์ฌ๋ถ์ ์ทจ์
์ ์ง์ ์์ธกํ๋ ๋ชจํ ๋ชจ๋์์ ์์ธก์ฑ๊ณผ๊ฐ ๋ ์ฐ์ํ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ๋๋ค ํฌ๋ฆฌ์คํธ ๊ธฐ๋ฒ์ ์ฌ์ฉํ์ฌ ์์ธก์ธ์์ ์๋์ ์ค์์ฑ์ ํ์
ํ ๊ฒฐ๊ณผ, ์ทจ์
์ฌ๋ถ ๋ชจํ์์๋ ๊ฐ๊ตฌ์ฃผ ์ฌ๋ถ, ๋ถ๋ชจ๋๊ฑฐ ์ฌ๋ถ์ ๊ฐ์ ๊ฐ๊ด์ ๋ณ์๋ฟ ์๋๋ผ ์ฃผ๊ด์ ๋ณ์์ธ ๊ฐ์ ๋น๋ ๋ณ์๋ ์ค์ํ ์ํฅ์ ๋ฏธ์ณค๋ค. ์ทจ์
์ ์ง์ ์์ด์๋ ํ๊ต์ ํ์ด๋ ์ ๊ณต๊ณ์ด๊ณผ ๊ฐ์ ๊ฐ๊ด์ ๋ณ์๋ ๋ฌผ๋ก ์ฃผ๊ด์ ๊ฐ์ ๋น๋ ๋ณ์๊ฐ ์ค์ํ ์ํฅ์ ๋ฏธ์น๋ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค.This study presents a model to predict the employment status and the employment quality of college graduates using the random forest method of machine learning. In traditional regression analysis, there are some constraints on the problem of endogeneity and distribution of errors. However, the machine learning approach is relatively free from these constraints. The predictors used in this study include not only the objective characteristics of college graduates but also characteristics of respondents' subjective evaluation, including participation in employment programs, consideration of job selection, and emotional frequency. The estimation results show that the models using both objective and subjective predictors have better predictive performances than the model using only objective predictors in both the employment status and the employment quality models. As a result of analyzing the relative importance of predictors using the random forest method, not only the subjective variables such as householder status, parental cohabitation, and major, but also subjective variables, such as the emotional frequency, have an important effect on the employment status. This is also true of the model for predicting the quality of employment