26 research outputs found

    Studies of Carbon based Nanostructures for Phototherapeutic Applications

    No full text
    DoctorThe phototherapy is the treatment of disease by employing photosensitizer and specific wavelength. This therapeutic technique involves photophysical and photochemical reactions of photosensitizer, producing cytotoxic chemical species (photodynamic therapy) or thermal energy (photothermal therapy), which are used to treat the tissue lesion. These phototherapies have emerged as alternative, promising therapeutic methodologies especially for cancer, which are noninvasive, minimally toxic, and target-selective. Currently, to improve the efficacy of these phototherapeutic treatments, various nanoparticles combined with conventional photosensitizers have been studied and developed as efficient delivery carriers and novel photosensitizers. The overview of phototherapy, especially in terms of the background, the mechanism of photosensitization, various photosensitizers, and the phototherapeutic effect on the disease, are described in Part I. This thesis has two major parts. The first part focuses on the studies of photothermal therapeutic effect of single-walled carbon nanotubes (SWNT). SWNT is a one dimensional (1-D) cylindrical nanostructure with average diameter of ca. 1.7 nm and lengths from several hundred nanometers to several centimeters. It is potentially useful for a wide range of biomedical applications due to their interesting needle-like shape as well as their unique optical, electrical, and thermal properties. With high aspect ratio and large surface area, SWNT is capable of adsorbing or conjugating with various biological molecules and delivering them to target as a biological transporter. Moreover, photothermal property, that is, the production of thermal energy due to its strong absorption in the near-infrared (NIR) range, is utilized for tumor destruction. Motivated by these favorable properties, functionalization of SWNT with biocompatible polymer (PEG), antibody-drug (cetuximab) and dyes (Cy5.5) for selective targeting to epidermal growth factor receptor expressed (EGFR+) cancer cells, and destruction of tumor in vivo are intensively studied in Part II. Cy5.5-Cetuximab-SWNT conjugates show the high affinity and selective destruction of EGFR+ cancer cells with NIR irradiation (section 2.3 in Part II). Based on in vivo experiment, injected PEG-SWNTs exhibit efficient destruction of tumors by photothermal effect, and most of them are almost completely excreted from mice body within 2 month through biliary or urinary pathway (section 2.2 in Part II). The second part is concerned with the phototherapeutic effect of zinc phthalocyanine nanowire. The zinc phthalocyanine (ZnPc) is the azoporphyrin derivatives, considered one of the most promising second-generation photosensitizer candidates due to its strong absorption in the spectral range of 650 - 900 nm that guarantees maximum tissue penetration and favorable photophysical and photochemical properties. However, such an efficient photosensitizer, ZnPc molecule has significant limitation in physiological acceptance and availability due to its hydrophobic nature. To overcome this problem, several water-soluble ZnPc derivatives have been designed, and various delivery carriers such as liposomes, micelles and nanoparticles have been developed. In Part III, unconventional approach to improve the water solubility of ZnPc is described. One-dimensional ZnPc nanowire is synthesized by vaporization-crystallization-recrystallization (VCR) process and solubilized in aqueous solution followed by sonication. Without any special functional groups introduced, it exhibits substantially increased water solubility and also shows photodynamic and photothermal sensitizing ability. Both photosensitizing properties provide strong cytotoxic effect, which is proved by efficient destruction of tumor cells (section 3.2 in Part III) and bacterial cells (section 3.3 in Part III).κ΄‘μΉ˜λ£ŒλŠ” κ΄‘μ¦κ°μ œμ™€ νŠΉμ •ν•œ 파μž₯을 μ΄μš©ν•œ μ§ˆλ³‘ 치료 방법이닀. μ΄λŠ” νŠΉμ • 파μž₯의 빛에 λ…ΈμΆœλœ κ΄‘μ¦κ°μ œμ˜ 광물리 및 광화학적 λ°˜μ‘μ— μ˜ν•΄ μƒμ„±λ˜λŠ” λ°˜μ‘μ„± μ‚°μ†Œμ’… ν˜Ήμ€ λ°œμƒλ˜λŠ” 열을 μ΄μš©ν•˜λŠ” μ›λ¦¬λ‘œ 각각을 κ΄‘μ—­ν•™ 치료, κ΄‘μ˜¨μ—΄ 치료라 이λ₯Έλ‹€. μ΄λŸ¬ν•œ κ΄‘μΉ˜λ£Œλ²•μ€ λΉ„μΉ¨μŠ΅μ μ΄λ©°, λΆ€μž‘μš©μ΄ 적고, 치료 λΆ€μœ„μ— λŒ€ν•œ μ„ νƒμ„±μ˜ μž₯점으둜 인해 각광 λ°›λŠ” μΉ˜λ£Œλ²• μ€‘μ˜ ν•˜λ‚˜λ‘œ μ΅œκ·Όμ—λŠ” 치료의 νš¨μœ¨μ„ ν–₯상 μ‹œν‚€κΈ° μœ„ν•΄ κ΄‘μ¦κ°μ œλ₯Ό 효율적으둜 전달할 수 μžˆλŠ” 운반체 ν˜Ήμ€ μƒˆλ‘œμš΄ κ΄‘μ¦κ°μ œλ‘œμ„œμ˜ λ‹€μ–‘ν•œ λ‚˜λ…Έμž…μžλ“€μ΄ 연ꡬ 개발 되고 μžˆλ‹€. κ΄‘μΉ˜λ£Œμ˜ λ°°κ²½ 및 κΈ°μž‘, 개발되고 μžˆλŠ” κ΄‘μ¦κ°μ œμ˜ μ’…λ₯˜, μ§ˆλ³‘μ— λŒ€ν•œ κ΄‘μΉ˜λ£Œμ˜ 효과 λ“± μ „λ°˜μ μΈ κ΄‘μΉ˜λ£Œμ— λŒ€ν•΄Part Iμ—μ„œ 정리 μ„œμˆ ν•˜μ˜€λ‹€. 본문은 크게 두 λΆ€λΆ„μœΌλ‘œ 정리할 수 μžˆλŠ”λ° Part IIμ—μ„œλŠ” 단일벽 νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒμ˜ κ΄‘μ˜¨μ—΄μ  치료 νš¨κ³Όμ— λŒ€ν•΄ μ€‘μ μ μœΌλ‘œ κΈ°μˆ ν•˜μ˜€λ‹€. 단일벽 νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒλŠ” μ›ν†΅ν˜•μ˜ 일차원적 λ‚˜λ…Έκ΅¬μ‘°μ²΄λ‘œ 평균 1.7 nm의 지름과 수백 λ‚˜λ…Έλ―Έν„°μ—μ„œ 수 λ§ˆμ΄ν¬λ‘œλ―Έν„° μ‚¬μ΄μ¦ˆμ˜ 길이λ₯Ό 가지며, νŠΉμ§•μ μΈ 일차원적 ꡬ쑰와 λ…νŠΉν•œ 광학적, 전기적, 열적 νŠΉμ„±μœΌλ‘œ 인해 κ΄‘λ²”μœ„ν•œ λ°”μ΄μ˜€-μ˜ν•™μ  μ‘μš©μ΄ κ°€λŠ₯ν•˜λ‹€. 특히, 높은 μ’…νš‘λΉ„μ™€ 넓은 ν‘œλ©΄μ μœΌλ‘œ 인해 λ‹€μ–‘ν•œ 생물학적 λΆ„μžλ“€μ˜ 흑착 λ˜λŠ” 접합이 κ°€λŠ₯ν•˜λ©° 이듀을 ν‘œμ μœΌλ‘œ μ „λ‹¬ν•˜λŠ” 생물학적 μš΄λ°˜μ²΄λ‘œμ„œμ˜ 역할을 μˆ˜ν–‰ν•  수 μžˆλ‹€. 이와 λ”λΆˆμ–΄ 근적외선 μ˜μ—­μ˜ 빛을 ν‘μˆ˜ν•˜μ—¬ 열을 λ°©μΆœν•˜λŠ” κ΄‘μ˜¨μ—΄μ  νŠΉμ„±μ€ μ’…μ–‘ 세포λ₯Ό 사멸 μ‹œν‚¬ 수 μžˆλŠ” 원동λ ₯을 μ œκ³΅ν•΄μ€€λ‹€. μ΄λŸ¬ν•œ 단일벽 νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒμ˜ νŠΉμ„±λ“€μ„ λ°”νƒ•μœΌλ‘œ νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒ ν‘œλ©΄μ„ 생체적합성 κ³ λΆ„μž(PEG) 및 ν•­μ•”μ œ(cetuximab)와 ν˜•κ΄‘μ²΄ (Cy5.5)둜 κΈ°λŠ₯ν™”ν•˜μ—¬ EGFμˆ˜μš©μ²΄κ°€ κ³Όλ°œν˜„λœ μ’…μ–‘ 세포에 μ„ νƒμ μœΌλ‘œ μ „λ‹¬ν•˜κ³  근적외선을 μ‘°μ‚¬ν•˜μ—¬ μ’…μ–‘ 사멸 정도λ₯Ό ν™•μΈν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, Cy5.5와 cetuxima으둜 κΈ°λŠ₯ν™”λœ νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒλŠ” EGF μˆ˜μš©μ²΄κ°€ κ²°μ—¬λœ μ’…μ–‘ 세포에 λΉ„ν•΄EGF μˆ˜μš©μ²΄κ°€ κ³Όλ°œν˜„λœ μ’…μ–‘ 세포에 μ„ νƒμ μœΌλ‘œ κ²°ν•©ν•˜λ©° 근적외선 쑰사 μ‹œ 효과적으둜 μ‚¬λ©Έλ˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€ (Part II, section 2.3). λ˜ν•œ, PEG으둜만 μ½”νŒ…λœ 단일벽 νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒλ₯Ό 쒅양을 μ΄μ‹μ‹œν‚¨ μ‹€ν—˜ μ₯μ— λ„μž…ν•˜κ³  근적외선을 μ‘°μ‚¬ν•œ κ²°κ³Ό, 쒅양이 효과적으둜 μ‚¬λ©Έλ˜μ—ˆμœΌλ©° λ„μž…λœ λŒ€λΆ€λΆ„μ˜ νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒλŠ” 2μ£Ό 내에 배뇨λ₯Ό 톡해 μ²΄μ™Έλ‘œ λ°°μΆœλ¨μ„ ν™•μΈν•˜μ˜€λ‹€ (Part II, section 2.2). μ΄λŸ¬ν•œ κ²°κ³ΌλŠ” νƒ„μ†Œλ‚˜λ…ΈνŠœλΈŒκ°€ μ’…μ–‘ μΉ˜λ£Œμ œλ‘œμ„œμ˜ μƒˆλ‘œμš΄ κ°€λŠ₯성을 보여쀀닀. Part IIIμ—μ„œλŠ” μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œμ„ μ΄μš©ν•œ κ΄‘μΉ˜λ£Œμ˜ νš¨κ³Όμ— λŒ€ν•΄ κΈ°μˆ ν•˜μ˜€λ‹€. μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œμ€ μ•„μ‘°ν¬ν”Όλ¦°μ˜ μœ λ„μ²΄λ‘œμ„œ 체내에 κΉŠμˆ™μ΄ νˆ¬κ³Όκ°€ κ°€λŠ₯ν•œ 근적외선 650-900 nm의 파μž₯λŒ€μ—­μ—μ„œμ˜ 높은 흑수율과 μš°μˆ˜ν•œ 광물리적 및 광화학적 νŠΉμ„±μœΌλ‘œ 인해 제2μ„ΈλŒ€ κ΄‘μ¦κ°μ œλ‘œμ„œ 각광받고 μžˆλŠ” 후보 물질 쀑 ν•˜λ‚˜μ΄λ‹€. ν•˜μ§€λ§Œ, μ΄λŸ¬ν•œ 효과적인 κ΄‘μ¦κ°μ œμΈ μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œμ€ λΆ„μž 자체의 μ†Œμˆ˜μ„± νŠΉμ„±μœΌλ‘œ 인해 생체 μ μš©μ„ μœ„ν•œ 큰 ν•œκ³„μ μ„ μ§€λ‹Œλ‹€. μ΄λŸ¬ν•œ ν•œκ³„μ μ„ κ·Ήλ³΅ν•˜κΈ° μœ„ν•΄ μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œ λΆ„μžμ— μΉœμˆ˜μ„± κΈ°λŠ₯κΈ°λ₯Ό λ„μž…ν•˜μ—¬ μˆ˜μš©μ„± μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œ μœ λ„μ²΄λ₯Ό ν•©μ„±ν•˜κ±°λ‚˜ ν˜Ήμ€ μ†Œμˆ˜μ„±μΈ μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œμ„ μ „λ‹¬ν•˜κΈ° μœ„ν•œ 리포쒀, λ§ˆμ΄μ…€, λ‚˜λ…Έμž…μž λ“±μ˜ λ‹€μ–‘ν•œ μš΄λ°˜μ²΄λ“€μ΄ 연ꡬ 개발되고 μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” κΈ°μ‘΄κ³ΌλŠ” λ‹€λ₯Έ μƒˆλ‘œμš΄ μ ‘κ·Όλ²•μœΌλ‘œ μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œμ„ μ „κ΅¬μ²΄λ‘œ μ‚¬μš©ν•˜μ—¬ 증기-응좕-μž¬κ²°μ •μ΄λΌλŠ” 과정을 톡해 일차원적 λ‚˜λ…Έμ™€μ΄μ–΄λ₯Ό ν•©μ„±ν•˜κ³  초음파 λΆ„ν•΄ 처리λ₯Ό 톡해 μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œ μˆ˜μš©μ„± μš©μ•‘μ„ μ œμ‘°ν•˜μ˜€λ‹€. μ΄λŠ” νŠΉλ³„ν•œ κΈ°λŠ₯κΈ° λ„μž… 없이도 μˆ˜μš©μ„± μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œ μš©μ•‘μ„ μ œμ‘°ν•  수 μžˆλ‹€λŠ” μ μ—μ„œ μž₯점을 μ§€λ‹ˆλ©°, 제쑰된 μˆ˜μš©μ„± μ•„μ—°-ν”„νƒˆλ‘œμ‹œμ•„λ‹Œ μš©μ•‘μ€ 광학적 νŠΉμ„±λΏλ§Œ μ•„λ‹ˆλΌ 광열적 νŠΉμ„± λ˜ν•œ λ³΄μ—¬μ£Όμ—ˆλ‹€. μ΄λŸ¬ν•œ 광학적 및 광열적 νŠΉμ„±μ€ 세포에 λŒ€ν•œ 독성 효과λ₯Ό μ§€λ‹ˆλ―€λ‘œ 이λ₯Ό λ°”νƒ•μœΌλ‘œ μ’…μ–‘ 세포 (Part III, section 3.2) ν˜Ήμ€ λ°•ν…Œλ¦¬μ•„ (Part III, section 3.3)λ₯Ό 사멸할 수 μžˆμŒμ„ λ³Έ 연ꡬλ₯Ό 톡해 증λͺ…ν•˜μ˜€λ‹€

    Zinc phthalocyanine nanowire sensitizer for dual photodynamic and photothermal cancer therapy

    No full text
    2
    corecore