225 research outputs found

    ์•ˆ์ •ํ•œ ๋ฆฌํŠฌ ๊ธˆ์† ์ „์ง€๋ฅผ ์œ„ํ•œ ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(๋‚˜๋…ธ์œตํ•ฉ์ „๊ณต), 2020. 8. ๊น€์—ฐ์ƒ.Batteries constitute a core technology in modern society. Batteries are found in many devices, including smartphone, smart watch, laptop, and electric vehicle, all commonly used in daily life. As the demand for batteries has increased, various studies on batteries have been conducted. One of the major topics in this field is the expansion of battery capacity, which corresponds to a key consumer concern. In order to increase capacity, it is necessary to use an electrode material of high capacity. However, the graphite-based negative electrode material continues to impose various constraints in commercialized battery production. Lithium (Li) metal is emerging as a promising next-generation material for negative electrodes with its superior capacity, low electrochemical potential, and low density. Attempts have been made to use Li metal, but obstacles remain, such as stability and safety issues. Li metal is a hostless material, so instead of maintaining the solid electrolyte interphase (SEI) layer, it will continually expand volumetrically and break. Retention of a stable SEI layer is thus a key element in implementation of Li metal as a negative electrode. Li ion flux is concentrated on the broken gap and dendrite growth, causing an internal short circuit or increasing surface resistance due to an accumulation of electrolyte decomposition, ultimately decreased cycle stability. This paper deals with three studies of SEI layer stabilization. The first part presents a method of uniformly distributing the current density by applying a 3D structure to the Li metal surface. The second part introduces a method of polymer protective coating on the Li metal surface applied by thermal curing. The third part consists of a method of imparting a lithium fluoride layer to the Li surface through thermal curing. These methods have shown to improve the stability of the Li metal surface and thus the safety of the Li metal battery.๋ฐฐํ„ฐ๋ฆฌ๋Š” ํ˜„๋Œ€์‚ฌํšŒ์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ผ์ƒ์ƒํ™œ์—์„œ ํ”ํžˆ ์‚ฌ์šฉํ•˜๋Š” ์Šค๋งˆํŠธํฐ, ์Šค๋งˆํŠธ์›Œ์น˜, ๋…ธํŠธ๋ถ์—์„œ๋ถ€ํ„ฐ ์ „๊ธฐ ์ž๋™์ฐจ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋Œ€๋ถ€๋ถ„์˜ ์†Œ์ž์— ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์†Œ๋น„์ž๋Š” ํ•œ๋ฒˆ ์ถฉ์ „ํ–ˆ์„ ๋•Œ ๋” ์˜ค๋žœ ์‹œ๊ฐ„ ์‚ฌ์šฉํ•˜๊ธฐ๋ฅผ ์›ํ•˜๋Š”๋ฐ ๋ฐฐํ„ฐ๋ฆฌ ๊ธฐ์ˆ ์—์„œ ์šฉ๋Ÿ‰์€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•œ๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ๋Š” ์Œ๊ทน๊ณผ ์–‘๊ทน, ์ „ํ•ด์งˆ๊ณผ ๋ถ„๋ฆฌ๋ง‰์œผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์šฉ๋Ÿ‰์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ์Œ๊ทน๊ณผ ์–‘๊ทน์—์„œ ๋†’์€ ์šฉ๋Ÿ‰์„ ๊ฐ–๋Š” ์ „๊ทน ๋ฌผ์งˆ์„ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ๋ฆฌํŠฌ ๊ธˆ์†์€ ์Œ๊ทน ๋ฌผ์งˆ ์ค‘์—์„œ๋„ ์ด๋ก  ์šฉ๋Ÿ‰์ด ๊ฐ€์žฅ ๋†’๊ณ  ์ „๊ธฐํ™”ํ•™ ์ „์œ„๊ฐ€ ๋‚ฎ์•„ ์ฐจ์„ธ๋Œ€ ๊ณ ์šฉ๋Ÿ‰ ์ „์ง€์˜ ๋ฌผ์งˆ๋กœ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ฆฌํŠฌ ๊ธˆ์†์˜ ํ‘œ๋ฉด ์•ˆ์ •์„ฑ ๋ฌธ์ œ๋Š” ์ƒ์—…ํ™”์˜ ๊ฑธ๋ฆผ๋Œ์ด ๋˜์–ด ์—ฌ์ „ํžˆ ํ‘์—ฐ ๊ธฐ๋ฐ˜์˜ ์Œ๊ทน ๋ฌผ์งˆ์— ๋จธ๋ฌด๋ฅด๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์— ์Šคํ…Œ์ธ๋ฆฌ์Šค๊ฐ• ์„ฑ๋ถ„์˜ 3์ฐจ์› ๊ตฌ์กฐ๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 3์ฐจ์› ๊ตฌ์กฐ๋Š” ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์—์„œ ๋ถ€ํ”ผ ํŒฝ์ฐฝํ•˜๋Š” ํž˜์„ ์™„ํ™”์‹œ์ผœ์ฃผ๊ณ  ์ „๋ฅ˜ ๋ฐ€๋„๋ฅผ ๋ถ„์‚ฐ์‹œ์ผœ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ๋ฆฌํŠฌ์ด ์ˆ˜์ง€์ƒ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ๊ฒƒ์„ ๋ง‰์•„์ค€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ „์ž ์ด๋™ ๊ฒฝ๋กœ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ๋†’์€ ์ฟจ๋กฑ ํšจ์œจ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ค€๋‹ค. ์ด๋ฅผ ๋ฆฌํŠฌ ๊ธˆ์† ์ „์ง€๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์ ์šฉํ–ˆ์„ ๋•Œ ํ–ฅ์ƒ๋œ ์ˆ˜๋ช… ํŠน์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์—ด ๊ฒฝํ™”๋ฅผ ํ†ตํ•ด ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์— ๊ณ ๋ถ„์ž ์ธต์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์‚ฌ์šฉํ•œ ๊ณ ๋ถ„์ž๋Š” ethylene oxide unit์„ ๊ฐ–๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์—์„œ ๋ฆฌํŠฌ ์ด์˜จ์„ ์ „๋‹ฌํ•ด ์ฃผ๋Š” ์—ญํ• ๊ณผ ๋™์‹œ์— ๋ฆฌํŠฌ ๊ธˆ์†์˜ ๋ถ€ํ”ผ ํŒฝ์ฐฝ์„ ์–ต์ œํ•ด ์ค€๋‹ค. ์ „๊ธฐํ™”ํ•™ ํŠน์„ฑ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์ž‘๋œ ๊ณ ๋ถ„์ž ๋ณดํ˜ธ๋ง‰ ์ธต์ด ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์„ ์•ˆ์ •ํ™” ์‹œ์ผœ์ค€๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์–‡๊ณ  ๊ฐ€๋ฒผ์šด ๊ณ ๋ถ„์ž ์ธต์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ „์ง€ ์‹œ์Šคํ…œ์—์„œ ์—๋„ˆ์ง€ ๋ฐ€๋„ ์†์‹ค์„ ์ตœ์†Œํ™”๋กœ ์ค„์—ฌ์ค€๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์—ด ๊ฒฝํ™”๋ฅผ ํ†ตํ•ด ๋ฆฌํŠฌ ํ‘œ๋ฉด์— lithium fluoride (LiF) ์ธต์„ ๋ถ€์—ฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. LiF ๋Š” solid electrolyte interphase (SEI) ์ธต์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์„ฑ๋ถ„์œผ๋กœ ์ „๊ธฐํ™”ํ•™์ ์œผ๋กœ ๊ฐ€์žฅ ์•ˆ์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฆฌํŠฌ ๊ธˆ์†์— LiF ์ธต์ด ํ˜•์„ฑ๋˜๋ฉด SEI ์ธต์„ ๋ณด๋‹ค ์•ˆ์ •ํ•˜๊ฒŒ ์œ ์ง€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. LiF๋ฅผ ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์— ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๋ณต์žกํ•œ ์ด์ „ ์—ฐ๊ตฌ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ๋ฆฌํŠฌ ๊ธˆ์† ํ‘œ๋ฉด์— ๋ณดํ˜ธ๋ง‰ ์ธต์„ ์ฝ”ํŒ…ํ•˜์—ฌ ์—ด์„ ๊ฐ€ํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด ํ˜•์„ฑ๋˜๋Š” ๋งค์šฐ ๊ฐ„๋‹จํ•œ ๋ฐฉ์‹์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ๋ณดํ˜ธ๋ง‰ ์ธต์€ ๋ฆฌํŠฌ ๊ธˆ์† ์ „์ง€์—์„œ ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ์—ฐ๊ตฌ๋“ค์€ ๊ณต์ •์ด ๊ฐ„๋‹จํ•˜๋ฉด์„œ๋„ ๋” ์–‡๊ณ  ๋” ๊ฐ€๋ณ๊ฒŒ ์ œ์ž‘๋˜์–ด ๋ณดํ˜ธ๋ง‰์˜ ๊ทผ๋ณธ์ ์ธ ๋‹จ์ ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋Š” ์—๋„ˆ์ง€ ๋ฐ€๋„ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์‹คํ—˜์ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ด ๊ธฐ์ˆ ๋“ค์€ ๋ฆฌํŠฌ ๊ธˆ์† ์Œ๊ทน์„ ์ƒ์šฉํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•ด ์ค€๋‹ค.Chapter 1 Introduction 13 1.1 Overview 13 1.2 References 16 Chapter 2 Fundamental and literature review 17 2.1 Background on Li metal anode 17 2.2 Issues with Li metal anode 17 2.3 References 20 Chapter 3 Three-dimensional mesh structure interlayer 22 3.1 Introduction 22 3.2 Experimental section 28 3.2.1 Fabrication of stainless steel mesh interlayer 28 3.2.2 Characterization of stainless steel mesh interlayer 31 3.2.3 Surface analysis and electrochemical measurement 32 3.2.4 Effect of stainless steel mesh interlayer for Li metal battery 48 3.3 Conclusion 50 3.4 Experimental details 51 3.5 References 53 Chapter 4 Thermal crosslinked polymer protective layer 56 4.1 Introduction 56 4.2 Experimental section 59 4.2.1 Fabrication of PEGDMA protective layer 59 4.2.2 Characterization of PEGDMA protective layer 59 4.2.3 Surface analysis and electrochemical measurement 66 4.2.4 Effect of PEGDMA protective layer for Li metal battery 81 4.3 Conclusion 90 4.4 Experimental details 91 4.5 References 93 Chapter 5 In situ LiF protective layer 96 5.1 Introduction 96 5.2 Experimental section 99 5.2.1 Fabrication of in situ LiF protective layer 99 5.2.2 Characterization of in situ LiF protective layer 99 5.2.3 Surface analysis and electrochemical measurement 105 5.2.4 Effect of in situ LiF protective layer for Li metal battery 119 5.3 Conclusion 124 5.4 Experimental details 125 5.5 References 125 Chapter 6 Conclusion 129 List of publications 131 ์š”์•ฝ (๊ตญ๋ฌธ์ดˆ๋ก) 133Docto

    Uํ˜• ๊ฐ•์žฌ๋‹จ๋ถ€์š”์†Œ๋ฅผ ์ง€๋‹Œ ํ•ฉ์„ฑ๋ฒฝ์ฒด์— ๋Œ€ํ•œ ๋ฐ˜๋ณต๊ฐ€๋ ฅ์‹คํ—˜ ๋ฐ ๊ฐ•๋„์˜ˆ์ธก๋ชจ๋ธ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์ถ•ํ•™๊ณผ, 2022. 8. ๋ฐ•ํ™๊ทผ.Generally, RC walls are used as the primary lateral load-resisting system in buildings. On the other hand, in high-rise buildings and large industrial buildings (e.g., factories and power plants), high structural performance is required to satisfy the high safety and serviceability demands (e.g., story drift ratio, floor vibration). For such high structural performance, a steel-concrete composite wall with boundary element of steel U-section (SUB-C wall) was developed. In the proposed method, large steel area is concentrated at the wall ends to maximize flexural strength and stiffness, and to minimize steel connection and weld length. The structural integrity and constructability can be improved by using an open section of U-shaped steel element; by concrete pouring, boundary steel element and reinforced concrete are integrated with conventional headed studs. Further, the U-shaped element can provide lateral confinement to the boundary zone, and increase the shear strength of walls. Thus, labor works related to vertical reinforcement and hoop reinforcement can be reduced. Cyclic lateral loading tests were performed on the proposed walls to investigate the flexural and shear performances. As the steel U-sections provided high confinement to the boundary concrete, crushing of the boundary concrete was restrained, which developed strain hardening of the steel U-section in tension. Thus, the flexural strength of the SUB-C wall was 37% greater than that of the counterpart RC wall. Further, the steel U-sections restrained shear cracking and shear sliding. Thus, the deformation capacity and energy dissipation were increased by 38%-53% and 99%-173%, respectively. The SUB-C walls exhibited ultimate drift ratios over 3%, and failed due to web crushing in the plastic hinge zone (i.e., post-yield shear failure). On the other hand, the shear strength of the SUB-C walls was 13%โ€“54% greater than that of the counterpart RC walls. This is because the steel U-sections not only resisted shear transferred from the diagonal struts, but also restrained diagonal tension cracking in the web and crack penetration into the boundary zone. For this reason, the shear strength of the SUB-C walls was determined by web crushing, without diagonal tension failure and crushing of the boundary concrete. The increase in flexural and shear strengths was more pronounced when steel U-sections with greater area were used. Nonlinear finite element analysis was performed for the walls that failed in elastic web crushing (before flexural yielding). The analysis results reveal that the compressive strength of the diagonal struts is significantly degraded due to large horizontal tensile deformation in the mid-height of the walls, which ultimately leads to web crushing. Such mechanism is named โ€œhorizontal elongation mechanismโ€, and an empirical equation to predict the maximum horizontal elongation was developed based on the parametric analysis. The horizontal elongation is greatly affected by shear reinforcement ratio and aspect ratio of walls. However, the boundary steel area has little effect on the maximum horizontal elongation. For the shear strength model, two shear failure mechanisms were defined: elastic and inelastic web crushing failures. Those mechanisms were implemented by the traditional truss analogy, and the model improvement was achieved by considering distinctive features of SUB-C walls: For the elastic web crushing strength (shear strength), the horizontal elongation mechanism was implemented, but the contribution of boundary elements was neglected for conservatism and simplicity in design. On the other hand, for the inelastic web crushing strength (i.e., post-yield shear strength), the vertical elongation and frame action of boundary elements in the plastic hinge zone were considered. In particular, since the vertical elongation is defined as a function of deformation demand, the post-yield shear strength can be calculated at every deformation levels of walls. The accuracy of the proposed model was validated from the comparison with the test results. For an advanced design of the shear strength (elastic web crushing strength), an equivalent elastic analysis method using commercial analysis programs was developed. The deformation-based design method for SUB-C walls was developed using the proposed shear strength model. The deformation capacity was defined at the intersection of the shear demand and inelastic web crushing strength. In general, the predicted deformation capacities, in terms of overall lateral drift ratio and normalized plastic hinge deformation, agree with the test results. Based on the test results and existing design methods, allowable material strengths and detailing requirements for SUB-C walls were provided. Note that the proposed design strengths are valid only when the design requirements are satisfied. The detailing methods outside the scope of the requirements should be applied after in-depth verification through further experimental and analytical studies.๊ณ ์ธต๊ฑด๋ฌผ๊ณผ ๋Œ€๊ทœ๋ชจ ์‚ฐ์—…๊ฑด๋ฌผ(๊ณต์žฅ, ๋ฐœ์ „์†Œ ๋“ฑ)์—์„œ๋Š” ๋†’์€ ์•ˆ์ „์„ฑ๊ณผ ์‚ฌ์šฉ์„ฑ(์˜ˆ, ์ธต๋ฅ˜๋น„, ๋ฐ”๋‹ฅ์ง„๋™)์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ƒ๋‹นํ•œ ๊ตฌ์กฐ์„ฑ๋Šฅ์ด ์š”๊ตฌ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋†’์€ ๊ตฌ์กฐ์„ฑ๋Šฅ์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ•์ฒ  U-๋‹จ๋ฉด์˜ ๊ฒฝ๊ณ„์š”์†Œ๊ฐ€ ์žˆ๋Š” ๊ฐ•์ฒ -์ฝ˜ํฌ๋ฆฌํŠธ ๋ณตํ•ฉ ๋ฒฝ์ฒด(SUB-C ๋ฒฝ์ฒด)๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์—์„œ๋Š” ํœจ๊ฐ•๋„ ๋ฐ ๊ฐ•์„ฑ์„ ์ตœ๋Œ€ํ™”ํ•˜๊ณ  ๊ฐ•์žฌ ์ ‘ํ•ฉ๋ถ€์™€ ์šฉ์ ‘ ๊ธธ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ•์žฌ๋ฉด์ ์„ ๋ฒฝ์ฒด ์–‘ ๋‹จ๋ถ€์— ์ง‘์ค‘๋ฐฐ์น˜ํ•˜์˜€๋‹ค. U์žํ˜• ๊ฐ•์žฌ์š”์†Œ์˜ ์—ด๋ฆฐ ๋‹จ๋ฉด์œผ๋กœ ์ธํ•˜์—ฌ, ์ฝ˜ํฌ๋ฆฌํŠธ ํƒ€์„ค์‹œ ๋‹จ๋ถ€ ๊ฐ•์žฌ์š”์†Œ์™€ ์ฒ ๊ทผ์ฝ˜ํฌ๋ฆฌํŠธ๊ฐ€ ์ผ๋ฐ˜ ์ „๋‹จ์—ฐ๊ฒฐ์žฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ„๋‹จํžˆ ์ผ์ฒดํ™”๋˜๋ฏ€๋กœ ๊ตฌ์กฐ์  ๊ฑด์ „์„ฑ ๋ฐ ์‹œ๊ณต์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ U์žํ˜• ์š”์†Œ๋Š” ๋ฒฝ์ฒด ๋‹จ๋ถ€์˜์—ญ์— ํšก๊ตฌ์†์„ ์ œ๊ณตํ•˜๊ณ  ๋ฒฝ์˜ ์ „๋‹จ๊ฐ•๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋ฏ€๋กœ ์ˆ˜์ง๋ณด๊ฐ• ๋ฐ ํšก๋ณด๊ฐ• ์ฒ ๊ทผ๊ณต์‚ฌ๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ํœจ์ „๋‹จ ์„ฑ๋Šฅ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ฒฝ์ฒด์— ๋Œ€ํ•œ ๋ฐ˜๋ณต ํšก๊ฐ€๋ ฅ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. Uํ˜• ํ˜•๊ฐ•์ด ๋‹จ๋ถ€์ฝ˜ํฌ๋ฆฌํŠธ์— ๋†’์€ ๊ตฌ์†๋ ฅ์„ ์ œ๊ณตํ•จ์— ๋”ฐ๋ผ ๋‹จ๋ถ€์ฝ˜ํฌ๋ฆฌํŠธ์˜ ์••๊ดด๊ฐ€ ์–ต์ œ๋˜์–ด ์ธ์žฅ์ธก Uํ˜• ํ˜•๊ฐ•์˜ ๋ณ€ํ˜• ๊ฒฝํ™”๊ฐ€ ๋ฐœ์ƒํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ SUB-C ๋ฒฝ์˜ ํœจ๊ฐ•๋„๋Š” RC ๋ฒฝ์˜ ํœจ๊ฐ•๋„๋ณด๋‹ค 37% ๋” ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ, U-ํ˜•๊ฐ•์€ ๋ณต๋ถ€์˜์—ญ์—์„œ ์ „๋‹จ๊ท ์—ด ๋ฐ ์ „๋‹จ๋ฏธ๋„๋Ÿฌ์ง์„ ์–ต์ œํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณ€ํ˜• ๋Šฅ๋ ฅ๊ณผ ์—๋„ˆ์ง€ ์†Œ์‚ฐ์€ ๊ฐ๊ฐ 38โ€“53 % ๋ฐ 99โ€“173 % ์ฆ๊ฐ€ํ–ˆ๋‹ค. SUB-C ๋ฒฝ์€ 3% ์ด์ƒ์˜ ๊ทนํ•œ ๋ณ€ํ˜•๋Šฅ๋ ฅ์„ ๋ณด์˜€๊ณ  ๊ฒฐ๊ณผ์ ์œผ๋กœ ์†Œ์„ฑํžŒ์ง€ ์˜์—ญ์—์„œ ๋ณต๋ถ€์••๊ดด๋กœ ์ธํ•ด ๊ฐ•๋„๊ฐ€ ์ €ํ•˜๋˜์—ˆ๋‹ค(ํœจํ•ญ๋ณต ํ›„ ์ „๋‹จ ํŒŒ๊ดด). SUB-C ๋ฒฝ์˜ ์ „๋‹จ๊ฐ•๋„๋Š” RC ๋ฒฝ์˜ ์ „๋‹จ๊ฐ•๋„๋ณด๋‹ค 13โ€“54 % ๋” ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” Uํ˜•๊ฐ•์ด ๋Œ€๊ฐ์ŠคํŠธ๋Ÿฟ์—์„œ ์ „๋‹ฌ๋˜๋Š” ์ „๋‹จ๋ ฅ์— ์ €ํ•ญํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋Œ€๊ฐ ์ธ์žฅ๊ท ์—ด์„ ์–ต์ œํ•˜๊ณ  ๊ฒฝ๊ณ„๋ถ€๋ฅผ ๋ณดํ˜ธํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, SUB-C ๋ฒฝ์ฒด์˜ ์ „๋‹จ๊ฐ•๋„๋Š” ์‚ฌ์ธ์žฅ ์ „๋‹จํŒŒ๊ดด ๋“ฑ ๋‹ค๋ฅธ ํŒŒ๊ดด์œ ํ˜• ์—†์ด ๋ชจ๋‘ ๋ณต๋ถ€์••๊ดด์— ์˜ํ•ด ๊ฒฐ์ •๋˜์—ˆ๋‹ค. ํƒ„์„ฑ๋ณต๋ถ€์••๊ดด(ํœจํ•ญ๋ณต ์ด์ „)๋กœ ํŒŒ๊ดด๋œ ๋ฒฝ์ฒด์‹คํ—˜์ฒด์— ๋Œ€ํ•ด ๋น„์„ ํ˜• ์œ ํ•œ ์š”์†Œ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•ด์„๊ฒฐ๊ณผ, ๋ฒฝ์ฒด ์ค‘์•™๋†’์ด์—์„œ ๋‚˜ํƒ€๋‚œ ํฐ ์ˆ˜ํ‰์ธ์žฅ์˜์—ญ์œผ๋กœ ์ธํ•ด, ๋Œ€๊ฐ์ŠคํŠธ๋Ÿฟ์˜ ์••์ถ•๊ฐ•๋„๊ฐ€ ํ˜„์ €ํžˆ ์ €ํ•˜๋˜์–ด ๋ณต๋ถ€์••๊ดด์— ์ด๋ฅด๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ํŒŒ๊ดด๋ฉ”์ปค๋‹ˆ์ฆ˜์„ "์ˆ˜ํ‰ ์—ฐ์‹ " ์ด๋ผ ๋ช…๋ช…ํ•˜์˜€๊ณ , ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ˆ˜ํ‰ ์—ฐ์‹ ์œจ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒฝํ—˜์‹์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ˆ˜ํ‰ ์—ฐ์‹ ์œจ์€ ๋ฒฝ์ฒด์˜ ์ „๋‹จ๋ณด๊ฐ•๋น„์™€ ์ข…ํšก๋น„์— ์˜ํ•ด ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฒฝ๊ณ„ ๋ณด๊ฐ•๋น„ (๋‹จ๋ถ€ Uํ˜• ํ˜•๊ฐ•์˜ ๋‹จ๋ฉด์ )๋Š” ์ˆ˜ํ‰ ์—ฐ์‹ ์œจ์— ๊ฑฐ์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜๋‹ค. ์ „๋‹จ๊ฐ•๋„๋ชจ๋ธ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด โ€œํƒ„์„ฑ ๋ฐ ๋น„ํƒ„์„ฑ ๋ณต๋ถ€ ์••๊ดดโ€ ๋‘ ๊ฐ€์ง€ ์ „๋‹จํŒŒ๊ดด ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์ •์˜๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ „ํ†ต์ ์ธ ํŠธ๋Ÿฌ์Šค๋ชจ๋ธ ๋ฐฉ์‹์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, SUB-C ๋ฒฝ์ฒด์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ํƒ„์„ฑ ๋ฐ ๋น„ํƒ„์„ฑ ๋ณต๋ถ€์••๊ดด๊ฐ•๋„(ํœจํ•ญ๋ณต ์ดํ›„ ์ „๋‹จ๊ฐ•๋„)๋Š” ๊ฐ๊ฐ ์ˆ˜ํ‰์—ฐ์‹  ๋ฐ ์ˆ˜์ง์—ฐ์‹  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ณ ๋ คํ•˜์˜€์œผ๋ฉฐ, ๋น„ํƒ„์„ฑ ๋ณต๋ถ€์••๊ดด๊ฐ•๋„์˜ ๊ฒฝ์šฐ ์†Œ์„ฑํžŒ์ง€์˜์—ญ์—์„œ ๊ฒฝ๊ณ„์š”์†Œ์˜ ๊ณจ์กฐ ์ž‘์šฉ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ณ ๋ คํ•˜์˜€๋‹ค. ํŠนํžˆ, ์ˆ˜์ง์—ฐ์‹ ์€ ๋ฒฝ์ฒด๋ณ€ํ˜•์˜ ํ•จ์ˆ˜๋กœ ์ •์˜๋˜๋ฏ€๋กœ ๋ฒฝ์ฒด์˜ ํœจํ•ญ๋ณต ์ดํ›„ ๋ชจ๋“  ๋ณ€ํ˜•์ˆ˜์ค€์—์„œ ์ „๋‹จ๊ฐ•๋„ ํ‰๊ฐ€๊ฐ€ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋Š” ์‹คํ—˜๊ฒฐ๊ณผ์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๋ณด๋‹ค ์ •๋ฐ€ํ•œ ํƒ„์„ฑ ๋ณต๋ถ€์••๊ดด๊ฐ•๋„ ์˜ˆ์ธก์„ ์œ„ํ•˜์—ฌ ์ƒ์šฉ ํ•ด์„ํ”„๋กœ๊ทธ๋žจ์„ ์ด์šฉํ•œ ๋“ฑ๊ฐ€ํƒ„์„ฑํ•ด์„๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. SUB-C ๋ฒฝ์ฒด์˜ ๋ณ€ํ˜•๊ธฐ๋ฐ˜ ์„ค๊ณ„๋ฐฉ๋ฒ•์€ ์ œ์•ˆ๋œ ์ „๋‹จ๊ฐ•๋„ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์„ค๊ณ„๋ณ€ํ˜•๋Šฅ๋ ฅ์€ ์š”๊ตฌ์ „๋‹จ๋ ฅ๊ณผ ๋น„ํƒ„์„ฑ ๋ณต๋ถ€์••๊ดด๊ฐ•๋„๊ฐ€ ๊ต์ฐจํ•˜๋Š” ์ ์—์„œ ์ •์˜๋˜์—ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ์˜ˆ์ธก๋œ ๋ฒฝ์ฒด ์ตœ์ƒ๋ถ€ ๋ฐ ์†Œ์„ฑํžŒ์ง€๋ถ€ ๋ณ€ํ˜•๋Šฅ๋ ฅ์€ ์‹คํ—˜๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•˜์˜€๋‹ค. ์‹คํ—˜๊ฒฐ๊ณผ ๋ฐ ๊ธฐ์กด ์„ค๊ณ„๋ฐฉ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ SUB-C ๋ฒฝ์— ๋Œ€ํ•œ ํ—ˆ์šฉ ์žฌ๋ฃŒ๊ฐ•๋„์™€ ์ƒ์„ธ์„ค๊ณ„ ์š”๊ตฌ์‚ฌํ•ญ์„ ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„๊ฐ•๋„๋Š” ์„ค๊ณ„์š”๊ตฌ์‚ฌํ•ญ์ด ์ถฉ์กฑ๋˜๋Š” ๊ฒฝ์šฐ์—๋งŒ ์œ ํšจํ•˜๋ฉฐ, ์š”๊ตฌ์‚ฌํ•ญ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚œ ์ƒ์„ธ์„ค๊ณ„๋ฐฉ๋ฒ•์€ ์ถ”๊ฐ€ ์‹คํ—˜ ๋ฐ ๋ถ„์„ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์‹ฌ์ธต ๊ฒ€์ฆ ํ›„ ์ ์šฉ๋˜์–ด์•ผ ํ•œ๋‹ค.Abstract i Contents iv List of Tables x List of Figures xii List of Symbols xxi Chapter 1. Introduction 1 1.1 General 1 1.2 Scope and Objectives 6 1.3 Outline of dissertation 10 Chapter 2. Literature Review 12 2.1 Code-Based Shear Strength 13 2.1.1 ACI 318 (ACI Committee 318, 2019) 13 2.1.2 Eurocode 2 & 8 (British Standards Institution, 2004) 15 2.1.3 fib MC 2010 17 2.1.4 JGJ 138 (China Building & Construction Standards, 2016) 19 2.1.5 ANSI/AISC 341 (2016) 22 2.1.6 AISC N 690 (2018) 23 2.2 Existing Models for Web Crushing Capacity 24 2.2.1 Oesterle et al. (1984) 24 2.2.2 Paulay and Priestley (1992) 26 2.2.3 Hines and Seible (2004) 27 2.2.4 Eom and Park (2013) 30 2.3 Literature Reviews on Existing Composite Walls 32 2.3.1 RC walls with composite boundary elements 32 2.3.2 Concrete-encased steel plate walls 39 2.3.3 Concrete-filled steel plate walls 45 2.4 Discussion and Research Hypothesis 53 Chapter 3. Cyclic Lateral Test of Flexural Specimens 55 3.1 Overview 55 3.2 Design Strengths 56 3.2.1 Nominal flexural strength 56 3.2.2 Nominal shear strength 56 3.2.3 Design of failure mode 56 3.3 Test Plan 58 3.3.1 Test parameters and specimens 58 3.3.2 Material strengths 70 3.3.3 Lateral confinement to wall boundary 71 3.3.4 Test setup for loading and measurement 72 3.4 Test Results 75 3.4.1 Lateral load-displacement relationship 75 3.4.2 Failure mode 82 3.4.3 Flexural rotation in plastic hinge zone 88 3.4.4 Shear deformation 95 3.4.5 Displacement contributions 99 3.4.6 Flexural and shear stiffness 104 3.4.7 Deformation capacity 108 3.4.8 Energy dissipation 110 3.4.9 Vertical strain distribution 112 3.4.10 Horizontal strain distribution 114 3.4.11 Shear strain of steel plates 117 3.5 Effect of Design Parameters 121 3.5.1 Arrangement of vertical steel section 122 3.5.2 Type of boundary reinforcement 123 3.5.3 Sectional area of steel U-sections 124 3.5.4 Type of web reinforcement 125 3.6 Evaluation of Flexural Capacity 128 3.6.1 Flexural strength 128 3.6.2 Flexural stiffness 132 3.6.3 Displacement ductility and plastic rotation 136 3.7 Summary 138 Chapter 4. Cyclic Lateral Test of Shear Specimens 140 4.1 Overview 140 4.2 Test Plan 141 4.2.1 Design of shear failure mode 141 4.2.2 Test parameters and specimens 142 4.2.3 Material strengths 154 4.2.4 Test setup for loading and measurement 155 4.3 Test Results 156 4.3.1 Lateral load-displacement relationship and failure mode 156 4.3.2 Cracking and maximum crack width 167 4.3.3 Displacement contributions 169 4.3.4 Horizontal strain distribution 172 4.3.5 Vertical strain distribution 178 4.3.6 Strains of steel plates 180 4.3.7 Shear strength contributions 187 4.4 Effect of Design Parameters 196 4.4.1 Type of boundary reinforcement 196 4.4.2 Sectional area of steel U-sections 198 4.4.3 Type of web reinforcement 200 4.4.4 Spacing of web reinforcement 201 4.4.5 Effect of wall aspect ratio 202 4.5 Strength Predictions of Existing Design Methods 203 4.5.1 Diagonal tension strength 203 4.5.2 Web crushing strength 204 4.5.3 Comparison with composite design methods 208 4.6 Summary 212 Chapter 5. Nonlinear Finite Element Analysis 214 5.1 Overview 214 5.2 Finite Element Modeling 216 5.3 Comparison with Test Results 219 5.3.1 Strength and load-displacement behavior 219 5.3.2 Damage pattern of concrete 221 5.4 Shear Strength Contribution 234 5.5 Horizontal Elongation Model 241 5.6 Summary 247 Chapter 6. Development of Shear Strength Model 248 6.1 Overview 248 6.2 Background 249 6.2.1 Web crushing capacity 249 6.2.2 Observed web crushing behavior 252 6.3 Modified Truss Analogy 257 6.4 Elastic Web Crushing Strength 259 6.4.1 Model assumptions 259 6.4.2 Shear degradation of concrete 260 6.4.3 Strain compatibility 263 6.4.4 Strength equation and verification 267 6.5 Inelastic Web Crushing Strength 270 6.5.1 Model assumptions 270 6.5.2 Strength degradation of concrete 273 6.5.3 Truss-beam model (Modified truss analogy) 274 6.5.4 Displacement compatibility 278 6.5.5 Strength contribution of concrete 283 6.5.6 Simplified expression for concrete contribution 286 6.5.7 Strength contribution of steel U-section 289 6.5.8 Strength equation 293 6.6 Comparison with Test Results 294 6.7 Effect of Axial Force 301 6.8 Summary 305 Chapter 7. Design Strengths and Recommendations 306 7.1 Equivalent Elastic Analysis 307 7.1.1 Background 307 7.1.2 Strip model 309 7.1.3 Diagonal strip 311 7.1.4 Horizontal tie 317 7.1.5 Boundary elements 319 7.1.6 Boundary conditions 321 7.1.7 Analysis procedure 322 7.1.8 Application to test specimens 326 7.2 Design Strengths and Deformation Capacity 335 7.2.1 Deformation-based design approach 335 7.2.2 Flexural strength 338 7.2.3 Shear strength 341 7.2.4 Deformation capacity 345 7.2.5 Comparison to test results 353 7.3 Materials and Detailing Recommendations 356 7.3.1 Material strengths 356 7.3.2 Boundary element 359 7.3.3 Web reinforcement 366 7.4 Summary 370 Chapter 8. Conclusions 371 References 378 Appendix I: Calculations of Displacement Contributions 387 Appendix II: Summary of Existing SC Composite Wall Specimens 389 ์ดˆ ๋ก 401๋ฐ•

    Comparison of glidescope video laryngoscopy and conventional laryngoscopy for endotracheal intubation in the ED : an observational study

    Get PDF
    Dept. of Medicine/์„์‚ฌObjectives In a previous manikin study, we suggested that the GlideScopeยฎ Video Laryngoscope (GVL) could be an option for airway management by emergency physicians and might be useful in patients with difficult airways compared to the classic Macintosh laryngoscope (ML). The purpose of this study was to compare GVL with ML in emergency endotracheal intubation.Materials and methodsA prospective multicenter observational study was performed. Emergency physicians performed tracheal intubations using ML or GVL at their discretion. The time required to intubate, the success rate, number of intubation attempts, Cormack and Lehane (C&L) grade, and percentage of glottis opening (POGO) scores were recorded and compared between the two groups.ResultsGVL was used in 27 (37.5%) of 72 endotracheal intubations at three emergency centers. The overall success rate in the GVL group on the first attempt was not higher than that in the ML group (66.7% vs 60.0%, P=0.572). Although the success rate for difficult airway patients on the first attempt seemed to be higher in the GVL group than in the ML group, there was not a statistically significant difference between the two groups (70% vs 46.7%, p=0.250). The overall time required to successfully intubate was shorter in the ML group than in the GVL group (18.3 sec vs. 36.8 sec, p<0.05). In the difficult airway subgroup, the time required to successfully intubate was shorter in the ML group (15.9 sec vs. 36.3 sec, p<0.05). The POGO score and the C&L grade were not statistically different between the two groups although the GVL group appeared to allow a better glottic view in the difficult airway subgroup (POGO: 39.3 ยฑ 36.9 vs. 55.5 ยฑ 32.7, p = 0.394; GEG I & II: 55.3% vs. 70%, p=0.405).ConclusionThe emergency airway management using GVL did not show difference in success rate compared with ML. However, the required time for intubation was longer in GVL than ML. This study suggests that GVL is not as suitable for emergency airway management as ML, even in patients with difficult airways.ope

    Closed-loop separation control system design using model-based observer

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ๋Š” ์œ ๋™ ๋ฐ•๋ฆฌ ์ƒ์—์„œ์˜ synthetic jet์˜ ํšจ๊ณผ๋ฅผ ํŒŒ์•…ํ•˜๊ณ  synthetic jet์„ ์ด์šฉํ•œ ์œ ๋™ ๋ฐ•๋ฆฌ ํ๋ฃจํ”„ ์ œ์–ด ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•œ๋‹ค. ์œ ๋™ ๋ฐ•๋ฆฌ ํ๋ฃจํ”„ ์ œ์–ด ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๋Š” ์œ ๋™ ๋ชจ๋ธ์„ ์ด์šฉํ•œ๋‹ค. synthetic jet์˜ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์œ ๋™ ๋ชจ๋ธ์ด ์œ ๋„๋˜๋ฉฐ, ํ’๋™ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์œ ๋™ ๋ชจ๋ธ์˜ ๋ณ€์ˆ˜๋“ค์„ ์ถ”์ •ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ•๋ฆฌ์˜ ํšจ๊ณผ์ ์ธ ์ถ”์ •์„ ์œ„ํ•œ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ด€์ธก๊ธฐ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ด€์ธก๊ธฐ๋ฅผ ์ด์šฉํ•œ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ, ํšจ๊ณผ์ ์ธ ์œ ๋™ ์ œ์–ด ์‹œ์Šคํ…œ ์„ค๊ณ„์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํŒŒ์•…ํ•œ๋‹ค.The objective of this research is to assess the effect of synthetic jets on flow separation and provide a feedback control strategy for flow separation using synthetic jets. A feedback control loop is crucial for the efficient operation of synthetic jets. Constructing the flow model with synthetic jet actuators is important to accomplish such feedback control. The mathematical model whose structures are based on physical knowledge of synthetic jets is derived to estimate the model coefficients from experimental data. In order to estimate the separation, this research employs an observer. The results performed with an observer, it showed the possibility of reliable flow control system design using model-based observer.This work was supported by Defense Acquisition Program Administration and Agency for Defense Development(UC100031JD).OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/28SEQ:28PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๋ชจl๋ธ_๊ธฐ๋ฐ˜_๊ด€์ธก๊ธฐ๋ฅผ_์ด์šฉํ•œ_ํ๋ฃจํ”„_๋ฐ•๋ฆฌ_์ œ์–ด_์‹œ์Šคํ…œ_์„ค๊ณ„.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    Chlamydia pneumoniae accompanied by inflammation is associated with the progression of atherosclerosis in CAPD patients: a prospective study for 3 years

    Get PDF
    BACKGROUND: The causes of accelerated atherosclerosis in end-stage renal disease (ESRD) patients are unknown, although recent studies have suggested that Chlamydia pneumoniae (Cp) infection and inflammation might be contributing factors. We aimed to evaluate the association of carotid atherosclerosis progression with Cp infection and inflammation in patients undergoing peritoneal dialysis (PD). METHODS: This is a prospective observational study. A total of 52 non-diabetic prevalent PD patients were included. The intima-media thickness of a common carotid artery (CCA-IMT) was measured at baseline and after 36 months by B-mode ultrasonography. Serum antibodies to Cp and inflammatory markers were obtained at the time of initial measurement of the CCA-IMT. RESULTS: CCA-IMT progressors (deltaCCA-IMT > or = 0.015 mm/year) had a higher prevalence of seropositivity for Cp IgA antibody, a higher level of Cp IgA antibodies indices, log IL-(interleukin-)6, and intercellular adhesion molecule-1 (ICAM-1) compared to the non-progressors (deltaCCA-IMT < 0.015 mm/year). On multivariate analysis, Cp IgA index and log IL-6 were independent risk a factors for CCA-IMT progression. Also, Cp IgA index had independent positive correlation with the magnitude of annual deltaCCA-IMT. Cp IgA antibody seropositive patients showed significantly higher mean annual deltaCCA-IMT than seronegative patients. Moreover, patients with both positive Cp IgA antibodies and elevated IL-6 above the median level showed higher deltaCCA-IMT than those with either factor alone. CONCLUSIONS: Our data showed that Cp and inflammation were significant risk factors of CCA-IMT change in PD patients. This study strengthens evidence that Cp is involved in the pathogenesis of atherosclerosis and also suggests that the effect of Cp infection under high inflammatory status might be a risk factor for progression of atherosclerosis.ope

    ํƒœ๋‚ด ๋‹ค์ค‘ ์•ฝ๋ฌผ ๋…ธ์ถœ์ด ๋ณด์ƒ ์ฒ˜๋ฆฌ์™€ ์ถฉ๋™์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ๊ทœ๋ช…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์‹ฌ๋ฆฌํ•™๊ณผ, 2020. 8. ์•ˆ์šฐ์˜.The prenatal substance exposure has persisting effects on neurocognitive dysfunction from fetuses to children and adolescents. Among various neurocognitive functions, many studies focused on reward processing and impulsivity as they are key functions related to many psychiatric disorders. However, there were some limitations: previous studies had a relatively small sample size and the effects of prenatal polysubstance exposure were rarely investigated, even though many individuals with substance use disorders are polysubstance users. Also, the moderation effects of demographic and postnatal environmental factors were not considered in many previous studies. Here, the current study aimed 1) to replicate or further investigate the effects of prenatal exposure to each of the two most commonly used drugs (nicotine and alcohol) in a large sample, 2) to examine the effects of prenatal polysubstance exposure on reward processing and impulsivity, and 3) to investigate the influence of demographic and postnatal factors on the outcomes of prenatal drug exposure. For the goal, we used the behavioral and neuroimaging measures of reward processing and impulsivity from the Adolescent Brain Cognitive Development study in the US (N=10,161). We found that prenatal nicotine exposure was associated with hyperactivation in the inhibitory region, inferior frontal gyrus (IFG) during response inhibition. Also, we found a significant interaction effect of nicotine and alcohol on hyperactivation in ACC and IFG during response inhibition, which might indicate additive or synergistic effects of nicotine and alcohol. Lastly, we found an alteration in reward processing in the ethnically minor group and alteration in inhibitory function in children given birth from old mothers. Overall, the results suggest that there is a need to pay close attention to the complex effects of prenatal polysubstance exposure and its interaction with demographic and postnatal factors.ํƒœ๋‚ด ์•ฝ๋ฌผ ๋…ธ์ถœ์€ ํƒœ์•„์—์„œ ์•„๋™, ์ฒญ์†Œ๋…„์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์ธ์ง€์‹ ๊ฒฝ์  ๊ธฐ๋Šฅ์— ์ง€ ์†์ ์ธ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋งŽ์€ ์ธ์ง€์‹ ๊ฒฝ ๊ธฐ๋Šฅ๋“ค ์ค‘ ๋‹ค์–‘ํ•œ ์ •์‹  ์งˆํ™˜๊ณผ ์ฃผ์š”ํ•œ ๊ด€๋ จ์„ฑ์„ ๋ณด์ด๋Š” ๋ณด์ƒ ์ฒ˜๋ฆฌ์™€ ์ถฉ๋™์„ฑ์— ์ฃผ๋ชฉํ•ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ์—ฐ๊ตฌ์—๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋จผ์ € ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ ์ˆ˜์˜ ํ‘œ๋ณธ์„ ์‚ฌ์šฉํ–ˆ๊ณ , ์ผ์ƒ์—์„œ ๋Š” ๋งŽ์€ ์•ฝ๋ฌผ ์ค‘๋…์ž๋“ค์ด ํ•˜๋‚˜ ์ด์ƒ์˜ ์•ฝ๋ฌผ์„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š” ๋ฐ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‹ค์ค‘ ์•ฝ๋ฌผ ์‚ฌ์šฉ์ด ํƒœ๋‚ด ๋…ธ์ถœ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ์—ˆ๋‹ค. ๋˜ํ•œ, ์ธ๊ตฌํ†ต๊ณ„ํ•™ ์  ์š”์ธ์ด๋‚˜ ์ƒํ›„ ํ™˜๊ฒฝ์  ์š”์ธ์ด ํƒœ๋‚ด ์•ฝ๋ฌผ ๋…ธ์ถœ์˜ ์˜ํ–ฅ์— ์–ด๋–ป๊ฒŒ ๊ด€์—ฌํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋ถ€์กฑํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 1) ๋Œ€๊ทœ๋ชจ ํ‘œ๋ณธ์„ ์‚ฌ์šฉํ•ด ๊ฐ€์žฅ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ๋‹ˆ์ฝ”ํ‹ด๊ณผ ์•Œ์ฝ”์˜ฌ์— ๋Œ€ํ•œ ๋…ธ์ถœ ํšจ๊ณผ๋ฅผ ๋ฐ˜๋ณต ๊ฒ€์ฆ ๋ฐ ํ™•์žฅํ•˜๊ณ ์ž ํ•˜๋ฉฐ, 2) ํƒœ๋‚ด ๋‹ค์ค‘ ์•ฝ๋ฌผ์˜ ๋ณด์ƒ ์ฒ˜๋ฆฌ์™€ ์ถฉ๋™์„ฑ์— ๋Œ€ํ•œ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ณ , 3) ์ธ๊ตฌ ํ†ต๊ณ„ํ•™์  ์š”์ธ์ด๋‚˜ ์ƒํ›„ ํ™˜๊ฒฝ์  ์š”์ธ์ด ํƒœ๋‚ด ์•ฝ๋ฌผ ๋…ธ์ถœ์˜ ์˜ํ–ฅ์— ์–ด๋–ป๊ฒŒ ๊ด€์—ฌํ•˜ ๋Š”์ง€ ์‚ดํŽด๋ณด๊ณ ์ž ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชฉํ‘œ๋ฅผ ์œ„ํ•ด ๋ฏธ๊ตญ์˜ Adolescent Brain Cognitive Development ์—ฐ๊ตฌ์—์„œ ์ œ๊ณตํ•˜๋Š” ๋ณด์ƒ ์ฒ˜๋ฆฌ์™€ ์ถฉ๋™์„ฑ์— ๋Œ€ํ•œ ํ–‰๋™ ๋ฐ ๋‡Œ ์˜์ƒ ์ง€ ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค (N = 10,161). ๋ถ„์„ ๊ฒฐ๊ณผ, ํƒœ๋‚ด ๋‹ˆ์ฝ”ํ‹ด ๋…ธ์ถœ์€ ๋ฐ˜์‘ ์–ต์ œ ๋™์•ˆ ๋˜ ๋‹ค๋ฅธ ์–ต์ œ ์˜์—ญ์ธ ํ•˜์ „๋‘ํšŒ์˜ ๊ณผ์ž‰ ํ™œ์„ฑ๊ณผ ๊ด€๋ จ์žˆ์—ˆ๊ณ  ๋”๋ถˆ์–ด ๋ฐ˜์‘์„ ์–ต์ œํ•˜ ๋Š” ๋™์•ˆ์˜ ์ „๋Œ€์ƒํšŒ์™€ ํ•˜์ „๋‘ํšŒ์˜ ๊ณผ์ž‰ ํ™œ์„ฑ์— ๋Œ€ํ•ด ๋‹ˆ์ฝ”ํ‹ด๊ณผ ์•Œ์ฝ”์˜ฌ์ด ์œ ์˜๋ฏธํ•œ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ํƒœ๋‚ด์—์„œ ๋‹ˆ์ฝ”ํ‹ด๊ณผ ์•Œ์ฝ”์˜ฌ์— ๋™์‹œ ๋…ธ์ถœ๋˜๋Š” ๊ฒƒ์ด ๊ฐ€์‚ฐ ํšจ๊ณผ๋‚˜ ์‹œ๋„ˆ์ง€ ํšจ๊ณผ๋ฅผ ๋‚ด๊ณ  ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์†Œ์ˆ˜ ์ธ์ข… ์ง‘๋‹จ๊ณผ ๋‚˜์ด ๋งŽ์€ ์–ด๋จธ๋‹ˆ๋กœ ๋ถ€ํ„ฐ ํƒœ์–ด๋‚œ ์ž๋…€์˜ ๊ฒฝ์šฐ ๋ณด์ƒ ์ฒ˜๋ฆฌ์™€ ๋ฐ˜์‘ ์–ต์ œ ์ค‘์— ์„œ ์œ ์˜๋ฏธํ•˜๊ฒŒ ๋‹ค๋ฅธ ํŒจํ„ด์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ข…ํ•ฉํ•ด๋ณด๋ฉด, ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ํƒœ๋‚ด ๋‹ค์ค‘ ์•ฝ๋ฌผ ๋…ธ์ถœ์˜ ๋ณต์žกํ•œ ํšจ๊ณผ์™€ ํ™˜๊ฒฝ์  ์š”์ธ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์— ์•ž์œผ๋กœ ๋”์šฑ ์ฃผ๋ชฉํ•ด์•ผํ•  ํ•„์š”์„ฑ์„ ์ œ๊ธฐํ•œ๋‹ค.Abstract i 1 Introduction 1 1.1 Substance use disorder........................ 1 1.1.1 Nicotine............................ 3 1.1.2 Alcohol ............................ 5 1.1.3 Nicotine and alcohol ..................... 6 1.2 The maternal substance use..................... 8 1.2.1 Nicotine............................ 9 1.2.2 Alcohol ............................ 11 1.2.3 Nicotine and alcohol ..................... 13 1.2.4 Effects of demographic and postnatal environment . . . . 14 1.3 Objectives and hypotheses...................... 15 2 Methods 17 2.1 Participants.............................. 17 2.2 Measurement ............................. 19 2.2.1 Demographic information .................. 19 2.2.2 Prenatal exposure to substance............... 19 2.2.3 Reward processing ...................... 20 2.2.4 Impulsivity .......................... 21 2.2.5 Neuroimaging......................... 22 2.2.6 Postnatal environment.................... 23 2.3 Analysis................................ 24 2.3.1 Effects of prenatal mono substance . . . . . . . . . . . . . 24 2.3.2 Effects of prenatal polysubstance . . . . . . . . . . . . . . 26 2.3.3 Propensity score matching................. 27 2.3.4 Effects of demographic and postnatal environment . . . . 27 3 Results 28 3.1 Demographic information ...................... 28 3.2 Effects of prenatal mono substance ................. 28 3.3 Effects of prenatal polysubstance .................. 31 3.4 Effects of demographic and postnatal environment . . . . . . . . 32 4 Discussion 38 4.1 Main findings............................. 38 4.2 Interpretation on findings ...................... 39 4.2.1 Effects of prenatal mono substance . . . . . . . . . . . . . 39 4.2.2 Effects of prenatal polysubstance . . . . . . . . . . . . . . 40 4.2.3 Effects of demographic and postnatal environment . . . . 41 4.3 Limitations .............................. 42 4.4 Implications and further directions ................. 43 References 44 Appendix A Supplementary 58 ๊ตญ๋ฌธ์ดˆ๋ก 89 ๊ฐ์‚ฌ์˜ ๊ธ€ 91Maste
    • โ€ฆ
    corecore