49 research outputs found

    ์นจํ–ฅ์˜ ์„ฑ๋ถ„ ๋ถ„์„๊ณผ ๋ฏธ๋ฐฑ ํ™œ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๊ณผ, 2013. 2. ๋ฐ•์ •์ผ.์นจํ–ฅ (Aquilaria malaccensis) ์€ ํŒฅ๊ฝƒ๋‚˜๋ฌด๊ณผ (Thymelaeaceae) ์˜ ์นจํ–ฅ๋‚˜๋ฌด์— ์ˆ˜์ง€๊ฐ€ ์นจ์ฐฉ๋œ ๊ฒƒ์œผ๋กœ, ์ฃผ๋กœ ๋™๋‚จ์•„์‹œ์•„์™€ ์ค‘๊ตญ ๋ฐ ๋‰ด๊ธฐ๋‹ˆ์— ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠน์œ ์˜ ๋ƒ„์ƒˆ ๋•Œ๋ฌธ์— ์ „ํ†ต์ ์œผ๋กœ ํ–ฅ๋ฃŒ๋‚˜ ํ–ฅ๊ธฐ๋ฅผ ์ด์šฉํ•œ ์น˜๋ฃŒ์— ์‚ฌ์šฉ๋˜์–ด์™”์œผ๋ฉฐ ๋ณต์šฉ ์‹œ์—๋Š” ์ฒœ์‹์ด๋‚˜ ๊ตฌํ† , ๋ณตํ†ต์— ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์นจํ–ฅ (Aquilaria malaccensis) ์˜ ์„ฑ๋ถ„ ๊ตฌ์กฐ๋ฅผ ๋™์ •ํ•˜๊ณ  ํ™œ์„ฑ์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์นจํ–ฅ ๋ฉ”ํƒ„์˜ฌ ์ถ”์ถœ๋ฌผ์„ ์ˆœ์ฐจ์ ์ธ ์šฉ๋งค ์ถ”์ถœ์„ ํ†ตํ•ด ๋ถ„ํš์„ ๋‚˜๋ˆˆ ํ›„ ๋‹ค์–‘ํ•œ chromatography ๊ธฐ๋ฒ•์œผ๋กœ 6 ์ข…์˜ 2-(2-phenylethyl) chromone ์œ ๋„์ฒด๋ฅผ ๋ถ„๋ฆฌํ•˜์˜€๋‹ค. ๋ถ„๋ฆฌํ•œ ์„ฑ๋ถ„๋“ค์˜ ๊ตฌ์กฐ๋Š” ๊ฐ์ข… spectroscopy๋ฅผ ํ†ตํ•ด ๋™์ •ํ•œ ๊ฒฐ๊ณผ โ‘  6-Hydroxy-2-[2-(4-methoxyphenyl)ethyl]-4H-chromen-4-one, โ‘ก 2-(2-phenylethyl) chromone, โ‘ข 2-[2-(4-methoxyphenyl) ethyl] chromone, โ‘ฃ 6-methoxy-2-(2-phenylethyl) chromone, โ‘ค 6-methoxy-2-[2-(3-methoxyphenyl) ethyl] chromone, โ‘ฅ2-(4-hydroxyphenyl)-6, 7-dimetoxy-4H-chromen-4-one ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ์ค‘ โ‘ฅ 2-(4-hydroxyphenyl)-6, 7-dimetoxy-4H-chromen-4-one ์€ ๋ณด๊ณ ๋˜์ง€ ์•Š์€ ์‹ ๋ฌผ์งˆ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ๋ถ„๋ฆฌํ•œ ์„ฑ๋ถ„๋“ค์˜ tyrosinase ์–ต์ œ ํ™œ์„ฑ์„ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ 6๊ฐœ์˜ ๋ฌผ์งˆ ์˜ IC50๋ฅผ ์‹ ๋ฌผ์งˆ, โ‘ , โ‘ก, โ‘ข, โ‘ฃ, โ‘ค ์ˆœ์„œ๋Œ€๋กœ 2.03, 1.35, 1.39, 1.15, 1.01, 0.56 (mM) ๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ  6-methoxy-2-[2-(3-methoxyphenyl) ethyl] chromone ๊ฐ€ IC50์ด 0.56mM๋กœ ๋‹ค๋ฅธ ์„ฑ๋ถ„๋“ค์— ๋น„ํ•ด ๊ฐ•ํ•œ tyrosinase ์–ต์ œ์ œ์˜€๋‹ค.๊ตญ๋ฌธ์ดˆ๋ก โ…ฐ ๋ชฉ ์ฐจ โ…ฒ List of Figures v List of Tables vi List of Abbreviations vii โ… . ์„œ ๋ก  1 โ…ก. ์‹คํ—˜ 2 1. ์‹œํ—˜ ์žฌ๋ฃŒ, ์‹œ์•ฝ ๋ฐ ๊ธฐ๊ธฐ 2 1-1. ์‹œํ—˜ ์žฌ๋ฃŒ 2 1-2. ์‹œ์•ฝ 2 1-3. ์‹คํ—˜ ๊ธฐ๊ตฌ ๋ฐ ๊ธฐ๊ธฐ 3 2. ์นจํ–ฅ์˜ ๋ถ„ํš ๋ฐ ์„ฑ๋ถ„ ๋ถ„๋ฆฌ 4 2-1. ์ถ”์ถœ ๋ฐ ๋ถ„ํš 4 2-2. ์นจํ–ฅ์œผ๋กœ๋ถ€ํ„ฐ ๋‹จ์ผ ์„ฑ๋ถ„ ๋ถ„๋ฆฌ 5 2-2-1. Compound 6 ์˜ ๋ถ„๋ฆฌ 5 2-2-2. Compound 1 ์˜ ๋ถ„๋ฆฌ 5 2-2-3. Compound 2 ์˜ ๋ถ„๋ฆฌ 5 2-2-4. Compound 3 ์˜ ๋ถ„๋ฆฌ 5 2-2-5. Compound 4 ์˜ ๋ถ„๋ฆฌ 6 2-2-6. Compound 5 ์˜ ๋ถ„๋ฆฌ 6 3. ๊ตฌ์กฐ ๋ถ„์„ 7 4. ๋ฏธ๋ฐฑ ํ™œ์„ฑ 8 โ…ข. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 1. ์„ฑ๋ถ„์˜ ๊ตฌ์กฐ ๋ถ„์„ 12 1-1. Compound 6 ์˜ ๊ตฌ์กฐ 12 1-2. Compound 1 ์˜ ๊ตฌ์กฐ 12 1-3. Compound 2 ์˜ ๊ตฌ์กฐ 12 1-4. Compound 3 ์˜ ๊ตฌ์กฐ 13 1-5. Compound 4 ์˜ ๊ตฌ์กฐ 13 1-6. Compound 5 ์˜ ๊ตฌ์กฐ 13 2. ๋ฏธ๋ฐฑ ํ™œ์„ฑ 15 โ…ฃ. ๊ฒฐ๋ก  16 โ…ค. ์ฐธ๊ณ ๋ฌธํ—Œ 37 Abstract 39Maste

    Organizational Structure and Organizational Effectiveness: Relationships and Reinterpretation

    No full text
    ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์กฐ์ง๊ตฌ์กฐ์™€ ์กฐ์งํšจ๊ณผ์„ฑ ๊ฐ„์˜ ๊ด€๊ณ„ ๋ถ„์„์„ ํ†ตํ•ด, ๋น„๊ต๋ก ์  ๊ด€์ ์—์„œ ์กฐ์งํšจ๊ณผ์„ฑ์— ๋ฏธ์น˜๋Š” ์กฐ์ง๊ตฌ์กฐ์˜ ์˜ํ–ฅ๋ ฅ์„ ์žฌํ•ด์„ํ•˜๊ณ ์ž ํ•˜๋Š”๋ฐ ์žˆ๋‹ค. ๋˜ํ•œ ๊ฐ„์ ‘์ ์ด๊ธฐ๋Š” ํ•˜์ง€๋งŒ ์กฐ์ง๊ตฌ์กฐ๋ก ์  ๊ด€์ ์—์„œ ์ •๋ถ€์˜ ์„ฑ๊ณผ๋ฅผ ์ œ๊ณ ํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์„ ๋ชจ์ƒ‰ํ•˜๊ณ ์žํ•˜๋Š” ๋ฐ๋„ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๋‹ค์‹œ ๋งํ•ด ์‹ ์ž์œ ์ฃผ์˜์— ๊ธฐ์ดˆํ•œ ์‹ ๊ณต๊ณต๊ด€๋ฆฌ๋ก ์  ํ–‰์ •๊ฐœํ˜์ด ์ง€๋‹Œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ์กฐ์ง๊ตฌ์กฐ๋ก ์  ๊ด€์ ์—์„œ ์ •๋ถ€์˜ ์„ฑ๊ณผ๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์„ ๋ชจ์ƒ‰ํ•ด ๋ณด๊ณ ์ž ํ•˜๋Š”๋ฐ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์กฐ์ง๊ตฌ์กฐ์™€ ์กฐ์งํšจ๊ณผ์„ฑ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ์ด๋ก ์  ๋…ผ์˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ธฐ์ดˆ์ž์น˜๋‹จ์ฒด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ๋ถ„์„์˜ ๊ฒฐ๊ณผ, ์กฐ์ง๊ตฌ์กฐ์™€ ์กฐ์งํšจ๊ณผ์„ฑ ๊ฐ„์—๋Š” ์ƒ๊ด€์„ฑ์ด ์กด์žฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ ์กฐ์ง๊ตฌ์กฐ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์š”์ธ ๊ฐ€์šด๋ฐ ๊ณต์‹ํ™”์˜ ์˜ํ–ฅ๋ ฅ์ด ์ง‘๊ถŒํ™”๋‚˜ ์ „๋ฌธํ™”์— ๋น„ํ•ด ์›”๋“ฑํ•˜๊ฒŒ ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์— ๋ฐ˜ํ•ด ํ•œ๊ตญ์˜ ๊ธฐ์ดˆ์ž์น˜๋‹จ์ฒด์˜ ๊ฒฝ์šฐ ๋นˆ๋ฒˆํ•œ ์ธ์‚ฌ์ด๋™์œผ๋กœ ์˜ํ•ด ์ „๋ฌธํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๋ ฅ์€ ์ƒ๋‹นํžˆ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์— ๋”ฐ๋ผ ์ •๋ถ€์˜ ์„ฑ๊ณผ๋ฅผ ์ œ๊ณ ํ•˜๊ธฐ ์œ„ํ•œ ์กฐ์ง๊ตฌ์กฐ์  ์ฐจ์›์˜ ๋Œ€์•ˆ์œผ๋กœ, ์ง‘๊ถŒํ™”์˜ ์—ญ๊ธฐ๋Šฅ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๊ณผ๊ฐํ•œ ๊ถŒํ•œ์œ„์ž„์ด ์ด๋ฃจ์–ด์ ธ์•ผ ํ•˜๊ณ , ์ง๋ฌด๋ชจํ˜ธ์„ฑ์„ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•œ ๊ณต์‹ํ™”์— ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์ผ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์•„์šธ๋Ÿฌ ์ „๋ฌธํ™”๋ฅผ ๋ฐฐ์–‘ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋นˆ๋ฒˆํ•œ ์ธ์‚ฌ์ด๋™์— ๋”ฐ๋ฅธ ํํ•ด๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์˜ ๋ชจ์ƒ‰์ด ์ด๋ฃจ์–ด์ ธ์•ผ ํ•  ๊ฒƒ์ด๋‹ค.The science of organizational analysis has developed to the stage where numerous research studies that have examined the relation of organizational structure to the behavior of organization members. Nonetheless, the discussion of organizational structure as a crucial part in organizational theory has not been generalized and its studies are less understood. Therefore, this study examines the literature addressing the empirical relationships, if any, between organizational structure and organizational effectiveness and provides how to improve performance at the level of government. As a result, organizational structure influences organizational effectiveness. In particular, the effect of formalization as one of the components of organizational structure is far higher than centralization and specialization. Accordingly, the delegation of authority to prevent the dysfunctions of centralization and formalization to remove the ambiguity of duty are necessary to improve government performance. Concluding recommendations for future research are offered to expand the subjects of study and develop measuring indicators

    ๊ด‘ํ•™์  ์ˆ˜์†Œ ๊ฒ€์ถœ์„ ์œ„ํ•œ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด ์ œ์ž‘์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2022. 8. ์žฅํ˜ธ์›.The need for carbon neutrality is growing in the face of the global crisis of climate change. Hydrogen is in the spotlight as a resource for realizing carbon neutrality. In addition, hydrogen has a high energy density, making it valuable as an energy resource. However, because hydrogen has a wide flammable range, low ignition energy and high flame speed, hydrogen leakage can lead to large-scale explosions. Therefore, it is essential to have a sensor that can quickly detect hydrogen leaks for commercialization of hydrogen. Palladium is the most popular hydrogen sensing material due to its sensitivity and selectivity to hydrogen. However, palladium has disadvantages in that the hydrogen measurement range is limited due to hysteresis, and mechanical stability is lowered due to embrittlement effect when the hydrogen content of palladium is increased. Various studies have been conducted to solve these shortcomings, and alloying with other metals is one of them. Among the hydrogen measurement methods using palladium, two representative methods are an electrical measurement method and an optical measurement method. The electrical measurement method has the advantage of being easy to manufacture as a general measurement method but has disadvantages such as the effect of electromagnetic interference (EMI) and the potential for explosion due to sparks. On the other hand, the optical measurement method has advantages in that it is not affected by electromagnetic interference (EMI), there is no possibility of explosion in the measurement method. In addition, since it can operate as a sensor in a very small area, it is possible to make a sensor with a very small size. The hydrogen sensor using localized surface plasmon resonance is a high-performance hydrogen sensor that has been in the spotlight for its high sensitivity and fast response time among optical hydrogen sensors. Using localized surface plasmon resonance requires fabricating nanoparticle arrays. Electron beam lithography and nanosphere lithography are used as methods for fabricating the array of nanoparticles. Electron beam lithography is a manufacturing method that is difficult to apply due to high process cost and high process difficulty. Nanosphere lithography has been most used due to its low process cost and easy fabrication, but it has poor reproducibility and has limitations in producing patterned nanoparticle arrays. In this study, a method of efficiently fabricating a nanoparticle array for a hydrogen sensor based on local surface plasmon resonance and the optical and hydrogen measurement characteristics of the nanoparticle array were studied. First, a method for fabricating nanoparticles with a hexagonal structure using nanoimprint lithography was demonstrated. It was shown that an array of 160 nm diameter nanoparticles with a 200 nm pitch hexagonal structure was effectively fabricated through an optimized process. To identify the palladium-gold composition suitable for a localized surface plasmon resonance-based hydrogen sensor using nanoimprint lithography, palladium-gold nanoparticle arrays of various compositions were fabricated, and their crystallographic properties and surface composition were analyzed. In the alloying process by heat treatment, it was observed that the surface composition of the palladium-gold nanoparticles was changed according to the heat treatment temperature, and it was found that the heat treatment temperature at 600 ยฐC was the optimal annealing temperature. However, nanoimprint lithography has two disadvantages: the need to change the nanoimprint mold to change the diameter or pattern of nanoparticles, and the difficulty and cost of the manufacturing mold are greatly increased to produce nanoparticle arrys with the diameter of 100 nm or less. To overcome these disadvantages, nanotip indentation lithography has been proposed to fabricate nanoparticle arrays. Nanoparticle fabrication through nanotip indentation lithography has been used very limitedly, such as nanoparticle fabrication for SERS. However, since this study shows that nanoparticle arrays can be formed over a wide area with a width of 60 ฮผm and a length of 60 ฮผm, its application is expected to be diversified. In this study, three factors influencing the nano-particle diameter in the nano-tip indentation lithography process were investigated in detail. Considering these factors, it was shown that the diameter of nanoparticles was efficiently controlled from 56 nm to 132 nm by controlling the particles at intervals of several nanometers. In addition, the optimized process conditions for each particle size are included in the dissertation. Finally, the optical properties and hydrogen measurement performance of palladium-gold nanoparticle arrays fabricated through nanoimprint lithography and nanotip indentation lithography were investigated. The shift of the local surface plasmon resonance peak of the palladium-gold nanoparticle array under various conditions was measured and the cause was explained. The hydrogen measurement characteristics of various palladium-gold compositions were analyzed, and the Pd7Au3 composition was confirmed to be the most suitable composition, and the cause of the improvement of the hydrogen measurement characteristics when alloyed at 600ยฐC was analyzed and described. Through this study, it is expected that the nanoparticle manufacturing method using nanotip indentation lithography will be used in various fields. And also, it is expected that a better hydrogen sensor than the current hydrogen sensor will be developed through a method of improving the hydrogen measurement characteristics by controlling the surface composition of nanoparticles.๊ธฐํ›„ ๋ณ€ํ™”๋ผ๋Š” ์ „์ง€๊ตฌ์  ์œ„๊ธฐ์— ๋งž์„œ ํƒ„์†Œ ์ค‘๋ฆฝ์˜ ํ•„์š”์„ฑ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ˆ˜์†Œ๋Š” ํƒ„์†Œ์ค‘๋ฆฝ์„ ์‹คํ˜„ํ•˜๊ธฐ ์œ„ํ•œ ์ž์›์œผ๋กœ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ˆ˜์†Œ์˜ ๋†’์€ ์—๋„ˆ์ง€ ๋ฐ€๋„๋Š” ์—๋„ˆ์ง€ ์ž์›์œผ๋กœ์จ ๊ฐ€์น˜๊ฐ€ ๋†’๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ˆ˜์†Œ๋Š” ๋„“์€ ๊ฐ€์—ฐ๋ฒ”์œ„์™€ ๋‚ฎ์€ ์ ํ™”์—๋„ˆ์ง€ ๊ทธ๋ฆฌ๊ณ  ๋น ๋ฅธ ํ™”์—ผ์†๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ˆ˜์†Œ ๋ˆ„์ถœ์€ ๋Œ€๊ทœ๋ชจ ํญ๋ฐœ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ˆ˜์†Œ์˜ ์ƒ์šฉํ™”๋ฅผ ์œ„ํ•ด ์ˆ˜์†Œ ๋ˆ„์ถœ์„ ๋น ๋ฅด๊ฒŒ ๊ฐ์ง€ํ•  ์„ผ์„œ๊ฐ€ ๋ฐ˜๋“œ์‹œ ๊ฐ–์ถ”์–ด์ ธ์•ผ ํ•œ๋‹ค. ํŒ”๋ผ๋“์€ ์ˆ˜์†Œ์— ๋Œ€ํ•œ์€ ๋†’์€ ๊ฐ๋„์™€ ์„ ํƒ๋„๋กœ ์ธํ•ด ๊ฐ€์žฅ ๊ฐ๊ด‘๋ฐ›๋Š” ์ˆ˜์†Œ ๊ฐ์ง€ ์žฌ๋ฃŒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํŒ”๋ผ๋“์€ ํžˆ์Šคํ…Œ๋ฆฌ ์‹œ์Šค๋กœ ์ธํ•ด ์ˆ˜์†Œ ์ธก์ • ์˜์—ญ์ด ์ œํ•œ์žˆ๊ณ , ํŒ”๋ผ๋“ ๋‚ด์˜ ์ˆ˜์†Œํ•จ๋Ÿ‰์ด ๋†’์•„์ง€๋ฉด ์ทจํ™” ํšจ๊ณผ๋กœ ์ธํ•ด ๊ธฐ๊ณ„์  ์•ˆ์ •์„ฑ์ด ๋–จ์–ด์ง€๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹ค๋ฅธ ๊ธˆ์†๊ณผ์˜ ํ•ฉ๊ธˆํ™”๋„ ๊ทธ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ˆ˜์†Œ์ธก์ • ๋ฐฉ๋ฒ• ์ค‘ ๋Œ€ํ‘œ์ ์ธ ๋‘๊ฐ€์ง€ ๋ฐฉ๋ฒ•์€ ์ „๊ธฐ์  ์ธก์ • ๋ฐฉ๋ฒ•๊ณผ ๊ด‘ํ•™์  ์ธก์ • ๋ฐฉ๋ฒ•์ด๋‹ค. ์ „๊ธฐ์  ์ธก์ • ๋ฐฉ๋ฒ•์€ ์ผ๋ฐ˜์ ์ธ ์ธก์ • ๋ฐฉ๋ฒ•์œผ๋กœ ์„ผ์„œ ์ œ์ž‘์ด ์‰ฝ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์ „์žํŒŒ ๊ฐ„์„ญ(EMI)์— ์˜ํ•œ ์˜ํ–ฅ๊ณผ ์ŠคํŒŒํฌ์— ์˜ํ•œ ์ž ์žฌ์  ํญ๋ฐœ ๊ฐ€๋Šฅ์„ฑ์ด๋ผ๋Š” ๋‹จ์ ์ด ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ฐ˜๋ฉด ๊ด‘ํ•™์  ์ธก์ • ๋ฐฉ๋ฒ•์€ ์ „์žํŒŒ์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๊ณ  ์ธก์ • ๋ฐฉ์‹์— ํญ๋ฐœ ๊ฐ€๋Šฅ์„ฑ์ด ์—†์œผ๋ฉฐ, ๋งค์šฐ ์ž‘์€ ํ™œ์„ฑ ๋ฌผ์งˆ ์˜์—ญ์—์„œ๋„ ์„ผ์„œ๋กœ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ž‘๊ฒŒ ์„ผ์„œ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ด‘ํ•™์  ์ˆ˜์†Œ์„ผ์„œ ์ค‘์—์„œ๋„ ๊ตญ์†Œํ™” ๋œ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช…์„ ์ด์šฉํ•œ ์ˆ˜์†Œ ์„ผ์„œ๋Š” ๋†’์€ ๋ฏผ๊ฐ๋„์™€ ๋น ๋ฅธ ์‘๋‹ต์†๋„๋กœ ๊ฐ๊ด‘๋ฐ›๋Š” ๊ณ ์„ฑ๋Šฅ ์ˆ˜์†Œ ์„ผ์„œ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ตญ์†Œํ™”๋œ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช…์„ ์ด์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‚˜๋…ธ ์ž…์ž์˜ ๋ฐฐ์—ด์„ ์ œ์ž‘ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ๋‚˜๋…ธ ์ž…์ž์˜ ๋ฐฐ์—ด์„ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ „์ž๋น” ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ์™€ ๋‚˜๋…ธ๊ตฌ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๊ฐ€ ์žˆ๋‹ค. ์ „์ž๋น” ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋Š” ๋†’์€ ๊ณต์ • ๋‚œ์ด๋„์™€ ๋น„์‹ผ ๊ณต์ • ๋น„์šฉ ๋•Œ๋ฌธ์— ์‰ฝ๊ฒŒ ์ ์šฉํ•˜๊ธฐ ํž˜๋“  ์ œ์ž‘ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ฐ˜๋ฉด, ๋‚˜๋…ธ๊ตฌ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋Š” ๋‚ฎ์€ ๊ณต์ • ๋น„์šฉ๊ณผ ์†์‰ฌ์šด ์ œ์ž‘์œผ๋กœ ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜์—ˆ์ง€๋งŒ, ์žฌ์—ฐ์„ฑ์ด ๋–จ์–ด์ง€๊ณ  ๊ตฌ์กฐํ™”๋œ ๋‚˜๋…ธ ์ž…์ž์˜ ๋ฐฐ์—ด์„ ๋งŒ๋“œ๋Š”๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ์†Œํ™”๋œ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช… ๊ธฐ๋ฐ˜์˜ ์ˆ˜์†Œ ์ธก์ •์šฉ ๋‚˜๋…ธ ์ž…์ž์˜ ๋ฐฐ์—ด์„ ํšจ์œจ์ ์œผ๋กœ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์ œ์ž‘๋œ ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด์˜ ๊ด‘ํ•™์  ํŠน์„ฑ ๋ฐ ์ˆ˜์†Œ ์ธก์ • ํŠน์„ฑ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋จผ์ € ๋‚˜๋…ธ์ž„ํ”„๋ฆฐํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•œ ์œก๊ฐํ˜• ๊ตฌ์กฐ์˜ ๋‚˜๋…ธ์ž…์ž๋ฅผ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‹œ์—ฐํ•˜์˜€๋‹ค. ์ตœ์ ํ™”๋œ ๊ณต์ •์„ ํ†ตํ•ด 200 nm ํ”ผ์น˜์˜ ์œก๊ฐํ˜• ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” 160 nm ์ง๊ฒฝ์˜ ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ๋ณด์˜€์˜€์œผ๋ฉฐ, ๋‚˜๋…ธ์ž„ํ”„๋ฆฐํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตญ์†Œํ™”๋œ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช… ๊ธฐ๋ฐ˜์˜ ์ˆ˜์†Œ ์„ผ์„œ์— ์ ํ•ฉํ•œ ํŒ”๋ผ๋“-๊ณจ๋“œ ์กฐ์„ฑ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์กฐ์„ฑ์˜ ํŒ”๋ผ๋“-๊ณจ๋“œ ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด์„ ์ œ์ž‘ํ•˜๊ณ  ์ด์˜ ๊ฒฐ์ •ํ•™์  ํŠน์„ฑ๊ณผ ํ‘œ๋ฉด ์กฐ์„ฑ ๋“ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์—ด์ฒ˜๋ฆฌ์— ์˜ํ•œ ํ•ฉ๊ธˆํ™” ๊ณผ์ •์—์„œ ์—ด์ฒ˜๋ฆฌ ์˜จ๋„์— ์˜ํ•ด ํŒ”๋ผ๋“-๊ณจ๋“œ ๋‚˜๋…ธ ์ž…์ž์˜ ํ‘œ๋ฉด ์กฐ์„ฑ์ด ๋‹ฌ๋ผ์ง€๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๊ณ , 600 ยฐC์—์„œ ์—ด์ฒ˜๋ฆฌํ•˜์˜€ํ•˜๋Š” ๊ฒƒ์ด ์ตœ์ ์˜ ์—ด์ฒ˜๋ฆฌ ์กฐ๊ฑด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‚˜๋…ธ์ž„ํ”„๋ฆฐํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋Š” ๋‚˜๋…ธ ์ž…์ž์˜ ์ง๊ฒฝ ํ˜น์€ ํŒจํ„ด์„ ๋ฐ”๊พธ๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‚˜๋…ธ์ž„ํ”„๋ฆฐํŠธ ๋ชฐ๋“œ๋ฅผ ๋ฐ”๊พธ์•ผ ํ•œ๋‹ค๋Š” ๋‹จ์  ์žˆ์—ˆ๊ณ , ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ๋‚˜๋…ธํŒ ์ธ๋ดํ…Œ์ด์…˜ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ํ†ตํ•œ ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด ์ œ์ž‘์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‚˜๋…ธํŒ ์ธ๋ดํ…Œ์ด์…˜ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ํ†ตํ•œ ๋‚˜๋…ธ ์ž…์ž ์ œ์ž‘์€ ์ด์ „๊นŒ์ง€๋Š” SERS์šฉ ๋‚˜๋…ธ ์ž…์ž ์ œ์ž‘ ๋“ฑ ๋งค์šฐ ์ œํ•œ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด์ ธ ์™”์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด์„œ ๊ฐ€๋กœ 60 um, ์„ธ๋กœ 60 um์˜ ๋Œ€๋ฉด์  ์˜์—ญ์— ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ์“ฐ์ž„์ƒˆ๊ฐ€ ๋‹ค์–‘ํ™”๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚˜๋…ธํŒ ์ธ๋ดํ…Œ์ด์…˜ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ณต์ •์—์„œ ๋‚˜๋…ธ ์ž…์ž ์ง๊ฒฝ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” 3๊ฐ€์ง€ ์š”์†Œ๋“ค์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์กฐ์‚ฌํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ˆ˜ ๋‚˜๋…ธ๋ฏธํ„ฐ ๊ฐ„๊ฒฉ์œผ๋กœ ์ž…์ž๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ๋‚˜๋…ธ ์ž…์ž์˜ ์ง๊ฒฝ์„ 56 nm์—์„œ 132 nm๊นŒ์ง€ ํšจ์œจ์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ์ž…์ž์˜ ํฌ๊ธฐ ๋ณ„๋กœ ์ตœ์ ํ™”๋œ ๊ณต์ • ์กฐ๊ฑด์„ ๋…ผ๋ฌธ์— ์ˆ˜๋กํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‚˜๋…ธ์ž„ํ”„๋ฆฐํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ์™€ ๋‚˜๋…ธํŒ ์ธ๋ดํ…Œ์ด์…˜ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ํ†ตํ•ด ์ œ์ž‘๋œ ํŒ”๋ผ๋“-๊ณจ๋“œ ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด์˜ ๊ด‘ํ•™์  ํŠน์„ฑ๊ณผ ์ˆ˜์†Œ ์ธก์ • ์„ฑ๋Šฅ์— ๊ด€ํ•ด ์กฐ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์˜ ํŒ”๋ผ๋“-๊ณจ๋“œ ๋‚˜๋…ธ ์ž…์ž ๋ฐฐ์—ด์˜ ๊ตญ์†Œํ™”๋œ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช… ํ”ผํฌ์˜ ์ด๋™์„ ์ธก์ •ํ•˜์˜€๊ณ , ๊ทธ ์›์ธ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์—ด์ฒ˜๋ฆฌ ์˜จ๋„์— ๋”ฐ๋ผ ๊ตญ์†Œํ™”๋œ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช… ํ”ผํฌ๊ฐ€ ๋ณ€ํ™”ํ•˜๋Š” ์ด์ „์— ๋ณด๊ณ ๋œ ํ”ผํฌ์˜ ์ด๋™๋ณด๋‹ค ํฐ ์ด๋™์ด ๊ด€์ฐฐ๋˜์—ˆ๊ณ , ์ด๋Ÿฌํ•œ ์ด๋™์— ์ด์œ ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•˜์˜€๋‹ค. ๋‹ค์–‘ํ•œ ํŒ”๋ผ๋“-๊ณจ๋“œ ์กฐ์„ฑ์˜ ์ˆ˜์†Œ ์ธก์ • ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, Pd7Au3 ์กฐ์„ฑ์ด ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์กฐ์„ฑ์ž„์„ ํ™•์ธํ•˜์˜€๊ณ , 600 ยฐC์—์„œ ํ•ฉ๊ธˆํ™” ํ•˜์˜€์„ ๋•Œ ์ˆ˜์†Œ ์ธก์ • ํŠน์„ฑ์ด ํ–ฅ์ƒ๋˜๋Š” ์›์ธ์— ๋Œ€ํ•ด์„œ ๋ถ„์„ํ•˜์—ฌ ์„œ์ˆ ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, ๋‚˜๋…ธํŒ ์ธ๋ดํ…Œ์ด์…˜ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•œ ๋‚˜๋…ธ ์ž…์ž ์ œ์ž‘ ๋ฐฉ๋ฒ•์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์‚ฌ์šฉ๋˜์–ด์ง€๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•˜๋ฉฐ, ๋‚˜๋…ธ ์ž…์ž์˜ ํ‘œ๋ฉด ์กฐ์„ฑ ์ œ์–ด๋ฅผ ํ†ตํ•ด ์ˆ˜์†Œ ์„ผ์„œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•ด ํ˜„์žฌ์˜ ์ˆ˜์†Œ ์„ผ์„œ๋ณด๋‹ค ๋” ๋‚˜์€ ์ˆ˜์†Œ ์„ผ์„œ๊ฐ€ ๊ฐœ๋ฐœ๋˜๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค.Abstract i Contents vi List of Figures x List of Tables xviii Chapter 1. Plasmonic hydrogen sensor: Principle and major material 1 1.1. Introduction 1 1.2. History of LSPR based optical hydrogen sensor 7 1.3. Principle of LSPR based optical hydrogen sensor 9 1.4. Major materials for LSPR based optical hydrogen sensor 12 1.5. Fabrication methods for LSPR based optical hydrogen sensor 14 1.6. Purpose and organiztion of this thesis 17 1.7. Bibliography 19 Chapter 2. Fabrication of PdAu nanoparticle arrays using nanoimprint lithography 27 2.1. Introduction 27 2.2. Experimental procedures 29 2.2.1. Nanoparticle array fabrication procedures using nanoimprint lithography 29 2.2.2. Material characterization 30 2.3. Results and discussions 33 2.2.1. Fabrication results of PdAu NP arrays 33 2.3.2. Characterization of PdAu Nanoparticle Arrays by Composition 40 2.3.3. Characterization of Pd7Au3 nanoparticle arrays according to various annealing temperatures 44 2.4. Summary 55 2.5. Bibliography 56 Chapter 3. Study on the fabrication of plasmonic nanoparticle arrays using nanotip indentation lithography 61 3.1. Introduction 61 3.2. Experimental details 63 3.2.1. Nanoparticle array fabrication process using nanotip indentation lithography 63 3.2.2. Process optimization of nanoparticle fabrication using nanotip indentation lithography 65 3.3. Results and discussions 69 3.3.1. Control parameters and controlled results of each nano indentation lithography process 69 3.3.2. Factors determining the diameter of nanoparticles in nanotip indentation lithography 76 3.3.3. Fabrication results of nanoparticle arrays using nanotip indentation lithography 86 3.4. Summary 94 3.5 Bibliography 95 Chapter 4. Study on optical hydrogen measurement of PdAu alloy nanoparticle arrays 99 4.1. Introduction 99 4.2. Experimental details 100 4.2.1. FDTD simulation of Pd nanodisk 100 4.2.2. Evaluation of optical properties and hydrogen sensing properties of PdAu nanoparticle arrays 103 4.3. Results and discussions 106 4.3.1. Comparison of transmittance change between random and hexagonal structures 106 4.3.2. FDTD simulation results of the LSPR peak shift for Pd nanoparticle arrays of various diameter 109 4.3.3. The optical properties of nanoimprinted PdAu nanoparticle arrays 111 4.3.4. The optical properties of PdAu nanoparticle arrays fabricated by nanotip indentation lithography 121 4.3.5. The evaluation of optical hydrogen sensing properties for various condition of PdAu nanoparticle array 125 4.4. Summary 139 4.5 Bibliography 140 Chapter 5. Conclusion 144 ๊ตญ๋ฌธ ์ดˆ๋ก 147๋ฐ•

    A Study on the Social and Demographic Characteristics of Acceptors of IntraUterine Contraceptive Device Through Special Incentive Program

    No full text
    I. Introduct ion The present paper describes the findings and experiences obtained by the Urban Population Studies Center, College of Medicine, Seoul National Universit y. from a prournm named, "Special Incentive Program," or more specifically, a program promoting acceptance of intra uterine contrncept ivc loops thro-ugh referral agents who are on special incentives. Data have been collected from 502 women residing in Chunho Dong, Sun!~'dong Gu, Seoul Citv who accepted insertion of IUD during the period from July 1969 to June H;70. The referral agents consist of midwives, nurses in obstetrical and gynecological clinics and ph:lrmaceucists(9 agents in total). II. Basic Characteristics of IUD Acceptors Women with the following social ane! demographic charactcrist ics h:1\'P select ivi-lv acrepted IUD Ihrough this program: 1. Women in the ages 25-34 (67 per cent of all acceptors) 2. Women who belong to lower cducnt ional st rarn, namely those who have had no formal education and with only primary school education (totaling 83 per cent of all acceptors) 3. Women having experienced prior to acceptance of IUD an average 4 pregnancies. 4. Women experiencing 2 live-births (64 per cent) and 3 Iivebirths. 5. Women with 2 living children (62 per cent), the average numher of living children being 3. O. 6. Women with an experience of induced abortion (44 per cent). This percentage is much higher than women in the reproductive ages residing in the same area, having the same experience (30 per cent). The women under the Special Incentive Program have experienced an average of O. 8 abortions induced. 7. Women having married at an average of 21.7 years. General women in reproductive ages in the same area have married at an average age of 20. 2. 8. A great majority of the women under this program (74 per cent) had been married for five years or longer. The average for duration of marriage was calculated at 8.9 years, 1II. Family Planning Practices Prior to Acceptance Only 8 among 502 women accepting IUDs through this program arc found to have used one or more kinds of contraceptive methods, prior to the acceptance uf IUD. Of these. 6 women were using traditional methods of contraception, while only 2 women had experience of using IUD before accepting it throug h the "i ncentive" program. IV. Other Findings The cross tabulations containcd in the Korean text are intended to show the interrelations between such experiences as marriage, pregnancy and delivery and abortions spontaneous or induced and age of women at acceptance of IUD and education, etc. On account, however, of the limitation in the size of the - 5 6 base for this study and also of the unavailability of data for "general" women processed in the same way to permit cornparisions, much of the information presented here remains to be compared with pertinent data, when they are made available
    corecore