348 research outputs found

    Does Emotional Labor Increase the Risk of Suicidal Ideation among Firefighters?

    Get PDF
    PURPOSE: To investigate whether emotional labor is associated with suicidal ideation in Korean firefighters. MATERIALS AND METHODS: Data were obtained from the Firefighter Research: Enhancement of Safety & Health (FRESH) Study, which was designed to investigate the effects of job characteristics on mental and physical health among Korean firefighters. A total of 18101 firefighters were chosen from a nationwide sample. The Korean Emotional Labor Scale (K-ELS) was used to evaluate exposure to emotional labor, which consisted of five sub-factors: emotional demand and regulation, overload and conflict in customer service, emotional disharmony and hurt, organizational surveillance and monitoring, and lack of a supportive and protective system in the organization. RESULTS: Firefighters who were in the risk group were more likely to experience suicidal ideation than those in the normal group for each of the five sub-scales of emotional labor. The estimated mean values for suicidal ideation in the risk group were significantly higher than those in the normal group: 1.667 (95% CI: 1.344-2.069) for emotional demand and regulation, 1.590 (95% CI: 1.243-2.033) for overload and conflict in customer service, 2.409 (95% CI: 1.954-2.969) for emotional disharmony and hurt, 2.214 (95% CI: 1.832-2.676) for organizational surveillance and monitoring, and 1.665 (95% CI: 1.387-1.999) for lack of a supportive and protective system in the organization. CONCLUSION: These results suggest that experience and exposure to chronic and excessive emotional labor might play a crucial role in the development of suicidal ideation among firefighters.ope

    마르코프 랜덤 필드 학습 및 추론과 그래프 라쏘를 활용한 공정 이상 감지 및 진단 방법론

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 화학생물공학부, 2019. 2. 이원보.Fault detection and diagnosis (FDD) is an essential part of safe plant operation. Fault detection refers to the process of detecting the occurrence of a fault quickly and accurately, and representative methods include the use of principal component analysis (PCA), and autoencoders (AE). Fault diagnosis is the process of isolating the root cause node of the fault, then determining the fault propagation path to identify the characteristic of the fault. Among the various methods, data-driven methods are the most widely-used, due to their applicability and good performance compared to analytical and knowledge-based methods. Although many studies have been conducted regarding FDD, no methodology for conducting every step of FDD exists, where the fault is effectively detected and diagnosed. Moreover, existing methods have limited applicability and show limited performance. Previous fault detection methods show loss of variable characteristics in dimensionality reduction methods and have large computational loads, leading to poor performance for complex faults. Likewise, preceding fault diagnosis methods show inaccurate fault isolation results, and biased fault propagation path analysis as a consequence of implementing knowledge-based characteristics for construction of digraphs of process variable relationships. Thus a comprehensive methodology for FDD which shows good performance for complex faults and variable relationships, is required. In this study, an efficient and effective comprehensive FDD methodology based on Markov random fields (MRF) modelling is proposed. MRFs provide an effective means for modelling complex variable relationships, and allows efficient computation of marginal probability of the process variables, leading to good performance regarding FDD. First, a fault detection framework for process variables, integrating the MRF modelling and structure learning with iterative graphical lasso is proposed. Graphical lasso is an algorithm for learning the structure of MRFs, and is applicable to large variable sets since it approximates the MRF structure by assuming the relationships between variables to be Gaussian. By iteratively applying the graphical lasso to monitored variables, the variable set is subdivided into smaller groups, and consequently the computational cost of MRF inference is mitigated allowing efficient fault detection. After variable groups are obtained through iterative graphical lasso, they are subject to the MRF monitoring framework that is proposed in this work. The framework obtains the monitoring statistics by calculating the probability density of the variable groups through kernel density estimation, and the monitoring limits are obtained separately for each group by using a false alarm rate of 5%. Second, a fault isolation and propagation path analysis methodology is proposed, where the conditional marginal probability of each variable is computed via inference, then is used to calculate the conditional contribution of individual variables during the occurrence of a fault. Using the kernel belief propagation (KBP) algorithm, which is an algorithm for learning and inferencing MRFs comprising continuous variables, the parameters of MRF are trained using normal process data, then the individual conditional contribution of each variable is calculated for every sample of the fault process data. By analyzing the magnitude and reaction speed of the conditional contribution of individual variables, the root fault node can be isolated and the fault propagation path can be determined effectively. Finally, the proposed methodology is verified by applying it to the well-known Tennessee Eastman process (TEP) model. Since the TEP has been used as a benchmark process over the past years for verifying various FDD methods, it serves the purpose of performance comparison. Also, since it consists of multiple units and has complex variable relationships such as recycle loops, it is suitable for verifying the performance of the proposed methodology. Application results show that the proposed methodology performs better compared to state-of-the-art FDD algorithms, in terms of both fault detection and diagnosis. Fault detection results showed that all 28 faults designed inside the TEP model were detected with a fault detection accuracy of over 95%, which is higher than any other previously proposed fault detection method. Also, the method showed good fault isolation and propagation path analysis results, where the root-cause node for every fault was detected correctly, and the characteristics of the initiated faults were identified through fault propagation path analysis.공정 이상의 감지 및 진단 시스템은 안전한 공정 운영에 필수적인 부분이다. 이상 감지는 이상이 발생했을 경우 즉각적으로 이를 정확하게 감지하는 프로세스를 의미하며, 대표적인 방법으로는 주성분 분석 및 오토인코더를 활용한 감지 방법론이 있다. 이상 진단은 결함의 근본 원인이 되는 노드를 격리하고, 이상의 전파 경로를 탐지하여 이상의 특성을 식별하는 프로세스이다. 공정 이상의 감지 및 진단 방법론에는 모델 분석 방법론, 지식 기반 방법론 등의 다양한 방법론이 있지만, 공정에 대한 적용 가능성과 성능 측면에서 가장 유용하다고 알려져 있는 데이터 기반 방법론이 널리 활용되고 있다. 공정 이상의 감지 및 진단에 대한 데이터 기반 방법론은 다방면으로 연구되어 왔지만, 이상 감지 및 진단을 모두 효과적으로 수행할 수 있는 방법론은 소수에 불과하며, 존재하고 있는 방법론들 역시 두 분야 모두에서 좋은 성능을 보여주고 있는 경우는 없다. 이는 기존 방법론들의 적용 가능성이 제한되어 있으며 공정에 적용시 제한된 성능을 보여주기 때문이다. 이상 감지의 경우, 대용량의 데이터를 처리할 때 발생하는 과부하로 인한 감지 능력의 저하, 차원 축소 방법론들을 사용할 시 이에 따른 변수 특성 반영의 부정확성, 그리고 축소된 차원에서의 계산으로 인하여 복합적인 형태의 이상을 감지해 내지 못하는 문제 등이 있다. 이상 진단의 경우 이상의 원인이 되는 노드의 격리 및 이상 전파 경로에 대한 분석이 부정확한 경우가 많은데, 이는 차원 축소로 인하여 공정 변수의 특성이 소실되는 성질이 있고, 방향성 그래프를 활용할 시 공정에 대한 선행 지식을 적용함으로써 편향된 이상 진단 결과가 나타나는 경우들이 발생하기 때문이다. 기존 방법론들에 대한 이러한 한계점들을 고려해 봤을때, 변수 각각의 특성이 소실되지 않도록하여 효과적으로 이상에 대한 감지와 진단을 모두 수행해 낼 수 있으면서도, 계산상의 효율성을 갖춘, 이상 감지 및 진단에 대한 통합된 방법론의 개발이 시급하다고 할 수 있다. 본 연구에서는 마르코프 랜덤 필드 모델링과 그래프 라쏘를 기반으로하여, 이상에 대한 감지 및 진단을 모두 수행해 낼 수 있는 통합적인 공정 모니터링 방법론을 제안한다. 마르코프 랜덤 필드는 비선형적이고 비정규적인 변수 관계를 효과적으로 모델링할 수 있게 해주고, 이상 발생 상황에서의 모니터링 통계값 계산시에 각 변수의 특성을 반영하여 확률 계산을 해 낼 수 있기 때문에 효과적인 이상 감지 및 진단 수단이 된다. 기본적으로 마르코프 랜덤 필드는 확률값 계산시의 부하가 크지만, 본 연구에서는 그래프 라쏘 방법론을 추가적으로 함께 활용하여 계산 상의 부하를 줄이고 효율적으로 이상 감지 및 진단을 해낼 수 있도록 하였다. 본 연구에서 제안된 내용들은 다음과 같다. 첫째, 공정 변수를 마르코프 랜덤 필드 형태로 모델링하고, 그래프 라쏘를 활용해 마르코프 랜덤 필드의 구조를 얻을 수 있는 방법론을 제시하였다. 그래프 라쏘는 마르코프 랜덤 필드의 구조를 파악하기 위한 방법론인데, 변수 간의 관계를 가우스 함수의 형태로 가정하기 때문에 다변수 시스템에서도 효율적으로 그래프 구조를 파악할 수 있도록 해준다. 본 연구에서는 반복적 그래프 라쏘를 제안하여 모든 공정 변수들이 상관관계가 높은 변수 집단으로 묶일 수 있도록 하였다. 이를 활용하면 전체 공정 변수 집단을 다수의 소집단으로 분류하고 각각에 대한 그래프 구조를 파악할 수 있게 되는데, 크게 두 가지의 효과를 얻을 수 있다. 우선적으로 마르코프 랜덤 필드 확률 계산의 대상이 되는 변수의 개수를 줄여줌으로써 계산 부하를 줄이고 효율적인 이상 감지가 이루어질 수 있도록 한다. 또한 상관관계가 높은 집단끼리 묶여서 모델링 된 그래프를 활용하여 이상의 진단 과정에서 공정 변수 간의 관계 파악 및 전파 경로 분석을 용이하도록 해준다. 두 번째로, 마르코프 랜덤 필드의 확률 추론을 기반으로 하여 효과적으로 이상 감지가 이루어질 수 있도록 하는 방법론을 제안하였다. 반복적 그래프 라쏘를 통해 얻어진 다수의 변수 소집단에 대하여 각각 확률 추론을 적용하여 이상 감지를 진행하게 되는데, 제안된 방법론에서는 커널 밀도 추정 방법론을 활용하였다. 정상 데이터를 활용하여 각 변수들에 대한 커널 밀도의 대역폭을 학습하고, 이상 데이터가 발생할 시 이를 활용한 커널 밀도 추정법을 사용하여 이상감시 통계치를 계산하게 된다. 이때 허위 진단율을 5%로 가정하여 각각의 소집단에 대한 공정 감지 기준선을 설정하였고, 이상감시 통계치가 공정 감시 기준선보다 낮게 될 경우 이상이 감지된다. 세 번째로, 이상 발생 시 원인이 되는 변수의 격리 및 이상 전파 경로 분석을 효과적으로 수행할 수 있는 방법론을 제시하였다. 제시된 방법론에서는 마르코프 랜덤 필드의 확률 추론 과정을 활용하여 이상 발생 시 각 변수의 조건부 한계 확률을 계산하고, 이를 활용해 새롭게 정의된 조건부 기여도 값을 계산하여, 이상에 대한 각 변수의 기여도를 파악할 수 있도록 한다. 이 과정에서는 커널 신뢰도 전파 방법론이 사용되는데, 이는 연속 변수를 가지는 마르코프 랜덤 필드에 대하여 확률 추론을 수행할 수 있도록 하는 방법론이다. 커널 신뢰도 전파법을 사용하면 정상 상태의 공정 데이터를 활용하여 마르코프 랜덤 필드를 구성하는 파라미터 값들을 학습하고, 이상 발생시 이상 데이터에 대하여 각 변수의 조건부 기여도 값을 계산할 수 있게 된다. 이 때 계산된 조건부 기여도 값의 크기와, 이상 발생 이후 각 변수의 조건부 기여도 값의 변화 반응 속도를 종합적으로 판단하여, 이상의 원인 변수에 대한 격리와 이상 전파 경로 분석을 효과적으로 수행할 수 있게 된다. 본 연구에서는 제안된 이상 감지 및 진단 방법론의 성능을 검증하기 위하여 테네시 이스트만 공정 모델에 이를 적용하고 결과를 분석하였다. 테네시 이스트만 공정은 수년간 공정 감시 방법론을 검증하기 위한 벤치마크 공정으로 널리 사용되어 왔기 때문에, 제시된 방법론을 이에 적용해 봄으로써 다른 공정 감시 방법론들과의 성능을 비교해 볼 수 있었다. 또한 다수의 단위 공정을 포함하고 있고, 순환적인 변수 관계 역시 포함하고 있기 때문에 제시된 방법론의 성능을 시험해 보기에 적합했다. 테네시 이스트만 공정 내부에는 28개 종류의 이상이 프로그램 상에 내장되어 있는데, 제시된 공정 감지 방법론을 적용한 결과 모든 이상에 대하여 96% 이상의 높은 이상 감지율을 나타내었다. 이는 기존에 제시된 공정 감시 방법론들에 비하여 월등히 높은 수치였다. 또한 이상 진단 성능을 분석해 본 결과, 모든 이상에 대하여 원인이 되는 노드를 효과적으로 파악할 수 있었고, 이상 전파 경로 역시 정확하게 탐지하여 기존 방법론들과는 차별화된 성능을 나타내었다. 제시된 방법론을 테네시 이스트만 공정에 적용해 봄으로써, 본 연구 내용이 공정 이상의 감지 및 진단에 대한 통합적인 방법론 중에서 가장 우수한 성능을 나타내는 것을 확인할 수 있었다.Contents Abstract i Contents iv List of Tables vii List of Figures ix 1 Introduction 1 1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Markov Random Fields Modelling, Graphical Lasso, and Optimal Structure Learning 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 MRF Modelling & Structure Learning . . . . . . . . . . . . . . . . . 19 2.4.1 MRF modelling in process systems . . . . . . . . . . . . . . 19 2.4.2 Structure learning using iterative graphical lasso . . . . . . . 20 2.5 Application of Iterative Graphical Lasso on the TEP . . . . . . . . . . 24 3 Efficient Process Monitoring via the Integrated Use of Markov Random Fields Learning and the Graphical Lasso 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 MRF Monitoring Integrated with Graphical Lasso . . . . . . . . . . . 35 3.2.1 Step 1: Iterative graphical lasso . . . . . . . . . . . . . . . . 36 3.2.2 Step 2: MRF monitoring . . . . . . . . . . . . . . . . . . . . 36 3.3 Implementation of Glasso-MRF monitoring to the Tennessee Eastman process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 41 3.3.2 Glasso-MRF monitoring on TEP . . . . . . . . . . . . . . . . 48 3.3.3 Fault detection accuracy comparison with other monitoring techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.4 Fault detection speed & fault propagation . . . . . . . . . . . 95 4 Process Fault Diagnosis via Markov Random Fields Learning and Inference 101 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Probabilistic graphical models & Markov random fields . . . 106 4.2.2 Kernel belief propagation . . . . . . . . . . . . . . . . . . . . 107 4.3 Fault Diagnosis via MRF Modeling . . . . . . . . . . . . . . . . . . 113 4.3.1 MRF structure learning via graphical lasso . . . . . . . . . . 116 4.3.2 Kernel belief propagation - bandwidth selection . . . . . . . . 116 4.3.3 Conditional contribution evaluation . . . . . . . . . . . . . . 117 4.4 Application Results & Discussion . . . . . . . . . . . . . . . . . . . 118 4.4.1 Two tank process . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.2 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 137 5 Concluding Remarks 152 Bibliography 157 Nomenclature 169 Abstract (In Korean) 170Docto

    Gender Difference in the Effects of Outdoor Air Pollution on Cognitive Function Among Elderly in Korea

    Get PDF
    Background/Aim: Given a fast-growing aging population in South Korea, the prevalence of cognitive impairment in elderly is increasing. Despite growing evidence of air pollution exposure as one of the risk factors for declining cognition, few studies have been conducted on gender difference in the relation of cognitive function associated with outdoor air pollution. The aim of this study is to investigate the effect modification of gender difference in the association between cognitive function and air pollutant exposure (PM10, PM2.5-10, and NO2). Methods: The study focused on elderly, and the resulting sample included 1,484 participants aged 55 and older with no neurologic diseases, recruited from the four regions in Korea (Seoul, Incheon, Pyeongchang, and Wonju). We used the Mini-Mental State Examination (MMSE) score (with the conventional cut-off point "23-24") to assess cognitive decline as the primary outcome of the study. Air pollution data used in this study were based on the 5-year average of predicted PM10 and NO2 concentrations, as well as the 2015 average PM2.5 concentration. Additionally, a survey questionnaire was utilized to obtain information about general health assessment. To explore gender differences in the effects of air pollution exposure on cognitive function, we used penalized logistic regression, negative binomial regression, and generalized linear mixed model analyses. Subgroup analyses were also performed by the geographic location of residence (metropolitan vs. non-metropolitan). Results: We found that women than men had a higher risk for decreased cognitive function associated with increased exposure to PM10 and PM2.5-10, respectively, even after adjustments for confounding factors (OR 1.01 [95%CI 1.00-1.03] in PM10; OR 1.03 [95%CI 1.01-1.07] in PM2.5-10). After stratification by metropolitan status, we also found that the adverse effect of NO2 exposure on cognitive function was higher in women than men [OR 1.02 [95%CI 1.00-1.05] in metropolitan; OR 1.12 [95%CI 1.04-1.20] in non-metropolitan]. Notably, the magnitude of the effect sizes was greater among those in non-metropolitan regions than metropolitan ones. Conclusions: Although our findings suggest that the adverse effects of outdoor air pollution on cognitive function appeared to be higher in women than men, this should be tentatively reflected due to some limitations in our results. While additional research is warranted to confirm or dispute our results, our findings suggest an indication of the need for developing and implementing prevention or interventions with a focus on elderly women with increased risk for air pollution exposure.ope

    Effect of Burnout on Post-traumatic Stress Disorder Symptoms Among Firefighters in Korea: Data From the Firefighter Research on Enhancement of Safety & Health (FRESH)

    Get PDF
    OBJECTIVES: It is well-known that post-traumatic stress disorder (PTSD) among firefighters contributes to their job-related stress. However, the relationship between burnout and PTSD in firefighters has rarely been studied. This study therefore explored the association between burnout and its related factors, such as trauma and violence, and PTSD symptoms among firefighters in Korea. METHODS: A total of 535 firefighters participated in the Firefighter Research on Enhancement of Safety & Health study at 3 university hospitals from 2016 to 2017. The 535 participants received a baseline health examination, including questionnaires assessing their mental health. A Web-based survey was also conducted to collect data on job-related stress, history of exposure to violence, burnout, and trauma experience. The associations among burnout, its related factors, and PTSD symptoms were investigated using structural equation modeling. RESULTS: Job demands (β=0.411, p<0.001) and effort-reward balance (β=-0.290, p<0.001) were significantly related to burnout. Burnout (β=0.237, p<0.001) and violence (β=0.123, p=0.014) were significantly related to PTSD risk. Trauma (β=0.131, p=0.001) was significantly related to burnout; however, trauma was not directly associated with PTSD scores (β=0.085, p=0.081). CONCLUSIONS: Our results show that burnout and psychological, sexual, and physical violence at the hands of clients directly affected participants' PTSD symptoms. Burnout mediated the relationship between trauma experience and PTSD.ope

    Biological resistance of hydroxychloroquine for Plasmodium vivax malaria in the Republic of Korea

    Get PDF
    The Republic of Korea (ROK) Army instituted a vivax malaria chemoprophylaxis program (hydroxychloroquine [HCQ] 400 mg per week) in 1997 that was expanded to nearly 200,000 soldiers by 2007, raising concerns for the emergence of drug-resistant vivax malaria. Therefore, a study of whole blood HCQ concentrations for all malaria patients admitted to four ROK Army hospitals was conducted from June through September 2007. For all 142 vivax malaria patients enrolled, fevers returned to normal by Day 3 post-treatment and all thin blood films were negative for parasites by Day 7. Pre-treatment whole blood concentrations of HCQ for 14 patients were > 100 ng/mL. Eight of the patients were enrolled in the ROK Army chemoprophylaxis program that reported taking HCQ as directed, with the last pill taken > or = 4 days before diagnosis. Although there was no evidence of clinical resistance, chemoprophylaxis data indicates the biological resistance or tolerance to HCQ in ROK.ope

    Trends in research on indoor radon exposure and lung cancer in South Korea.

    Get PDF
    ope

    Estimation of the reproduction number of influenza A(H1N1)pdm09 in South Korea using heterogeneous models

    Get PDF
    Background: The reproduction number is one of the most crucial parameters in determining disease dynamics, providing a summary measure of the transmission potential. However, estimating this value is particularly challenging owing to the characteristics of epidemic data, including non-reproducibility and incompleteness. Methods: In this study, we propose mathematical models with different population structures; each of these models can produce data on the number of cases of the influenza A(H1N1)pdm09 epidemic in South Korea. These structured models incorporating the heterogeneity of age and region are used to estimate the reproduction numbers at various terminal times. Subsequently, the age- and region-specific reproduction numbers are also computed to analyze the differences illustrated in the incidence data. Results: Incorporation of the age-structure or region-structure allows for robust estimation of parameters, while the basic SIR model provides estimated values beyond the reasonable range with severe fluctuation. The estimated duration of infectious period using age-structured model is around 3.8 and the reproduction number was estimated to be 1.6. The estimated duration of infectious period using region-structured model is around 2.1 and the reproduction number was estimated to be 1.4. The estimated age- and region-specific reproduction numbers are consistent with cumulative incidence for corresponding groups. Conclusions: Numerical results reveal that the introduction of heterogeneity into the population to represent the general characteristics of dynamics is essential for the robust estimation of parameters.ope

    Cost-Effectiveness of Rate- and Rhythm-Control Drugs for Treating Atrial Fibrillation in Korea

    Get PDF
    PURPOSE: Although the economic and mortality burden of atrial fibrillation (AF) is substantial, it remains unclear which treatment strategies for rate and rhythm control are most cost-effective. Consequently, economic factors can play an adjunctive role in guiding treatment selection. MATERIALS AND METHODS: We built a Markov chain Monte Carlo model using the Korean Health Insurance Review & Assessment Service database. Drugs for rate control and rhythm control in AF were analyzed. Cost-effective therapies were selected using a cost-effectiveness ratio, calculated by net cost and quality-adjusted life years (QALY). RESULTS: In the National Health Insurance Service data, 268149 patients with prevalent AF (age ≥18 years) were identified between January 1, 2013 and December 31, 2015. Among them, 212459 and 55690 patients were taking drugs for rate and rhythm control, respectively. Atenolol cost 714/QALY.Amongtheratecontrolmedications,thecostofpropranololwaslowestat714/QALY. Among the rate-control medications, the cost of propranolol was lowest at 487/QALY, while that of carvedilol was highest at 1363/QALY.Amongtherhythmcontrolmedications,thecostofpilsicainidewaslowestat1363/QALY. Among the rhythm-control medications, the cost of pilsicainide was lowest at 638/QALY, while that of amiodarone was highest at 986/QALY.Flecainideandpropafenonecost986/QALY. Flecainide and propafenone cost 834 and 830/QALY,respectively.Thecosteffectivenessthresholdofalldrugswaslowerthan830/QALY, respectively. The cost-effectiveness threshold of all drugs was lower than 30000/QALY. Compared with atenolol, the rate-control drugs propranolol, betaxolol, bevantolol, bisoprolol, diltiazem, and verapamil, as well as the rhythm-control drugs sotalol, pilsicainide, flecainide, propafenone, and dronedarone, showed better incremental cost-effectiveness ratios. CONCLUSION: Propranolol and pilsicainide appear to be cost-effective in patients with AF in Korea assuming that drug usage or compliance is the same.ope

    Review of Recent Studies on the Airborne Infection

    Get PDF
    Several studies have suggested the possibility of airborne transmission of infectious diseases such as tuberculosis, pandemic influenza. because the number of patients increases explosively, if infectious disease had a high basic reproduction number, pharmaceutical interventions such as vaccination, chemoprophylaxis in the early stage of epidemic. Thus, non-pharmaceutical interventions such as mask-wearing, installing air cleaners, school closure are important to control and prevent the infectious diseases. However, the current technology on the mask, air cleaning, ventilation, and etc., seems to be not originated from the understanding of infection via airborne transmission. It is important to estimate the aerodynamic behavior of saliva droplets by coughing or speaking in order to understand the phenomena of airborne infection. In addition, the prediction of transmission of infectious diseases through the air is critical to prevent or minimize the damage of infection. In this review, we reviewed the recent studies on the airborne infection by focusing on the aerodynamic characteristics of saliva droplets and modeling of airborne transmission. Keywords:Airborne infection, Infectious disease, Disease transmission, Bioaerosolsope

    Disease progression modelling from preclinical Alzheimer's disease (AD) to AD dementia

    Get PDF
    To characterize the course of Alzheimer's disease (AD) over a longer time interval, we aimed to construct a disease course model for the entire span of the disease using two separate cohorts ranging from preclinical AD to AD dementia. We modelled the progression course of 436 patients with AD continuum and investigated the effects of apolipoprotein E ε4 (APOE ε4) and sex on disease progression. To develop a model of progression from preclinical AD to AD dementia, we estimated Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-cog 13) scores. When calculated as the median of ADAS-cog 13 scores for each cohort, the estimated time from preclinical AD to MCI due to AD was 7.8 years and preclinical AD to AD dementia was 15.2 years. ADAS-cog 13 scores deteriorated most rapidly in women APOE ε4 carriers and most slowly in men APOE ε4 non-carriers (p < 0.001). Our results suggest that disease progression modelling from preclinical AD to AD dementia may help clinicians to estimate where patients are in the disease course and provide information on variation in the disease course by sex and APOE ε4 status.ope
    corecore