126 research outputs found

    ์ผ๋ถ€ ๋„์˜ˆ ์ž‘์—…์žฅ์˜ ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ์„ ํฌํ•จํ•œ ์ž…์ž์ƒ ๋ฌผ์งˆ ๋ฐ ์ผ์‚ฐํ™”ํƒ„์†Œ, ์ด ํœ˜๋ฐœ์„ฑ ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋ณด๊ฑด๋Œ€ํ•™์› ํ™˜๊ฒฝ๋ณด๊ฑดํ•™๊ณผ, 2022. 8. ์œค์ถฉ์‹.์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ: ์ „ํ†ต์ ์ธ ๋„์ž๊ธฐ๋ฅผ ์ œ์กฐํ•˜๋Š” ์ž‘์—…์žฅ์€ ์›์žฌ๋ฃŒ ์ ํ† ์™€ ์œ ์•ฝ์œผ๋กœ ๋„์ž๊ธฐ๋ฅผ ๋นš๊ณ , ๊ทธ๊ฒƒ๋“ค์„ ๊ฐ€๋งˆ์— ์†Œ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ฑด๊ฐ•์ƒ์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ž…์ž์ƒ ๋ฌผ์งˆ๊ณผ ๊ฐ€์Šค์ƒ ๋ฌผ์งˆ์ด ๋ฐœ์ƒ๋œ๋‹ค. ํ•˜์ง€๋งŒ, ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ž‘์—…๊ณต์ •๊ณผ ๊ฐ€๋งˆ ์ข…๋ฅ˜๋ณ„๋กœ ์ˆ˜ํ–‰๋œ ๋…ธ์ถœํ‰๊ฐ€ ์—ฐ๊ตฌ๋Š” ์•„์ง๊นŒ์ง€๋„ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ€๋งˆ ์ข…๋ฅ˜๋ณ„๋กœ ๋ฐœ์ƒํ•˜๋Š” ์ผ์‚ฐํ™”ํƒ„์†Œ์™€ ์ด ํœ˜๋ฐœ์„ฑ ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ(TVOCs)๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•˜๊ณ , ๊ฐ€๋งˆ ์ข…๋ฅ˜์™€ ์ž‘์—… ๊ณต์ •๋ณ„๋กœ ๋„์˜ˆ ์ž‘์—…์žฅ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ์„ ํฌํ•จํ•˜๋Š” ์ž…๊ฒฝ ๋ถ„ํฌ๋ณ„ ์ž…์ž์ƒ ๋ฌผ์งˆ์˜ ๋…ธ์ถœ ์ˆ˜์ค€์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ, ์ž…์ž์ƒ ๋ฌผ์งˆ๋“ค์˜ ๋…ธ์ถœ ์ˆ˜์ค€์„ ๋ณ€ํ™”์‹œํ‚ค๋Š” ์š”์ธ๋“ค๋„ ํ‰๊ฐ€ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•: ๋Œ€ํ•œ๋ฏผ๊ตญ์— ์†Œ์žฌํ•œ ์†Œ๊ทœ๋ชจ ๋„์˜ˆ ๊ณต๋ฐฉ, ๋ฏธ์ˆ ๋Œ€ํ•™๊ต ๊ณต์˜ˆ๊ณผ ์‹ค๊ธฐ์‹ค, ์žฅ์ž‘ ์˜ค๋ฆ„๊ฐ€๋งˆ์™€ ๊ทธ๊ณณ์—์„œ ์ž‘์—…ํ•˜๋Š” ๋„์˜ˆ๊ฐ€๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ฐœ์ธ์‹œ๋ฃŒ๋Š” ์ด๋ถ„์ง„๊ณผ ํ˜ธํก์„ฑ ๋ถ„์ง„, ๊ทธ๋ฆฌ๊ณ  ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ์„ ์ธก์ •ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ง€์—ญ ์‹œ๋ฃŒ๋กœ๋Š” ๊ฐ๊ฐ์˜ ์ž‘์—… ์žฅ์†Œ์™€ ๊ฐ€๋งˆ ๊ทผ์ฒ˜์—์„œ, ์ด๋ถ„์ง„๊ณผ ํ˜ธํก์„ฑ ๋ถ„์ง„, ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ, 10nm~10,000nm์˜ ์ž…๊ฒฝ๋ถ„ํฌ๋ฅผ ์ง€๋‹Œ ์ž…์ž์ƒ ๋ฌผ์งˆ, ์ผ์‚ฐํ™”ํƒ„์†Œ, TVOCs์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์ด๋ถ„์ง„, ํ˜ธํก์„ฑ ๋ถ„์ง„์€ ์ „์ž ์ €์šธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๊ณผ์ง€๋ฅผ ์ค‘๋Ÿ‰ ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ˜ธํก์„ฑ ๋ถ„์ง„์„ ํฌ์ง‘ํ•œ ํ•„ํ„ฐ๋Š” ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ ์ ์™ธ์„  ๋ถ„๊ด‘๋ฒ•(FT-IR)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ ๋ถ„์„์— ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. 10-10,000 nm ์ž…์ž ํฌ๊ธฐ ๋ถ„ํฌ๋ฅผ ๊ฐ–๋Š” ์ž…์ž๋Š” ๊ด‘ํ•™ ์ž…์ž ๊ณ„์ˆ˜๊ธฐ(OPS)์™€ ๋ณ‘๋ ฌ๋กœ ์„ค์น˜๋œ ๋‚˜๋…ธ ์—์–ด๋กœ์กธ ์ž…๊ฒฝ๋ถ„ํฌ ์ธก์ •๊ธฐ(SMPS)์— ์˜ํ•ด ๋ถ„์„๋˜์—ˆ๋‹ค. ์ผ์‚ฐํ™”ํƒ„์†Œ ๋ฐ TVOCs๋Š” ๊ด‘์ด์˜จํ™” ๊ฐ์ง€๊ธฐ์™€ ์‹ค๋‚ด ๊ณต๊ธฐ์งˆ ์ธก์ •๊ธฐ(IAQ-Calc)๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ: ์„ธ ๊ณณ์˜ ๋„์˜ˆ ์ž‘์—…์‹ค์—์„œ ์ธก์ •ํ•œ ์ด๋ถ„์ง„, ํ˜ธํก์„ฑ๋ถ„์ง„, ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ์˜ ๊ธฐํ•˜ํ‰๊ท ์€ 146.46 ฮผg/m3, 49.10 ฮผg/m3, 1.89 ฮผg/m3 ์ด์—ˆ๋‹ค. ๊ทธ ์ค‘ 4๊ฐœ์˜ ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ ๊ฐœ์ธ์‹œ๋ฃŒ์˜ ๋†๋„๋Š” ACGIH TLV์„ ์ดˆ๊ณผํ–ˆ์œผ๋ฉฐ, 4๊ฐœ ์‹œ๋ฃŒ ๋ชจ๋‘ ์„ฑํ˜•&์ •ํ˜• ์ž‘์—…์ด์—ˆ๋‹ค. ์†Œ๊ทœ๋ชจ ๋„์ž๊ธฐ ๊ณต๋ฐฉ์˜ ์ „๊ธฐ๊ฐ€๋งˆ์—์„œ 10 nmโ€“420 nm์˜ ์ง๊ฒฝ์„ ๊ฐ–๋Š” ์ž…์ž ์ˆ˜ ๋†๋„๋Š” ์ดˆ๋ฒŒ ์†Œ์„ฑ ์ค‘๊ธฐ ๋™์•ˆ ์ˆ˜๋ถ„ ๋ฐฐ์ถœ๊ตฌ๊ฐ€ ์—ด๋ ค ์žˆ์„ ๋•Œ(1.61 ร— 10^5)๊ฐ€ ๋‹ซํ˜€์žˆ์„ ๋•Œ(2.16 ร— 10^4)๋ณด๋‹ค ์•ฝ 7.5๋ฐฐ ๋” ๋†’์•˜๋‹ค. ๋ฏธ์ˆ ๋Œ€ ๋„์˜ˆ๊ณผ์—์„œ๋Š”, ์œ ์•ฝ ๋ถ„๋ง์„ ๋ฌผ๊ณผ ์„ž๊ณ  ๋“œ๋ฆด๋กœ ํ˜ผํ•ฉํ•˜๋Š” ์žฅ์†Œ์ธ ์œ ์•ฝ ๋ฒค์น˜(5.61 ร— 10^4)์—์„œ์˜ ์ž…์ž ์ˆ˜๋†๋„(10 nm-420 nm)๊ฐ€ ์œ ์•ฝ ์Šคํ”„๋ ˆ์ด ๋ถ€์Šค (6.73 ร— 10^3)์˜ ์ž…์ž ์ˆ˜๋†๋„ ๋ณด๋‹ค ์•ฝ 8.3๋ฐฐ ๋†’์•˜๋‹ค. ์ผ์‚ฐํ™”ํƒ„์†Œ ๋†๋„๋Š” ์ „๊ธฐ์‚ฐํ™”(์ดˆ๋ฒŒ ์†Œ์„ฑ)์—์„œ ํ‰๊ท ๊ณผ ์ตœ๊ณ ๋†๋„ ๋ชจ๋‘ ๊ฐ๊ฐ 3.55 ppm, 23.7 ppm์œผ๋กœ ๊ฐ€์žฅ ๋†’์•˜๋‹ค. ๋ฐ˜๋ฉด์—, TVOCs ๋†๋„๋Š” ์žฅ์ž‘ ๊ฐ€๋งˆ(2์ธต ~ ์ตœ๊ณ ์ธต)์—์„œ ํ‰๊ท ๊ณผ ์ตœ๊ณ ๋†๋„ ๋ชจ๋‘ ๊ฐ๊ฐ 5,732.31 ppb, 12,034 ppb๋กœ ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ฒฐ๋ก : ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋„์ž๊ธฐ ์ œ์กฐ ๊ณต์ •๊ณผ ๊ฐ€๋งˆ ์ข…๋ฅ˜๋ณ„๋กœ ์ผ๋ถ€ ์ž…์ž์ƒ ๋ฌผ์งˆ์˜ ๋†๋„์—์„œ ์ฐจ์ด๊ฐ€ ์žˆ๋Š” ๊ฒƒ๊ณผ, ํ˜ธํก์„ฑ ์œ ๋ฆฌ๊ทœ์‚ฐ์„ ํฌํ•จํ•œ ์ž…์ž์ƒ ๋ฌผ์งˆ, ์ผ์‚ฐํ™”ํƒ„์†Œ ๋ฐ TVOC๊ฐ€ ๋„์˜ˆ๊ฐ€์—๊ฒŒ ๋…ธ์ถœ๋  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์‹ค์ œ๋กœ ์ „๊ธฐ์‚ฐํ™”๊ฐ€๋งˆ์˜ ์ˆ˜๋ถ„๋ฐฐ์ถœ๊ตฌ ๊ฐœ๋ฐฉ ์—ฌ๋ถ€, ์œ ์•ฝ ์Šคํ”„๋ ˆ์ด ์‹œ ๊ตญ์†Œ๋ฐฐ๊ธฐ์˜ ์ž‘๋™, ๊ฐ€๋งˆ์— ์žฅ์ž‘์„ ๋„ฃ๋Š” ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ ๋“ฑ์ด ๊ฐ์ข… ์œ ํ•ด๋ฌผ์งˆ ๋†๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ, ๋„์˜ˆ ์ž‘์—… ์‹œ ์ž…์ž์ƒ ๋ฌผ์งˆ ๋ฐ ์œ ํ•ด ๊ฐ€์Šค ๋“ฑ์— ๋…ธ์ถœ๋  ์œ„ํ—˜์„ฑ์ด ๋†’์€ ๋ฐ”, ์ ์ ˆํ•œ ํ˜ธํก ๋ณดํ˜ธ๊ตฌ์˜ ์ฐฉ์šฉ๊ณผ ๊ตญ์†Œ๋ฐฐ๊ธฐ์žฅ์น˜์˜ ์„ค์น˜๊ฐ€ ๊ถŒ์žฅ๋œ๋‹ค.Objective: Ceramics with raw clay and glaze are made in traditional pottery workplaces. When firing them in a kiln, particulate matter and gaseous substances that cause adverse health effects are generated. However, exposure assessment studies of the various pottery manufacturing processes or kiln types are insufficient. Therefore, this study aimed to compare the particulate matter concentrations by particle size distribution and respirable crystalline silica (RCS) generated in pottery workplaces by each kiln type and work process, and assess factors that change the concentration levels of particulate matter, monitor carbon monoxide (CO) and total volatile compounds (TVOCs) generated by each kiln type. Methods: The research was conducted in small-sized pottery workshops in Korea, a college of fine art pottery studio, and an outdoor climbing kiln and included the potters working there. Personal samples for the exposure assessment were collected by measuring total suspended particulates (TSP), respirable suspended particulates (RSP), and RCS. As an area sample, TSP, RSP, RCS, particulates with 10โ€“10,000 nm particle size distribution, CO, and TVOCs were measured for each workplace and pottery manufacturing process. TSP, RSP were analyzed by the gravimetric analysis using an electronic balance for weighing membrane filters. And filters which collected RSP were used for evaluate RCS by fourier transform infrared spectroscopy (FT-IR). Particulates with 10โ€“10,000 nm particle size distribution were analyzed by a scanning mobility particle sizer (SMPS) installed in parallel with the optical particle sizer (OPS). CO and TVOCs were analyzed by a photoionization detector and an indoor air quality meter (IAQ-Calc). Results: The TSPโ€™s, RSPโ€™s, and RCSโ€™s geometric mean, except for background concentration, was 146.46 ฮผg/m3, 49.10 ฮผg/m3, and 1.89 ฮผg/m3, respectively. Among those, four personal RCS samplesโ€™ concentration exceeded American conference of governmental industrial hygienists threshold limit values (ACGIH TLV), all of which were shaping and trimming procedures. Particle number concentrations (PNCs) with a diameter of 10 nmโ€“420 nm were approximately 7.5 times higher when the peepholes were left open (1.61 ร— 10^5) than when they were closed (2.16 ร— 10^4) during mid-term firing of the electric oxidation kiln of small-sized pottery studio. In addition, the PNC (10 nmโ€“420 nm) in the glaze dipping bench (5.61 ร— 10^4), where the glaze powder was blended with water and mixed with a drill before the unglazed bisqueware was dipped, was 8.3 times higher than that in the glaze spray booth (6.73 ร— 10^3) in glaze room of collge of fine arts studio. The CO concentration was the highest in the electric oxidation kiln (when oxidation firing), with average and maximum concentrations of 3.55 ppm and 23.7 ppm, respectively. Conversely, the TVOCs concentration was the highest in the climbing kiln (2ndโ€“top floor), with average and maximum concentrations of 5,732.31 ppb and 12,034 ppb, respectively. Conclusion: We confirmed that some particulate matter concentrations differed with the pottery manufacturing process and kiln type. The results showed that particulates including RCS, CO, and TVOCs could be exposed to potters. Indeed, whether the plugs are opened in the electric oxidation kiln, operation of exhaust vent during glaze spraying, and an time interval of adding firewood to the climbing kiln affect the concentration of various hazardous substances. Since there is a high risk of exposure to particulate matter and harmful gases during pottery manufacturing, wearing appropriate personal protective equipment for potters when shaping and trimming the clay and installing the local exhaust system near kilns or glaze spraying booths is recommended.1. Introduction 1 2. Methods 3 2.1. Workplace description 3 2.2. Sampling and evaluating methods 6 2.2.1. Sampling design 6 2.2.2. Evaluating for TSP, RSP and RCS 7 2.2.3. Real-time measurement of particle number concentration 8 2.2.4. Real-time measurement of CO, TVOCs 8 2.3. Statistical methods 9 3. Results 10 3.1. TSP, RSP, and RCS concentrations between study subjects 10 3.2. Number concentration and size distribution of particulates 16 3.3. Concentrations of CO and TVOCs 19 4. Discussion 20 5. Conclusion 25 References 26 Appendix 29 ๊ตญ๋ฌธ์ดˆ๋ก 33์„

    ํ•€ํŽซ ์†Œ์ž์—์„œ์˜ ํ•ซ์บ๋ฆฌ์–ด ์‹ ๋ขฐ์„ฑ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์‹ ํ˜•์ฒ .CMOS ๋กœ์ง ์†Œ์ž๋Š” ํผํฌ๋จผ์Šค๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ง€์†์ ์œผ๋กœ ์ถ•์†Œํ™” ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ตฌ์กฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ์ถ•์†Œํ™”์— ๋น„ํ•ด ๋™์ž‘ ์ „์••์€ ์ถฉ๋ถ„ํžˆ ๊ฐ์†Œํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์†Œ์ž ๋‚ด ์ˆ˜์ง ์ „๊ณ„๋‚˜ ์˜จ๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ์ถ”์„ธ์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹ ๋ขฐ์„ฑ์€ ๊ณ„์†ํ•ด์„œ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ 3D ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋งŽ์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ์ง€๋งŒ empirical ๋ชจ๋ธ๋ง๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์ œ ์ธก์ •์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ๋ฌผ๋ฆฌ์  ์ด๋ก  ์ค‘์‹ฌ์œผ๋กœ ๋กœ์ง ์†Œ์ž์˜ ํ•ซ์บ๋ฆฌ์–ด ์‹ ๋ขฐ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋จผ์ € ํ•ซ์บ๋ฆฌ์–ด ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— electron-electron scattering์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ 3D FinFET์˜ ์ธก์ • ๋ฐ์ดํ„ฐ์™€ calibration์„ ์ง„ํ–‰ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์ •ํ•ฉ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. calibration ๊ณผ์ •์—์„œ๋Š” ๋ชจ๋“  scattering ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ „์••๊ณผ ์˜จ๋„ ์กฐ๊ฑด์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ฅธ HCD๋ฅผ ๋ถ„์„ํ•˜๊ณ , calibration์„ ์ง„ํ–‰ํ•˜์—ฌ HCD ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ฅธ HCD์˜ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. oxide trap๊ณผ ๋‹ฌ๋ฆฌ interface trap์€ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ interface trap์„ 3๊ฐ€์ง€ ์„ฑ๋ถ„์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฐ ์„ฑ๋ถ„์˜ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. Multiple particle process(MP)๊ณผ field enhanced thermal degradation process(FP)๋Š” ์ „์•• ์กฐ๊ฑด๊ณผ ์ƒ๊ด€์—†์ด ์ผ์ •ํ•œ ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋ฐ˜๋ฉด Single particle process(SP)๋Š” scattering์˜ ์˜ํ–ฅ์„ ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ์€ ์ „์•• ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค. ์˜จ๋„ ๊ฒฝํ–ฅ์„ฑ ๋ถ„์„ ๊ณผ์ •์—์„œ๋„ calibration์„ ์ง„ํ–‰ํ•˜๋ฉฐ ์—ฌ๋Ÿฌ ๋ฒˆ์˜ iteration์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ „์•• ๋ฐ ์˜จ๋„๊ฐ€ ๊ณ ๋ ค๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ถ”์ถœ๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ ์šฉํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ๋ชจ๋ธ๋ณด๋‹ค ๋” ์ •ํ™•ํ•˜๊ฒŒ HCD ์ธก์ • ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ฌผ๋ฆฌ์  ์ด๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ ๊ตฌ์ถ•ํ•จ์œผ๋กœ์จ HCD ๋ถ„์„์˜ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ํ•˜์ง€๋งŒ ๊ฐ€์† ์กฐ๊ฑด๊ณผ ๋™์ž‘ ์กฐ๊ฑด์˜ self-heating ํšจ๊ณผ๊ฐ€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์†Œ์ž๊ฐ€ ์‹ค์ œ CMOS ํšŒ๋กœ์˜ ๋™์ž‘ ์กฐ๊ฑด์—์„œ interface trap์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” ๋™์ž‘ ์˜์—ญ์—์„œ์˜ ๊ฐ ์„ฑ๋ถ„์˜ ๋น„์œจ๊นŒ์ง€ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์šฐ๋ฆฌ๋Š” 10 nm node ์†Œ์ž์—์„œ nFinFET์— ๋น„ํ•ด pFinFET์—์„œ ๋†’์€ ์—ดํ™”๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์›์ธ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. pFinFET์€ ์†Œ์Šค/๋“œ๋ ˆ์ธ ๋ฌผ์งˆ๋กœ SiGe๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— nFinFET์— ๋น„ํ•ด self-heating ํšจ๊ณผ๊ฐ€ ์‹ฌํ•˜์—ฌ ์†Œ์ž ์˜จ๋„๊ฐ€ ๋„ ๋†’๋‹ค. ์ด๋ก ์ ์œผ๋กœ MP ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ lifetime์€ ์˜จ๋„๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๊ฐ์†Œํ•˜๊ธฐ ๋•Œ๋ฌธ์— MP์— ์˜ํ•œ ์—ดํ™” ๋˜ํ•œ ๊ฐ์†Œํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์†Œ์ž ์˜จ๋„๊ฐ€ ๋” ๋†’์€ pFinFET์—์„œ nFinFET์— ๋น„ํ•ด ๋” ๋งŽ์€ MP๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ํ•˜์ง€๋งŒ nFinFET ๊ณผ ๋‹ฌ๋ฆฌ pFinFET์—์„œ๋Š” Si-H bond์˜ electron๊ณผ hole์ด ๋ฐ˜์‘ํ•˜์—ฌ interface trap์„ ์ƒ์„ฑ์‹œํ‚ค๋Š” RD ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ RD๋Š” ์˜จ๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ๋” ๋งŽ์€ ์—ดํ™”๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์—, pFinFET์—์„œ nFinFET๋ณด๋‹ค ๋” ๋งŽ์€ ์—ดํ™”๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” HCD ์กฐ๊ฑด์ด์ง€๋งŒ ์†Œ์ž ์˜จ๋„๊ฐ€ ๋†’์€ pFinFET์—์„œ ์ถ”๊ฐ€์ ์ธ RD ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์ „์•• ์กฐ๊ฑด์—์„œ์˜ ์ „๋ฅ˜ ์—ดํ™”์œจ์„ ํ†ตํ•ด ์ฃผ์š” ์—ดํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ pFinFET์—์„œ๋Š” RD๊ฐ€ ์ฃผ์š”ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ HCD ์กฐ๊ฑด์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” RD๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ RD๋ฅผ ์ œ์™ธํ•œ ์ˆœ์ˆ˜ hot carrier ์„ฑ๋ถ„์€ pFinFET๋ณด๋‹ค nFinFET์—์„œ ๋” ๋งŽ์ด ๋ฐœ์ƒํ•œ๋‹ค.CMOS logic devices have been scaled down to improve performance. However, the operating voltage is not sufficiently reduced compared to the scale down in physical dimensions. Therefore, since the electric field and temperature of the device gradually increase, reliability is still a critical issue in logic devices. Recently, many studies on the reliability of 3D devices are being conducted, but most of the studies are related to empirical modeling. Therefore, in this study, based on the actual measurement results, the hot carrier degradation(HCD) reliability of the logic device was analyzed focusing on the physical theory using Technology computer-aided design (TCAD) simulation. First, electron-electron scattering(EES) was applied to the TCAD simulation to improve the accuracy of the hot carrier model. Additionally, calibration between the measurement data of 14 nm node FinFET and the model was performed to confirm the consistency. The calibration process required various voltage and temperature conditions to account for all scattering mechanisms. Therefore, HCD was analyzed according to various voltage conditions, and the parameters of the HCD model were extracted by calibration process. Next, temperature dependence under various HCD conditions was analyzed. Unlike oxide traps, interface traps show different temperature dependence depending on HCD voltage conditions. Therefore, the interface traps were separated into three components and the temperature dependence was analyzed for each component. Multiple particle process (MP) and Field enhanced thermal degradation process (FP) have a constant temperature dependence regardless of voltage conditions. On the other hand, the temperature dependence of Single particle process (SP) varies depending on the voltage condition because SP is affected by scattering. In the process of temperature dependence analysis, calibration is also performed and parameters considering various voltages and temperatures were extracted through several iterations. The improved model to which the extracted parameters were applied showed more precise prediction of degradation compared to that of the previous model. As a results, accuracy of the HCD analysis was improved by establishing the HCD simulation framework based on physical theories. However, since the self-heating effect of the acceleration condition and the operation condition are different, the HCD mechanism that occurs in the actual CMOS circuit may also be different. Therefore, we predicted the ratio of each component under operating condition. Finally, in 10 nm node devices, we analyzed the cause of higher HCD in pFinFETs than in nFinFETs. Self-heating effect is severe in pFinFETs because SiGe is used as the source/drain material which makes the device temperature higher than nFinFETs. Theoretically, because the lifetime of multiple particle(MP) mechanism decreases as temperature increases, degradation due to MP decreases. Therefore, it is difficult for the HCD mechanisms to occur more in pFinFETs which has higher temperature than nFinFETs. However, in pFinFETs unlike nFinFETs, reaction-diffusion (RD) mechanism can occur in which holes react with the electrons of Si-H bonds to generate interface traps. Also, since RD deteriorates more as the temperature increases, the phenomenon that more degradation occurs in pFinFET than nFinFET can be explained by the RD mechanism. Therefore, we propose an additional RD mechanism that is caused by high device temperature in pFinFETs even in HCD condition. Main components were investigated through measurements of current degradation rate in various voltage conditions, and it was found that RD is dominant in pFinFETs. Also, RD that can occur in HCD condition was predicted through TCAD simulation. As a results, degradation due to pure hot carriers without RD occurs more in nFinFETs than in pFinFETs.Abstract i Chapter 1. Introduction 1 Chapter 2. Hot Carrier Degradation Model 4 2.1. Physical theory 4 2.2. TCAD simulation 8 2.3. Calibration process 14 2.4. Summary 22 Chapter 3. Analysis on Temperature Dependence of HCD 25 3.1. Introduction 25 3.2. Temperature dependence according to acceleration conditions 26 3.3. Calibration process 30 3.4. Mechanism separation 33 3.5. HCD prediction in the nominal voltage 35 3.6. Summary 36 Chapter 4. Comparative Analysis of HCD in nMOS/pMOS FinFET 39 4.1. Introduction 39 4.2. Comparison of HCD in the long/short channel FinFET 40 4.3. Self-heating effect in n/pFinFET 44 4.4. Bias Temperature Instability(BTI) in n/pFinFET 47 4.5. Summary 59 Chapter 5. Conclusion 64 Abstract in Korean 66 List of Publications 69Docto

    ๊ฒฝ๋ชจ๊ถ(ๆ™ฏๅน•ๅฎฎ) ์ œ๋ก€์•… ์—ฐ๊ตฌ

    Get PDF
    ์•„! ๋Œ๋ณด์•„์ฃผ์‹  ๋ถ€๋ชจ์˜ ์€ํ˜œ์™€ ์•„๋ฒ„์ง€๋ฅผ ์—ฌ์œˆ ์Šฌํ””์ด ๋‚˜์™€ ๊ฐ™์€ ์‚ฌ๋žŒ์ด ๋ˆ„๊ฐ€ ์žˆ๊ฒ ๋Š”๊ฐ€? ์ฒœ์Šน(ๅƒไน˜)์˜ ๋ด‰์–‘์„ ๋“œ๋ฆฌ๋ ค ํ•ด๋„ ํ•˜๋Š˜๊ณผ ๋•…์— ๋ฏธ์น  ๊ธธ์ด ์—†๊ณ ๏ผŒ ํ•˜๋ฃจ ์„ธ ๋ฒˆ ๋ฌธ์•ˆํ•˜๋Š” ์˜ˆ๋ฒ•์„ ์ค€์ˆ˜ํ•  ๋ฟ ์–ด๋จธ๋‹ˆ ๋งˆ์Œ์„ ์œ„๋กœํ•ด๋“œ๋ฆฌ์ง€ ๋ชปํ•˜๋‚˜ ์ž์‹ ์„ ์–ด๋ฃจ๋งŒ์ง€๋ฉฐ ๋‚จ๋ชจ๋ฅด๊ฒŒ ๊ฐ€์Šด์•„ํŒŒํ•  ๋”ฐ๋ฆ„์ด๋‹ค. ์ด๊ฒƒ์ด ๋ฌด์Šจ ์‚ฌ๋žŒ์ด๋ž€ ๋ง์ธ๊ฐ€? ๋‚จ์€ ์€๋•์ด ์†์ž์—๊ฒŒ ๋ฏธ์ณ์„œ ์ด์ œ ์„ธ์ž์˜ ์นญํ˜ธ๋ฅผ ์ •ํ•˜๊ณ  ์„ฑ๋Œ€ํ•œ ์˜์‹์„ ๊ณง ๊ฑฐํ–‰ํ•˜์—ฌ ๋‚˜๋ผ์˜ ๊ธฐ์—…(ๅŸบๆฅญ)์˜ฌ ๋์—†๋Š” ๊ฒฝ์ง€์— ์˜ฌ๋ ค๋†“๊ฒŒ ๋˜๋‹ˆ ํฐ ๋ณต์€ ๊ทผ์›์ด ์žˆ์Œ์„ ์ง์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ค๋Š˜์ผ๋กœ ์ธํ•˜์—ฌ ์˜›๋‚ ์„ ๋”๋“ฌ์œผ๋‹ˆ ์Šฌํ””๊ณผ ๊ธฐ์จ์ด ๊ต์ฐจํ•œ๋‹ค. ์ด๋Š” ์‚ฌ๋„์„ธ์ž(ๆ€ๆ‚ผไธ–ๅญ 1735~1762)์˜ ์•„๋“ค์ธ ์ •์กฐ๊ฐ€ ์ž์‹ ์˜ ์•„๋“ค์„ ์„ธ์ž๋กœ ์ฑ…๋ด‰ํ•˜๊ณ  ๋‚˜์„œ, ๊ฐํšŒ๋ฅผ ๋งํ•œ ๊ฒƒ์ด๋‹ค. ๊ฒฝ๋ชจ๊ถ ์ œ๋ก€์•…์€ ๋ฐ”๋กœ ์‚ฌ๋„์„ธ์ž ์‚ฌ๋‹น์ธ ๊ฒฝ๋ชจ๊ถ(ๆ™ฏๆ…•ๅฎฎ)์—์„œ ์ œ์‚ฌ์ง€๋‚ผ ๋•Œ ์—ฐ์ฃผ๋˜๋˜ ์Œ์•…์ด๋‹ค. ใ€Ž์†์•…์›๋ณดใ€(ไฟ—ๆจ‚ๆบ่ญœ) ๊ถŒ 3๊ณผ ๊ถŒ6์— ๊ฒฝ๋ชจ๊ถ ์ œ๋ก€์•…์ด ์‹ค๋ ค ์žˆ๋Š”๋ฐ, ๊ฒฝ๋ชจ๊ถ ์ œ๋ก€์•…์€ ์ข…๋ฌ˜์ œ๋ก€์•…์„ ์ถ•์†Œํ•œ ๊ฒƒ์ด๋ผ ํ•˜์—ฌ ํ•œ๊ตญ์Œ์•…์‚ฌํ•™ ์ธก๋ฉด์—์„œ ๋ณ„๋ฐ˜ ๊ด€์‹ฌ์„ ๋Œ์ง€ ๋ชปํ–ˆ๋‹ค

    Establishment and managing system of Hunryondogam in the late Choson dynasty

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :ๅœ‹ๅฒๅญธ็ง‘,1996.Docto

    ์„ธ์ข…์กฐ ์•„์•…์ •๋น„๊ฐ€ ์—ฌ๋ฏผ๋ฝ.๋ณดํƒœํ‰.์ •๋Œ€์—…์— ๋ผ์นœ ์˜ํ–ฅ

    No full text

    ASA ์œ ํ™”์šฉ ์–‘์„ฑ์ „๋ถ„์˜ ์†Œ์ˆ˜ํ™” ๋ฐ ์‚ฐ ์ฒ˜๋ฆฌ์— ์˜ํ•œ ์‚ฌ์ด์ง• ํšจ๊ณผ์˜ ๊ฐœ์„ 

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž„์‚ฐ๊ณตํ•™๊ณผ,2001.Maste

    ๋น„๊ท ์ผ ์ค‘๋ ฅ์žฅ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํŒŒ์ปค ๋ถˆ์•ˆ์ •

    No full text
    Thesis (doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ฒœ๋ฌธํ•™๊ณผ,1998.Docto

    ๊ธˆ์œต์œ„๊ธฐ์™€ ์‹œ์žฅ๋ณ€ํ™”

    No full text
    Thesis(masters) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฒฝ์˜ํ•™๊ณผ(SNU Global MBA), 2009.8.Maste
    • โ€ฆ
    corecore