22 research outputs found

    ์ด์ข… ๋‹ค๊ฐœ์ฒด ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ์ผ์น˜ ๋ฐ ๋™๊ธฐํ™”์— ๋Œ€ํ•œ ๊ฐ•์ธ์„ฑ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 8. ์„œ์ง„ํ—Œ.์ƒํƒœ ์ผ์น˜ (consensus) ๋˜๋Š” ๋™๊ธฐํ™” (synchronization) ๋ชจ๋‘ ์ง‘๋‹จ ๋‚ด ๊ฐ ๊ฐœ์ฒด๋“ค์˜ ์˜๊ฒฌ์ด ์–ด๋–ค ๊ด€์ ์—์„œ ๋ชจ๋‘ ํ•ฉ์˜๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จ์ด ์žˆ๊ณ  ์ด ํ˜„์ƒ๋“ค์€ ์‹œ์Šคํ…œ๋“ค์ด ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ์ƒ๋ฌผ ๋ฌผ๋ฆฌํ•™์ด๋‚˜ ์‚ฌํšŒ๊ณผํ•™, ๊ณตํ•™ ๋ถ„์•ผ์™€ ๊ฐ™์€ ์—ฌ๋Ÿฌ ์ง‘๋‹จ์—์„œ ์ข…์ข… ๋ฐœ๊ฒฌ์ด ๋œ๋‹ค. ์ƒˆ๋“ค์ด ๋ฌด๋ฆฌ๋ฅผ ์ง€์–ด ์›€์ง์ด๋Š” ํ˜„์ƒ์ด๋‚˜ ๋ฌผ๊ณ ๊ธฐ๋“ค์˜ ๊ตฐ์ง‘ ์œ ์˜, ๋ฒŒ๋“ค์˜ ๋ฌด๋ฆฌ ํ˜„์ƒ๋“ค์€ ์ž์—ฐ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ํ˜„์ƒ๋“ค์ด๋‹ค. ๋•Œ๋•Œ๋กœ ์ƒํƒœ ์ผ์น˜ ์ด๋ก ์€ ์‚ฌํšŒ ํ˜„์ƒ์„ ์„ค๋ช…ํ•˜๋Š” ์ข‹์€ ๋„๊ตฌ๋กœ ์“ฐ์ด๊ฒŒ ๋˜๊ณ  ํŠนํžˆ ๊ณตํ•™์ ์ธ ๊ด€์ ์—์„œ ๋ณด๋ฉด ์ƒํƒœ ์ผ์น˜์™€ ๋™๊ธฐํ™”์—ฐ๊ตฌ๋Š” ๋งค์šฐ ๋งŽ์€ ์‘์šฉ๋ถ„์•ผ์™€ ๊ด€๋ จ์ด ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์„ผ์„œ ๋„คํŠธ์›Œํฌ, ๋ฌด์ธ ์ž๋™์ฐจ, ๊ตฐ์ง‘ ๋กœ๋ด‡ ์ œ์–ด, ์ด๋™ ํ†ต์‹  ์‹œ์Šคํ…œ ๋“ฑ๊ณผ ๊ฐ™์€ ๋ถ„์•ผ๋“ค์ด ์ข‹์€ ์˜ˆ์‹œ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ์ƒ๋ฌผ ๋ฌผ๋ฆฌํ•™ ๋ถ„์•ผ์—์„œ๋Š” ์ƒํ˜ธ ์—ฐ๊ฒฐ๋œ ์‹œ์Šคํ…œ์—์„œ ์ƒํƒœ ์ผ์น˜์™€ ๋™๊ธฐํ™”๊ฐ€ ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ์˜ ๊ต๋ž€ (perturbation)์— ๋Œ€ํ•ด์„œ ๊ฐ•์ธ์„ฑ์„ ๋ณด์žฅํ•ด ์ค€๋‹ค๋Š” ๋‚ด์šฉ์€ ์ž˜ ์•Œ๋ ค์ง„ ์‚ฌ์‹ค์ด๊ณ  ์ด๋Š” ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๋“ค์˜ ์‹คํ—˜๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ๋ถ€ํ„ฐ ์ž…์ฆ๋˜์–ด ์™”๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค๊ฐœ์ฒด ์‹œ์Šคํ…œ (multi-agent systems) ์˜ ๊ฐ•์ธํ•œ ์ƒํƒœ ์ผ์น˜์™€ ๋™๊ธฐํ™”์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ์ „๊ฐœํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๋‹ค๊ฐœ์ฒด ์‹œ์Šคํ…œ์ด๋ž€ ๋‹ค์ˆ˜์˜ ์ด์ข… ๋™์  ์‹œ์Šคํ…œ๋“ค์ด ๋„คํŠธ์›Œํฌ ํ†ต์‹ ์„ ํ†ตํ•ด ํŠน์ • ์ •๋ณด๋ฅผ ๊ตํ™˜ํ•˜๋ฉฐ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๋งํ•œ๋‹ค. ๊ฐ ๊ฐœ์ฒด๋“ค์˜ ์ƒํ˜ธ ์—ฐ๊ฒฐ์ด ์ •ํ•ด์ง„ ํŠน์ • ๋„คํŠธ์›Œํฌ์—์„œ ์ƒํƒœ ์ผ์น˜์™€ ๋™๊ธฐํ™” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ฒŒ ๋˜๋Š”๋ฐ ์—ฌ๊ธฐ์„œ ํŠน์ • ๋„คํŠธ์›Œํฌ๋ผ ํ•จ์€ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ์ด ๋œ ํ†ต์‹  ๊ตฌ์กฐ์™€ ๊ฐœ๋ณ„ ๊ฐœ์ฒด๋“ค์˜ ๋™์—ญํ•™ ํŠน์„ฑ์ด ๋น„์„ ํ˜• ์ƒ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋„คํŠธ์›Œํฌ๋ฅผ ์ง€์นญํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋Š”๋ฐ ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋™๊ธฐํ™”๊ฐ€ ์–ด๋–ค ๋ฐฉ์‹์œผ๋กœ ์ƒํ˜ธ ์—ฐ๊ฒฐ๋œ ๋‹ค๊ฐœ์ฒด ์‹œ์Šคํ…œ์„ ์ด์ข…์„ฑ (heterogeneity) ๊ณผ ์ž„์˜์˜ ๋ณ€์ด (random variation) ๋กœ๋ถ€ํ„ฐ ๊ฐ•์ธํ•˜๊ฒŒ ์ง€์ผœ์ฃผ๋Š”์ง€์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃจ๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์‚ฌ์‹ค, ๊ฐ•์ธ์„ฑ์€ ๋™๊ธฐํ™” ์ž์ฒด๋กœ๋ถ€ํ„ฐ๊ฐ€ ์•„๋‹ˆ๋ผ ๋™๊ธฐํ™”๋ฅผ ์ด๋„๋Š” ๋‘ ๊ฐ€์ง€ ํŠน์ • ์š”์ธ์— ์˜ํ•œ ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ๋‚˜์˜จ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊ฐ•์กฐํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ฆ‰, ๋งŽ์€ ์ˆ˜์˜ ๊ฐœ์ฒด๋“ค์ด ์ƒํ˜ธ ์—ฐ๊ฒฐ ๋œ ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ์ฆ๋ช…ํ•˜๊ณ  ๊ทธ ๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. (๊ฐ€) ๊ฐœ์ฒด๋“ค ์‚ฌ์ด์˜ ์ด์ข…์„ฑ์ด ๋งค์šฐ ํฐ ์ƒํ™ฉ์—์„œ๋„ ๊ฐ ๊ฐœ์ฒด๋“ค์˜ ๊ถค์ ์ด ์ƒํ˜ธ ์—ฐ๊ฒฐ ๊ฐ•๋„๊ฐ€ ํด์ˆ˜๋ก ๋‹ค๋ฅธ ๊ฐœ์ฒด๋“ค๊ณผ ๊ฐ€๊นŒ์›Œ์ง€๊ฒŒ ๋˜๊ณ  ์‹ค์šฉ์  ๋™๊ธฐํ™” (practical synchronization)๋“ค ๋‹ฌ์„ฑํ•˜๊ฒŒ ๋œ๋‹ค. (๋‚˜) ๊ฐœ์ฒด๋“ค์˜ ์ˆ˜๊ฐ€ ๋งŽ์œผ๋ฉด ๋งŽ์„์ˆ˜๋ก ๋‹ฌ์„ฑ๋œ ๋™๊ธฐํ™” ํ˜„์ƒ์ด ๊ฐ ๊ฐœ์ฒด๋“ค์˜ ๋ณ€์ด๋“ค์— ๋Œ€ํ•ด์„œ ์˜ํ–ฅ์„ ๋œ ๋ฐ›๊ฒŒ ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ด์ข… ๋„คํŠธ์›Œํฌ์—์„œ์˜ ์ƒํƒœ ์ผ์น˜์™€ ๋™๊ธฐํ™” ๋ฌธ์ œ๋“ค์€ ๋‹จ์ผ ๊ฐœ์ฒด๋ฅผ ์ œ์–ดํ•  ๋•Œ๋ณด๋‹ค ์–ด๋ ค์šด ๋ณธ์งˆ์ ์ธ ๋ณต์žก์„ฑ์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค. ๊ฐ€๋ น ์ „์ฒด ๊ฐœ์ฒด์ˆ˜์˜ ๋งŽ๊ณ  ์ ์Œ์œผ๋กœ ์ธํ•œ ๋ณต์žก๋„, ๊ฐœ๋ณ„ ์‹œ์Šคํ…œ ๋™์—ญํ•™์˜ ๋ณต์žก์„ฑ, ๋‹ค์ˆ˜ ์‹œ์Šคํ…œ๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ ๋„คํŠธ์›Œํฌ ์œ„์ƒ ๊ตฌ์กฐ์˜ ๋ณต์žก๋„ ๋“ฑ์ด ์กด์žฌํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด์ข… ๋‹ค๋Š”์ฒด ์‹œ์Šคํ…œ์˜ ๊ตฐ์ง‘ ํ–‰๋™์„ ์ž˜ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ํ‰๊ท  ๋™์—ญํ•™ (averaged dynamics) ๊ฐœ๋…์„ ์ƒˆ๋กœ์ด ์ œ์‹œํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ•์ธํ•œ ์ƒํƒœ ์ผ์น˜์™€ ๋™๊ธฐํ™”์˜ ์‘์šฉ ์—ฐ๊ตฌ๋กœ์„œ ์ตœ์ ์˜ ๋ถ„์‚ฐ ์„ผ์„œ ๋„คํŠธ์›Œํฌ ๊ตฌํ˜„์„ ์œ„ํ•œ ์„ค๊ณ„ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋น„๋ก ์ค‘์•™ ์ง‘์ค‘ํ˜• ์นผ๋งŒ-๋ถ€์‹œ ํ•„ํ„ฐ (centralized Kalman-Bucy filter) ๊ฐ€ ์ตœ์ ์˜ ํ•„ํ„ฐ๋ผ๋Š” ๊ฒƒ์ด ์ตœ์  ์ œ์–ด ์ด๋ก  (optimal control theory) ์—ฐ๊ตฌ๋“ค์—์„œ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ, ๋ถ„์‚ฐ ์„ผ์„œ ๋„คํŠธ์›Œํฌ์—์„œ๋Š” ๋ถ„์‚ฐ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋Œ€์ƒ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์ด ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Š” ํšจ์œจ์ ์ด์ง€ ์•Š๊ฒŒ ๋œ๋‹ค. ๋ถ„์‚ฐํ˜• ์นผ๋งŒ-๋ถ€์‹œ ํ•„ํ„ฐ (distribued Kalman-Bucy filter) ์˜ ์„ค๊ณ„๋Š” ๊ธฐ์กด์˜ ๊ฐ•์ธํ•œ ์ƒํƒœ ์ผ์น˜์™€ ๋™๊ธฐํ™” ๋ฌธ์ œ๋ฅผ ๋‹ฌ์„ฑํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ๋งฅ๋ฝ์— ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ค‘์•™ ์ง‘์ค‘ํ˜• ์นผ๋งŒ-๋ถ€์‹œ ํ•„ํ„ฐ์˜ ์ตœ์ ์„ฑ์„ ๋ถ„์‚ฐ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ํ‰๊ท  ๋ถ„์‚ฐํ˜• ์นผ๋งŒ-๋ถ€์‹œ ํ•„ํ„ฐ (averaged distributed Kalman-Bucy filter) ๊ฐœ๋…์„ ์ œ์‹œํ•˜๊ณ  ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฐ•ํ•œ ์ƒํ˜ธ ์—ฐ๊ฒฐ ํ•˜์—์„œ๋Š” ์‹ค์ œ๋กœ ๊ฐ ๊ฐœ์ฒด์˜ ์˜ค์ฐจ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ (error covariance matrix)์ด ์ค‘์•™ ์ง‘์ค‘ํ˜• ์นผ๋งŒ-๋ถ€์‹œ ํ•„ํ„ฐ์˜ ์˜ค์ฐจ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ๋กœ ๊ทผ์ ‘ํ•˜๊ฒŒ ๊ฐ€๊นŒ์›Œ์ง„๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ด๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ถ„์‚ฐ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์ค‘์•™ ์ง‘์ค‘ํ˜• ์นผ๋งŒ-๋ถ€์‹œ ํ•„ํ„ฐ์˜ ์ตœ์ ์„ฑ์„ ๋ณต๊ตฌ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ ์„ผ์„œ ๋„คํŠธ์›Œํฌ ํฌ๊ธฐ๋ฅผ ๋Š˜์ด๊ณ  ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ์œ ์—ฐํ•œ ๋ถ„์‚ฐํ˜• ์นผ๋งŒ-๋ถ€์‹œ ํ•„ํ„ฐ (flexible distributed Kalman-Bucy filter)๋ฅผ ์ œ์‹œํ•˜๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์‹œํ•œ ์„ค๊ณ„ ๊ธฐ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•œ๋‹ค.Consensus and synchronization both refer to the property that individuals in a group reach agreement in some sense, and the phenomena in large communities of interacting systems appear in various areas of biology, social sciences, engineering, and so on. Flocking of birds, schooling of fish, and swarming of bees are fascinating phenomena to be observed in nature. Sometimes, the consensus theory is a useful tool for understanding social phenomena. In engineering world, consensus and synchronization are relevant in an extremely wide range of applications from various disciplines including sensor networks, unmanned vehicles, robot cooperation teams, mobile communication systems, and so on. In particular, it is a common belief in biophysics and systems biology that synchronization makes the behavior of an interconnected system robust to perturbation, which has often been verified in simulations and experiments. Motivated by this, the dissertation addresses the robust consensus and synchronization problems of multi-agent systems. A multi-agent system consists of several non-identical individuals, each of which has the ability that can interact with its neighboring systems. We consider consensus and synchronization in networks of individual dynamical systems interconnected according to a specific communication topology, where the individual systems are described by nonlinear ordinary differential equations and the communication topology is modeled by a graph. We devote the first part of this dissertation to explain how synchronization may help protect interconnected multi-agent systems from heterogeneities in individuals and randomly determined variations. In fact, it is emphasized that the robustness comes, rather than from the synchronization itself, from two specific components that lead to synchronizationthat is, ``multi''-agents and ``coupling'' among them. In particular, it is mathematically proved that (i) the solutions of individual agents get closer to each other as the coupling gain gets larger, so that practical synchronization is achieved, even under large heterogeneity among the agents, and (ii) as the number of agents becomes larger, the achieved synchronization becomes less affected by the variations in the individual agents. In general, the consensus and synchronization problems of the heterogeneous network systems are possessed of intrinsic complexities compared to controlling a single system. The complexities arise from, for example, the number of systems involved, system dynamics, and topological structure of the network. Thus, a new notion of averaged dynamics which is a useful tool for understanding the collective behavior of the heterogeneous multi-agent systems is introduced. In the second part of the dissertation, we propose a design method to implement optimal distributed sensor network as an application of the robust consensus and synchronization. Even though centralized Kalman-Bucy filter is an optimal filter, it is not useful since a fundamental problem in distributed sensor network is to achieve estimation of target by using distributed algorithms. Since the underlying philosophy for designing distributed Kalman-Bucy filter is similar to the robust consensus and synchronization, we introduce the averaged distributed Kalman-Bucy filter which is the average of all distributed Kalman-Bucy filters dynamics, so as to recover the optimality of centralized Kalman-Bucy filter. The proposed algorithm finds out that the strong coupling makes the error covariance matrix approximately (but arbitrarily closely) converge to that of the centralized Kalman-Bucy filter and the optimality can be recovered. Moreover, we propose a flexible distributed Kalman-Bucy filter so as to expand and reduce the scale of the sensor network. Numerical simulations demonstrate the performance of the proposed scheme.Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 Consensus and Synchronization 1 1.1.2 Complexity of Analysis 2 1.1.3 Robustness of Interconnected Dynamical Systems 7 1.2 Outline and Contributions 8 Chapter 2 Graph Theory for Consensus and Synchronization Problems 11 2.1 Basic Definitions of Graph Theory 12 2.1.1 Graph Connectedness 13 2.1.2 Laplacian Matrix 14 2.2 Algebraic Properties of Graph 15 2.2.1 Algebraic Connectivity 16 2.2.2 Useful Properties for Consensus and Synchronization 21 Chapter 3 Robustness by Strong Coupling 25 3.1 Problem Formulation 26 3.2 Averaged Dynamics 28 3.3 Analysis of Robustness by Strong Coupling 33 3.4 Illustrative Example 39 3.4.1 Effect of strong coupling 39 3.4.2 Tightness of upper bound 42 3.5 High-Order Heterogeneous Multi-Agent Systems 45 Chapter 4 Robustness by A Large Number of Agents 53 4.1 Problem Formulation 54 4.2 Robustness of Averaged Dynamics 56 4.2.1 Probabilistic Analysis of Robust Averaged Dynamics 57 4.2.2 Simulation Results 61 4.3 Strong Coupling with A Large Number of Agents 65 4.3.1 Simulation Results 69 Chapter 5 Optimal Distributed Kalman-Bucy Filter in Sensor Network 71 5.1 Reviews of Distributed Kalman-Bucy Based Filtering for Sensor Network 72 5.1.1 Centralized Kalman-Bucy Filter 73 5.1.2 Kalman-Consensus Filter 74 5.2 Design of Optimal Distributed Kalman-Bucy Filter 78 5.2.1 Robustness of Heterogeneous Agents with Locally Lipschitz Nonlinearity 81 5.2.2 Stability Analysis 87 5.2.3 Flexible Sensor Network 96 5.3 Simulation Results 100 5.3.1 Optimal Recovery 101 5.3.2 Various Network Topologies 101 Chapter 6 Conclusions 105 6.1 Summary and Discussion 105 6.2 Further Issues 106 APPENDIX 109 A.1 Ultimate boundedness lemma in Section 3.3 109 BIBLIOGRAPHY 111 ๊ตญ๋ฌธ ์ดˆ๋ก 123Docto

    ROC ๋ถ„์„๋ฒ•์„ ์ด์šฉํ•œ ์—…๋ฌด๊ด€๋ จ์„ฑ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜ ์„ค๋ฌธ์ง€ ๊ฐœ๋ฐœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์˜ˆ๋ฐฉ์˜ํ•™์ „๊ณต,1999.Maste

    ้Ÿ“ๅœ‹์˜ ้›ปๆฐฃ้€šไฟก์„œ๋น„์Šค์— ้ฉๅˆํ•œ ่ฆๅˆถๆ–นๅผ์— ้—œํ•œ ็ก็ฉถ : ๅƒนๆ ผไธŠ้™่ฆๅˆถ๋ฅผ ไธญๅฟƒ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :่ณ‡ๆบๅทฅๅญธ็ง‘,1995.Maste

    Effects of background contrast, distance, alignment, alphanumeric type on threshold visual angle of signal detection

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฐ์—…๊ณตํ•™๊ณผ, 2009.2.Maste

    Prediction of longitudinal outcomes

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ†ต๊ณ„ํ•™๊ณผ, 2012. 2. ๋ฐ•ํƒœ์„ฑ.์–‘๊ทน์„ฑ ์žฅ์• ๋Š” ์กฐ์ฆ ์‚ฝํ™”(manic episode)์™€ ์ฃผ์š” ์šฐ์šธ์‚ฝํ™”(major depressive episode)๋ฅผ ํŠน์ง•์œผ๋กœ ํ•˜๋Š” ์ •์‹ ์งˆํ™˜์ด๋‹ค. ์ฃผ์š” ์šฐ์šธ์‚ฝํ™” ์‹œ๊ธฐ์—๋Š” ์–‘๊ทน์„ฑ ์žฅ์•  ํ™˜์ž๋“ค์˜ 8 ~ 10 % ๊ฐ€ ์ž์‚ดํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์–‘๊ทน์„ฑ ์žฅ์•  ํ™˜์ž๋ฅผ ์น˜๋ฃŒํ•  ๋•Œ, ์šฐ์šธ์ฆ์ƒ์˜ ์ •๋„๋ฅผ ์ธก์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์šฐ์šธ์ฆ์ƒ์˜ ์ •๋„๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉํ•˜๋Š” ๊ฒ€์‚ฌ๋ฒ•์€ ํ•ด๋ฐ€ํ„ด ์šฐ์šธํ‰๊ฐ€ ์ฒ™๋„(Hamilton depression rating scale)์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ•ด๋ฐ€ํ„ด ์šฐ์šธํ‰๊ฐ€ ์ฒ™๋„ ์ ์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ํ™˜์ž๋“ค์˜ ์น˜๋ฃŒ ํšจ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์„ ํ˜•ํ˜ผํ•ฉํšจ๊ณผ๋ชจํ˜•(linear mixed effect model)๊ณผ ์ „์ด ๋ชจํ˜•(transition model)์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์˜ˆ์ธก์„ ์œ„ํ•ด ์‚ฌ์šฉ๋œ ์ž๋ฃŒ๋Š” ๋ถ„๋‹น์„œ์šธ๋Œ€ํ•™๊ต๋ณ‘์›์„ ๋ฐฉ๋ฌธํ•˜์—ฌ ์ดˆ์ง„์ผ ๋‹น์‹œ์˜ ํ•ด๋ฐ€ํ„ด ์šฐ์šธํ‰๊ฐ€ ์ฒ™๋„ ์ ์ˆ˜๊ฐ€ 8 ์  ์ด์ƒ์ธ ํ™˜์ž๋“ค์˜ ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ณต๋ณ€๋Ÿ‰์œผ๋กœ ์„ค์ •๋œ ํ™˜์ž์˜ ์ •๋ณด๋Š” ์„ฑ๋ณ„, ์–‘๊ทน์„ฑ ์žฅ์•  ์œ ํ˜•, ๊ฒฐํ˜ผ ์—ฌ๋ถ€, ๋‚˜์ด, ๊ต์œก ์ˆ˜์ค€, ๊ณผ๊ฑฐ ์šฐ์šธ์ฆ ์‚ฝํ™” ํšŸ์ˆ˜์˜€๋‹ค. ์ด ๊ณต๋ณ€๋Ÿ‰๋“ค๊ณผ ์„ธ ์ฐจ๋ก€์— ๊ฑธ์ณ ๊ด€์ธก๋œ ํ•ด๋ฐ€ํ„ด ์šฐ์šธํ‰๊ฐ€ ์ฒ™๋„ ์ ์ˆ˜๋ฅผ ์„ ํ˜•ํ˜ผํ•ฉํšจ๊ณผ๋ชจํ˜•๊ณผ ์ „์ด๋ชจํ˜•์— ์ ํ•ฉ์‹œ์ผฐ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ํŠน์ • ์‹œ์ ์˜ ํ•ด๋ฐ€ํ„ด ์šฐ์šธํ‰๊ฐ€ ์ฒ™๋„ ์ ์ˆ˜๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ์˜ˆ์ธก ๊ฒฐ๊ณผ, ์ „์ด๋ชจํ˜•์ด ์„ ํ˜•ํ˜ผํ•ฉํšจ๊ณผ๋ชจํ˜•๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก๋ ฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” ์‹ค์ œ ๊ด€์ธก๋œ ์ ์ˆ˜์™€ ์˜ˆ์ธก๋œ ์ ์ˆ˜์˜ ์ƒ๊ด€๊ณ„์ˆ˜์™€ ์˜ˆ์ธก์˜ค์ฐจ๋ฅผ ํ†ตํ•ด ํŒ๋‹จํ•˜์˜€๋‹ค. ์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ํ•ด๋ฐ€ํ„ด ์šฐ์šธํ‰๊ฐ€ ์ฒ™๋„ ์ ์ˆ˜์˜ ๋ณ€ํ™”๊ฐ€ ๋น„์„ ํ˜•์ ์ธ ์ถ”์„ธ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๊ธฐ ๋•Œ๋ฌธ์— ์„ ํ˜•ํ˜ผํ•ฉํšจ๊ณผ๋ชจํ˜•์„ ์ด์šฉํ•œ ๊ฒฐ๊ณผ๋ณด๋‹ค ์ „์ด๋ชจํ˜•์„ ์ด์šฉํ•œ ๊ฒฐ๊ณผ๊ฐ€ ์ข‹์•˜๋˜ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ๋‘ ์˜ˆ์ธก ๋ชจํ˜•์„ ํ†ตํ•ด ์˜ˆ์ธก๋œ ์ ์ˆ˜๋Š” ์‹ค์ œ ๊ด€์ธก๋œ ์ ์ˆ˜์™€ ์œ ์˜ํ•œ ์ƒ๊ด€์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ์ง€๋งŒ, ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๊ฐ€ ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋” ๋งŽ์€ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ๋Š” ์ž„์ƒ์—์„œ ์šฐ์šธ์ฆ์ƒ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ํ•ด๋ฐ€ํ„ด ์šฐ์šธํ‰๊ฐ€ ์ฒ™๋„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์–‘๊ทน์„ฑ ์žฅ์•  ํ™˜์ž์˜ ๋ฏธ๋ž˜ ์ƒํƒœ๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ํ†ต๊ณ„์  ๋ชจํ˜•์„ ์ตœ์ดˆ๋กœ ์ œ์‹œํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ํ›„์† ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋” ์ •๊ตํ•œ ์˜ˆ์ธก ๋ชจํ˜•์ด ๋งŒ๋“ค์–ด์ง„๋‹ค๋ฉด, ์˜ˆ์ธกํ•œ ์ ์ˆ˜๋ฅผ ํ†ตํ•ด ๊ณ ์œ„ํ—˜๊ตฐ ํ™˜์ž๋ฅผ ๋ณ„๋„๋กœ ๊ด€๋ฆฌํ•˜์—ฌ ์น˜๋ฃŒํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค๋ฅธ ์งˆํ™˜์˜ ์น˜๋ฃŒ ํšจ๊ณผ ์˜ˆ์ธก์„ ์œ„ํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ๋กœ์„œ, ๊ทผ๊ฑฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค.Bipolar disorder is a psychopathy that is characterized by manic episodes and major depressive episodes. It is known that 8-10% of bipolar disorder patients commit suicide during the periods in which they experience major depressive episodes. Thus it is important to determine the degree of depression when treating patients with bipolar disorder. The Hamilton depression rating scale is the most common method used to estimate the degree of depression in a patient. This research paper proposes using the score from the Hamilton depression rating scale to estimate the effectiveness of patient treatment by applying it to the linear mixed effect model and the transition model. Information collected from patients who scored 8 points or above in the Hamilton depression rating scale on their first medical examination day in the Seoul National University Bundang Hospital, was used as data for this research. Patient information that was set as covariates were gender, marital status, age, level of education, type of bipolar disorder, and the number of major depression episodes experienced in the past. The scores collected from three trials of the Hamilton depression rating scale, along with the covariates mentioned, were applied to the linear mixed effect model and the transition model. Using the results from this application as the basis, the Hamilton depression rating scale score at a specific point was estimated. Looking at the outcome, the transition model showed a more accurate estimation capability than that of the linear mixed effect model. This was determined by the correlation coefficient and the prediction error of the observed score and the estimated score. As time passed the Hamilton depression rating scale demonstrated a non-linear tendency, which appears to be the reason why the transition model had better results than that of the linear mixed effect model. Also, although there is a correlation between the observed score and the scores estimated from the two models, continued research on additional patients is needed for the results of this study to gain more credibility. This research finds meaning in that it is the first attempt to use the Hamilton depression rating scale to suggest a statistical model that can estimate the future condition of a patient with bipolar disorder. If a more elaborate estimation model is built through follow-up research, the scores taken from the estimation model can be used to treat high risk patients by managing them separately. Furthermore, this research is meaningful as it produces evidence as a precedent research for estimating patient treatment effectiveness in other disease.Maste

    Inhibitory effect of neurotrophin-3 secreting cell line on the growth of medulloblastoma

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์‹ ๊ฒฝ์™ธ๊ณผํ•™์ „๊ณต,2004.Docto

    ์†Œ์•„ ๋ชจ์•ผ๋ชจ์•ผ๋ณ‘์—์„œ ๋ฆฌ๋ณธ EGS๋ฅผ ๋ณ‘์šฉํ•œ EDAS ์ˆ˜์ˆ  ํ›„์˜ ํ˜ˆ๊ด€์žฌํ˜•์„ฑ ๋ฐ ๋‡Œํ˜ˆ๋ฅ˜๋ณ€ํ™”์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์‹ ๊ฒฝ์™ธ๊ณผํ•™์ „๊ณต,1999.Maste

    Changes in ambulatory care service consumption after the separation of prescribing and dispensing : analysis with the episode of care and continuity of care

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์˜ˆ๋ฐฉ์˜ํ•™ ์ „๊ณต,2003.Docto
    corecore