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ABSTRACT
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Consensus and synchronization both refer to the property that individuals in a

group reach agreement in some sense, and the phenomena in large communities of

interacting systems appear in various areas of biology, social sciences, engineering,

and so on. Flocking of birds, schooling of fish, and swarming of bees are fascinat-

ing phenomena to be observed in nature. Sometimes, the consensus theory is a

useful tool for understanding social phenomena. In engineering world, consensus

and synchronization are relevant in an extremely wide range of applications from

various disciplines including sensor networks, unmanned vehicles, robot coopera-

tion teams, mobile communication systems, and so on.

In particular, it is a common belief in biophysics and systems biology that

synchronization makes the behavior of an interconnected system robust to per-

turbation, which has often been verified in simulations and experiments. Moti-

vated by this, the dissertation addresses the robust consensus and synchroniza-

tion problems of multi-agent systems. A multi-agent system consists of several
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non-identical individuals, each of which has the ability that can interact with its

neighboring systems. We consider consensus and synchronization in networks of

individual dynamical systems interconnected according to a specific communica-

tion topology, where the individual systems are described by nonlinear ordinary

differential equations and the communication topology is modeled by a graph.

We devote the first part of this dissertation to explain how synchronization

may help protect interconnected multi-agent systems from heterogeneities in in-

dividuals and randomly determined variations. In fact, it is emphasized that the

robustness comes, rather than from the synchronization itself, from two specific

components that lead to synchronization; that is, “multi”-agents and “coupling”

among them. In particular, it is mathematically proved that (i) the solutions of

individual agents get closer to each other as the coupling gain gets larger, so that

practical synchronization is achieved, even under large heterogeneity among the

agents, and (ii) as the number of agents becomes larger, the achieved synchro-

nization becomes less affected by the variations in the individual agents.

In general, the consensus and synchronization problems of the heterogeneous

network systems are possessed of intrinsic complexities compared to controlling a

single system. The complexities arise from, for example, the number of systems

involved, system dynamics, and topological structure of the network. Thus, a

new notion of averaged dynamics which is a useful tool for understanding the

collective behavior of the heterogeneous multi-agent systems is introduced.

In the second part of the dissertation, we propose a design method to imple-

ment optimal distributed sensor network as an application of the robust consen-

sus and synchronization. Even though centralized Kalman-Bucy filter is an opti-

mal filter, it is not useful since a fundamental problem in distributed sensor net-

work is to achieve estimation of target by using distributed algorithms. Since the

underlying philosophy for designing distributed Kalman-Bucy filter is similar to

the robust consensus and synchronization, we introduce the averaged distributed

Kalman-Bucy filter which is the average of all distributed Kalman-Bucy filters’

dynamics, so as to recover the optimality of centralized Kalman-Bucy filter. The

proposed algorithm finds out that the strong coupling makes the error covariance

matrix approximately (but arbitrarily closely) converge to that of the centralized
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Kalman-Bucy filter and the optimality can be recovered. Moreover, we propose

a flexible distributed Kalman-Bucy filter so as to expand and reduce the scale of

the sensor network. Numerical simulations demonstrate the performance of the

proposed scheme.

Keywords: multi-agent systems, consensus, synchronization, robustness, aver-

aged dynamics, distributed sensor network, distributed Kalman-Bucy filter

Student Number: 2010–20777
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Chapter 1

Introduction

1.1 Research Background

1.1.1 Consensus and Synchronization

What is the difference between the notions of consensus and synchronization in

the networked system? Many researchers who are interested in the consensus and

synchronization problems may have this question. As expected, the two terms are

closely related in some sense. Both describe the effect of reaching agreement in a

group of individual systems. In the case of consensus, it deals with the problem

of agreement about the value of the members while synchronization deals with

the problem of the exact coincidence in time or rate, when the members take a

specific value. Therefore, we can argue that consensus with the coincidence in

time yields synchronization, and synchronized trajectory yields consensus. As a

result, whether some phenomenon is termed consensus or synchronization often

depends on the point of view one decides to take.

Cooperative collective behaviors in networks of individual agents have received

considerable attention in recent years due to their broad applications to biological

systems, neuroscience, social science, engineering, and so on. Flocking of birds,

schooling of fish, swarming of bees, and fireflies flashing in synchrony are fasci-

nating phenomena to be observed in nature [Rey87, HBSM04, JMB05, Buc88].

In biological systems and neuroscience, complex networks are found at different

scales from the molecular level up to the population level. In some of these net-
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2 Chap. 1. Introduction

works, dynamical interactions between units, which are crucial for our current un-

derstanding of living systems, can be analyzed in the framework of synchroniza-

tion phenomena like, e.g., circadian rhythm [Str03, LWK+07], neuronal network

[IM08], and so on. Gossip-based algorithms [AYSS08] to achieve consensus over

a set of agents have recently received attention in social science.

In engineering area, distributed consensus and coordination control of multi-

agent systems over the complex networks have received a lot of attention in recent

years. Consensus and synchronization problems of coordinated motion of individ-

ual mobile agents is the most commonly cited example in its various occurrences

[FM04, JLM03, OSFM07, RBA07, QWH08, SPL08]. Advances in wireless com-

munications and microelectromechanical systems technology have enabled the use

of distributed sensor nodes, and the distributed estimation is one of the most fun-

damental collaborative information processing problems in wireless sensor net-

works [OS07, BFL11, Geo13, YKK15]. In addition, many consensus and syn-

chronization algorithms were developed and studied under various circumstances,

e.g., switching topology [Kim12, KSBS13, Wie10, WSA11, KA15], communica-

tion delay [MPA10, LJ08], packet drop communication [FZ09], and so on.

1.1.2 Complexity of Analysis

Even though the consensus and synchronization of individual systems are relevant

in an extremely wide range of applications, it is difficult to tackle the consensus

and synchronization problems in large communities with interacting systems. The

intrinsic complexities of consensus and synchronization can be identified with the

2-dimensional space: complexity of the individual system dynamics, and com-

plexity of the network. These two dimensions of complexity and the related refer-

ences are depicted in Figure 1.11. The system complexity can be ranged from the

simple linear integrator models to heterogeneous2 stochastic nonlinear systems or

hybrid systems. The network complexity deals with the kind of topologies and

communication link constraint, and thus the range can be determined from two

1The definitions of the terms of network complexity can be found in Chapter 2.
2The terms, heterogeneous, non-identical, have the same meaning in this dissertation. In ad-

dition, homogeneous, identical, have the same meaning, too. We will use them interchangeably.
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Figure 1.1: The complexity plane for networked systems and related refer-
ences.

coupled agents to time-varying topologies with communication delay and packet

drop.

Consensus and synchronization problems have been usually classified very

differently in the complexity plane. Consensus problems are often focused on

network complexity, in particular communication constraints, while individual

system dynamics are usually fairly simple that the individual agents modeled as

simple integrator [JLM03, OSFM07, RBA07]. This is because many researchers

in control systems were inspired by the Vicsek model [VCBJ+95] and it triggered

the interest of consensus problems. This model is composed of N autonomous

subsystems which are driven by a constant absolute velocity (in discrete-time),

and updating the head angle by the average direction of motion of the agents in

its neighborhood with some random noises added, i.e.,

θi(k + 1)− θi(k) = δi(k) +
1

1 + |Ni(k)|
∑

j∈Ni(k)

(θj(k)− θi(k)) , (1.1.1)
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where θi ∈ S is the heading angle of the i-th subsystem, δi ∈ S represents

temperature-like noise, and Ni(k) is the set of indices of the neighbors of the

i-th subsystem at time k. The Vicsek model can be modeled as a simple inte-

grator (without noise) with the time-varying communication network, and thus

many consensus problems are more focused on network complexity.

Nevertheless, the following results have struggled to develop the system com-

plexity in consensus problems.

i) In virtue of the graph theory, the consensus problem of identical LTI systems

can be considered as simultaneous stabilizability problem of certain (N −1)

systems. It can be seen from [Tun08a]3 that

ẋi = Axi +Bui,

ui = kBTP
∑
j∈Ni

(xj − xi),

where xi ∈ Rn is the state, k > 0 is the coupling strength, and P > 0 is the

solution of the following algebraic Riccati equation

ATP + PA− PBBTP + In = 0.

ii) Output consensus of heterogeneous multi-agent systems was addressed by

introducing an internal model into the consensus problem in [KSS11, WSA11,

IMC14], for example, consider a group of heterogeneous LTI systems

ẋi = Aixi +Biui,

yi = Cixi,

where xi ∈ Rni is the state, yi ∈ R the output of the i-th agent, and output

3Here, the assumptions are (A,B) is stabilizable and the graph is connected.
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feedback controller written as (relative degree 1 case of [KSS11])

ζ̇i = Fζi +Gyi +H
∑
j∈Ni

(yj − yi)

ui = Jζi +Kyi.

Even though they dealt with asymptotic consensus of the non-identical

agents with output information, an identical internal model requirement

is necessary for consensusability [WSA11], i.e., the models of the individual

systems together with their local controllers must embed an identical inter-

nal model of that virtual exosystem.

In contrast to consensus, the problems of synchronization usually deal with

more complex system dynamics, e.g., nonlinear oscillators, while putting less em-

phasis on the network complexity. Often, in order to simplify the analysis, the

extreme case of all-to-all topology is assumed, which can be considered as uncon-

strained communication. Similar to the Vicsek model (1.1.1), there is a famous

model for synchronization, namely the Kuramoto model4 [Kur75, HHK10],

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), (1.1.2)

where θi ∈ S is the phase of the i-th oscillator, ωi ∈ R is the randomly drawn i-th

natural frequency of the oscillator, and K ∈ R is the coupling gain. Some efforts

to expand the network compelxity and system complexity of the synchronization

problems are as follows.

i) A natural extension of the Kuramoto model with short-range interaction

effects was discussed in [SM88]. The authors considered the case in which

interactions occur between nearest neighbors. The model equation is

θ̇i = ωi +K
∑
j∈Ni

sin(θj − θi).

4In fact, Kuramoto model was simplified from Winfree model [Win67] for the system of
weakly coupled and nearly identical limit-cycle oscillators. See [Str00] for more details.
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Compare to the Kuramoto model (1.1.2) the coupling strength K does not

need to be scaled by the total number N of oscillators.

ii) When the coupling is strong enough, the amplitude of each oscillator may be

affected, and thus a more comprehensive and general model was introduced

by [MMS91]. The authors considered limit-cycle oscillator with all-to-all

coupling,

żi =
(
1− |zi|2 +

√
−1ωi

)
zi +

K

N

N∑
j=1

(zj − zi), (1.1.3)

where zi is the position of the i-th oscillator in the complex plane, ωi its

natural frequency (assumed to be randomly selected from a frequency dis-

tribution), and K is the coupling gain.

With z̄ :=
∑N

i=1 zi/N , the system (1.1.3) can be written as

żi =
(
1− |zi|2 +

√
−1ωi

)
zi +K(z̄ − zi). (1.1.4)

Define the amplitude and phase of the average position by z̄ =: Re
√
−1φ,

which enables (1.1.4) to be written in polar form

ṙi = (1− r2i −K)ri +KR cos(φ− θi), (1.1.5a)

θ̇i = ωi +
KR

ri
sin(φ− θi). (1.1.5b)

Therefore, with the limit of weak coupling and narrowly distributed fre-

quencies, all the oscillators approach the unit circle and the system (1.1.5b)

becomes the Kuramoto phase model (1.1.2). In particular, the limit-cycle

oscillator (1.1.3) was derived from the weakly coupled Van der Pol oscilla-

tors [Aiz76].

iii) In [WS05], the authors considered the synchronization problems of nonlinear

networked systems including Van der Pol oscillator under a general coupling
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structure. A network containing identical individuals is given as

ẋi = f(xi, t) +
∑
j∈Ni

Kji(xj − xi), (1.1.6)

where Kji is the gain associated with coupling from node i to j. In this

case, if the couplings are strong enough, then a generally coupled network

(1.1.6) will achieve synchronization.

From the above researches, it is observed that consensus and synchronization

studies often focus on either network or system complexity, but rarely deal with

both at the same time. In particular, it seems that there is an intrinsic limitation

in the interconnected dynamical systems composed of non-identical dynamics. We

will devote to investigate the collective behavior of nonlinear and non-identical

systems with general communication network5, and the limitation will be partly

solved in this dissertation.

1.1.3 Robustness of Interconnected Dynamical Systems

It is a common belief in biophysics and systems biology that synchronization

makes the behavior of an interconnected system robust to perturbation, which has

often been verified in simulations and experiments. Circadian rhythm is one of the

most well known example of this feature [LWK+07, AWJ+15, KHHPB07]. Stud-

ies have found that the circadian rhythm is governed by a biological clock, which

in mammals is located in brain area called the suprachiasmatic nuclei (SCN), and

have a period of approximately 24 hours. In addition, these circadian cycles can

be synchronized to external time signals but also can persist in the absence of

such signals. Moreover, it is robust against the mutations [LWK+07] and noises

[AWJ+15, KHHPB07]. This robustness of synchronization in circadian rhythm

is important in determining the sleeping and feeding patterns of all animals, in-

cluding human beings, and thus we need to figure out a way of obtaining the

robustness.

5In this dissertation, we consider the system ẋi = fi(xi, ui) with undirected network in Figure
1.1.
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This dissertation is devoted to explain how synchronization may help pro-

tect an interconnected multi-agent system from uncertainties and external dis-

turbances. Tabareau, Slotine, and Pham in [TSP10] mathematically analyze the

robustness of synchronization for a diffusive network of noisy identical nonlinear

systems. The authors showed that under specific, quantified conditions, the im-

pact of noise on individual interconnected systems and on their spatial mean can

essentially be canceled through synchronization. The main assumption is that

the dynamics is resistant to small perturbations, and thus all individual systems

have to be the ‘same’ and ‘good’ agents in some sense. As mentioned in Section

1.1.2, however, the non-identical nature of individuals is intrinsic phenomenon in

biological systems. Motivated by this, we will tackle the robustness problem of

the network including ‘different’ and ‘bad’ agents in this dissertation.

1.2 Outline and Contributions

The following overview reveals the outline of this dissertation and briefly summa-

rizes the contributions of each chapter.

Chapter 2. Graph Theory for Consensus and Synchronization Prob-

lems

In this chapter, we review basic definitions from graph theory and provide new

interpretations of consensus and synchronization problems. Parts of this chapter

are based on [KYKS12, KKYS13, KS15, KYS+]

i) We review basic definitions of graph theory, as far as they are relevant for

consensus and synchronization problems. In addition, a relation between

algebraic graph properties and the number of nodes is established.

ii) We provide new interpretations of the solvability of the consensus and syn-

chronization problems by introducing the useful coordinate transformation.

Chapter 3. Robustness by Strong Coupling

This chapter addresses one of the main ingredients of robust synchronization

against heterogeneity. In particular, we discuss the key factors of synchronized
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behavior and provide reliable computations to be carried out even in the presence

of significant heterogeneity. Most of this chapter is based on [KYKS12, KKYS13,

KS15, KYS+].

i) We introduce the new notion of the averaged dynamics which is a useful tool

for understanding the collective behavior of the non-identical multi-agent

systems.

ii) We provide the conditions to achieve robust consensus and synchronization

with strong coupling. From the results, we explain why strong coupling

enhances the robustness of the synchronized behavior.

iii) In order to deal with physical systems, we provide similar results of strong

coupling for high-order heterogeneous agents.

Chapter 4. Robustness by A Large Number of Agents

In this chapter, we consider the robust synchronization against randomly selected

variations in individuals, and show that strong coupling and a large number of

agents imply robustness of synchronization against heterogeneity. This chapter is

mainly based on [KYS+].

i) A new notion of expected averaged dynamics is introduced as a reference

system which is not affected by the variations of the agents.

ii) We provide the effect of a large number of agents for the robustness of aver-

aged dynamics by using probability theory.

iii) We explain why strong coupling and a large number of agents need to be

used in robustness of consensus and synchronization problems.

Chapter 5. Optimal Distributed Kalman-Bucy Filter in Sensor Net-

work

This chapter mainly deals with the distributed Kalman-Bucy filter which the

application of the results in Chapter 3. We focus on the optimal recovery problem

in the sense of distributed sensor network.
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i) As a preliminary of the subsequent sections, we recall some background ma-

terials on Kalman-Bucy filter in distributed sensor network.

ii) We derive sufficient condition for semi-global ultimate boundedness of het-

erogeneous multi-agent systems with locally Lipschitz nonlinearity.

iii) We propose a design method to implement optimal distributed Kalman-Bucy

filter with strong coupling.

iv) In order to expansion and reduction of scale, we propose a design method of

flexible distributed Kalman-Bucy filter.

Chapter 6. Conclusions

This final chapter provides some conclusive remarks summarizing the thesis and

hints to possible future directions of research.



Chapter 2

Graph Theory for Consensus and
Synchronization Problems

In order to effectively deal with the consensus and synchronization problems in

large communities of interacting systems, we need to consider networks of inidi-

vidual dynamical systems, which are interconnected according to a specific com-

munication topology. The communication topology is chacracterized by the links

between the individual systems, and the systems can send or receive the informa-

tion through the links. Based on the links of the communication topology, the

set of neighbors (or senders if links are directional) can be determined for every

member of the network.

Graph theory is a useful tool for understanding or modeling the communica-

tion topology in a network of individual systems (see [Bon76, Bol02, Die06, GR01,

Gro04, Big93, Moh92, Moh91, Mer95, New00] and the references therein for de-

tails about graph theory), and it has been used in the consensus and synchro-

nization problems (refer to, e.g., [FM04, RBA07, OS07, JLM03, SSB09, WSA11,

FYL06, Tun08a, Tun08b, KSS11, Kim12, Wie10, ME10]). In particular, the alge-

braic connectivity has been used in analysing the robustness and synchronizability

of networks. The theory related to the algebraic connectivity was introduced by

Miroslav Fiedler [Fie73, Fie89].

In this chapter, we summarize the basic definitions and results from graph

theory for the study of the consensus and synchronization problems, and the

results will be used throughout this dissertation.

11
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Figure 2.1: Fixed weighted directed graph with four nodes.

2.1 Basic Definitions of Graph Theory

Graph consist of nodes (or vertices), edges (or arcs) connecting the nodes, and

weights assigned to their corresponding edges. Time-varying weighted directed

graph is the most general case, because it contains fixed (or time-invariant), un-

weighted, and undirected graphs as special cases.

Definition 2.1.1. (Communication graph). A time-varying weighted directed

graph G(t) is a 3-tuple G(t) := (N , E(t),A(t)) of nodes N := {1, 2, . . . , N}, edge

set E(t) ⊆ N ×N , and weighted adjacency matrix A(t) = [αij(t)] ∈ RN×N , where

t ∈ R represents time, satisfying the following properties:

(a) The graph contains no self-loops, i.e., (i, i) /∈ E(t) and αij(t) = 0 for all

i ∈ N and t ≥ 0.

(b) The elements αij(t) of the adjacency matrix A(t) are nonnegative, bounded,

and piecewise continuous function for t ≥ 0.1

(c) The edge (j, i) is contained in E(t) at time t if and only if αij(t) is positive

at time t. Otherwise, αij(t) = 0.

�
1A function f(t) is said to be a piecewise continuous function on a closed interval [a, b] ⊂ R,

if there exists finite number of points a = t0 < t1 < t2 < · · · < tN = b such that f(t) is
continuous in each of the intervals (ti−1, ti) for 1 ≤ i ≤ N and has finite limits as t approaches
the end points. A function f(t) is said to be a piecewise continuous function for t ≥ 0, if f(t) is
a piecewise continuous function on every closed interval [a, b] ⊂ [0,∞).
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In the above definition, the nodes i ∈ N represent the individual systems and

the edges (i, j) ∈ E(t) are modelled on the interconnections between the individual

systems. For a given edge (i, j) ∈ E(t), j is called the head and i is called the tail

and (i, j) represents the information flow from the tail to the head of an edge.

Usually, an edge (i, j) is represented by an arrow pointing from the tail i to the

head j. An example of a fixed weighted directed graph with four nodes, with

edges represented by arrows, is depicted in Figure 2.1.

The special classes of graphs can be defined from Definition 2.1.1. A graph is

said to be fixed (or time-invariant) if it does not change over time t. In this case, it

is simply denoted by G = (N , E ,A). A graph G(t) is unweighted if αij(t) ∈ {0, 1}
for all i, j ∈ N and for t ≥ 0 and thus, one can simply write G(t) = {N , E(t)}.
Consequently, a fixed unweighted graph can be denoted by G = {N , E}. The

special case of an undirected graph is obtained by imposing αij(t) = αji(t) for

all i, j ∈ N and for t ≥ 0, i.e., AT (t) = A(t). Throughout this dissertation,

we consider the fixed, unweighted, and undirected graph which is denoted by

Ĝ = {N , E}.

2.1.1 Graph Connectedness

In order to achieve consensus or synchronization among the individual systems,

it is necessary to share a minimum amount of information with all individuals.

As explained before, the common information propagates through the network

modeled by the graph which represents the communication topology. To ensure

the propagation of the common information to all individuals, the graph needs to

be connected in some sense. Here, we first define the neighbors of a node and a

path of the graph.2

Definition 2.1.2. (Neighbors). Let Ĝ = {N , E} be a graph. For a given i ∈ N ,

a node j ∈ N is called neighbor of the node i if (j, i) ∈ E . The neighbors of the

node i is the set that contains every neighbor of the node i, and denoted by Ni;

i.e., Ni := {j ∈ N : (j, i) ∈ E}. �

2For a fixed weighted directed graph G = {N , E ,A}, the definitions of the neighbors and the
path are the same as Definition 2.1.2 and Definition 2.1.3, respectively.
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Definition 2.1.3. (Path). Let Ĝ = {N , E} be a graph. For a given i, j ∈ N , a

path of length l from the node i to the node j is a sequence of nodes of the form

{i0, i1 . . . , il} such that i0 = i, il = j, ik ∈ Nik+1
for k = 0, 1, . . . , l − 1, and ik’s

are distinct for all k. �

In networked systems, existence of a path from the node i ∈ N to the node

j ∈ N in the graph Ĝ implies that the information can propagate from the system

represented by the node i to the system represented by the node j. By using the

definition of the path, we can define the connectedness of the graph as follows

[ME10, GR01, Die06, Bol02, RBA07, RB08].

Definition 2.1.4. (Connected graph). A graph Ĝ = {N , E} is said to be con-

nected if there is a path between any two nodes of the graph Ĝ, otherwise discon-

nected. �

For a directed graph, the connected graph in Definition 2.1.4 is also called

quasi strongly connected graph, and a different but equivalent statement of the

connected graph is that a graph has a directed spanning tree. See [TS11, Lin06,

Wu05, RBA07, RB08, SSB09] for more details of the definitions.

2.1.2 Laplacian Matrix

As was mentioned in Chapter 1, the diffusive coupling is the most commonly used

mechanism potentially leading to consensus and synchronization. Therefore, we

need to establish the connection between the diffusive coupling and the algbraic

graph theory. To this end, consider the most common continuous consensus al-

gorithm [OSM04, FM04, JLM03, RBA07] and assume the communication topol-

ogy is modeled by a graph Ĝ = {N , E}. Then, the consensus algorithm can be

expressed as

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) , i ∈ N ,
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where xi ∈ R it the state of the i-th agent. The collective dynamics of the group

of agents can be written as

ẋ(t) = −Lx(t) (2.1.1)

where x(t) := col(x1(t), . . . , xN (t)) and L = [lij ] ∈ RN×N is a matrix, the so-

called Laplacian matrix.

Definition 2.1.5. (Laplacian matrix). Given a graph Ĝ = {N , E}, the matrix

L := D −A

is called the Laplacian matrix of the graph Ĝ, where D ∈ RN×N is the degree

matrix of the graph Ĝ, which is defined as D := diag(A1N ). �

Note that the Laplacian matrix L is symmetric, because of the undirected

graph. The Laplacian matrix can also be defined by element-wise

lkj :=


∑N

i=1 αki, j = k,

−αkj , j ̸= k.

In (2.1.1), the collective behavior of x(t) is determined by the Laplacian matrix L.

Moreover, since the Laplacian matrix L can uniquely determines the adjacency

matrix A, it completely characterizes the graph Ĝ, and therefore characterizes

the communication topology. Hence, the Laplacian graph can be a useful tool for

understanding the behavior of interconnection dynamics for linearly diffusively

coupled system. In order to figure out the relation between the algebric properties

of L and the properties of the graph Ĝ, they will be discussed in the next section.

2.2 Algebraic Properties of Graph

The Laplacian matrix of a graph and its eigenvalues can be used in various areas,

and according to Mohar [Moh91], the Laplacian spectrum is much more natural

and more important than the spectrum of the adjacency matrix. Among all

eigenvalues of the Laplacian matix of a graph, one of the most popular is the
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second smallest, called by Fiedler [Fie73, Fie89], the algebraic connectivity of a

graph. It is very important in the sense that it is a good parameter to measure

how well a graph is connected.

2.2.1 Algebraic Connectivity

In order to introduce the algebraic connectivity, we need to start with the spec-

trum of the Laplacian matrix. By the construction of the Laplacian matrix, all

rows of the Laplacian sum up to zero. Then, the all ones vector 1N is an eigenvec-

tor of the Laplacian matrix L with corresponding eigenvalue 0 (i.e., L1N = 0). In

consensus and synchronization problems, this eigenvector 1N spans the subspace

in which all individual systems have reached to a certain trajectory in the sub-

space. Moreover, the zero eigenvalue of the Laplacian matrix can be interpreted

as that if all individuals are reached to the common trajectory in the subspace,

then the diffusive couplings vanish.

To analyze the locations of the eigenvalues of the Laplacian matrix, the fol-

lowing lemma, called the Gershgorin disk theorem, can be used.

Lemma 2.2.1. [HJ12, Theorem 6.1.1] Let A = [aij ] ∈ Cn×n and let Di := {z ∈
C : |z − aii| ≤

∑
j ̸=i |aij |} be the closed disk, called the i-th Gershgorin disk, in

the complex plane centered at aii. Then all the eigenvalues of A lie in the union of

the disks Di for i = 1, . . . , n, that is, λ(A) ⊂
⋃n

i=1Di, where λ(A) is the spectrum

of the matrix A. ♦

Since the Laplacian matrix has the properties that the off-diagonal elements

are nonpositive and the diagonal elements are nonnegative, and each row sum of

the Laplacian matrix is zero, we have

λ(L) ⊂
⋃
i∈N

z ∈ C : |z − lii| ≤
∑
j ̸=i

|lij |

 ⊂ C≥0.

Hence, every nonzero eigenvalue of L lies in C>0. Based on this, we can sort the

eigenvalues of the Laplacain matrix as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L).3

3Since the Laplacian matrix is symmetric, all eigenvalues are real.
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Table 2.1: The algebraic connectivity for some types of graphs

graph topology λ2(L)

path 2(1− cos(π/N))

circle 2(1− cos(2π/N))

star 1

all-to-all N

The algebraic connectivity of a graph Ĝ is the second-smallest eigenvalue λ2(L)
of the Laplacian matrix L. It is related to several important graph invariants and

connectivity of the graph. The generalization of the algebraic connectivity (see

[Wu05, DA07]) is defined as

λ2(L) = min
v∈RN ,v ̸=0,v⊥1N

vTLv
vT v

.

In general, adding new edges to a graph may increase the algebraic connec-

tivity, and higher λ2(L) indicates graphs with smaller diameter (the greatest dis-

tance between any pair of nodes) and higher connectivity. It has pointed out in

[Fie73, Hol06] that the algebraic connectivity may be dependent on the number

of nodes, as well as the way in which nodes are connected. In Table 2.1, the alge-

braic connectivity with respect to the number of nodes for some types of graphs

are presented. According to Table 2.1, except for the case of star topology, the

algebraic connectivity λ2(L) is dependent on the number of nodes N . Increasing

N decreases λ2(L) in the case of path and circle topologies. On the other hand,

increasing N increases λ2(L) in the case of all-to-all topology.

In random graphs, the randomness is another factor of fundamental impor-

tance in λ2(L). Small-world network is one of the famous random networks in

which any two arbitrary nodes can be connected using a few links. In [WS98],

Watts & Strogatz introduced a model for small-world phenomenon that interpo-

lates between these two extremes, in which the edges of the network are divided

into ‘local’ and ‘long-range’ contacts (or a regular lattice and a random network,

respectively) using a probability p. Watts & Strogatz model can be constructed
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(a) p = 0 (b) p = 0.1

(c) p = 0.5 (d) p = 1

Figure 2.2: Small-world networks with (N, d) = (100, 2) for p = 0, 0.1, 0.5, 1.

with the following steps:

(1) One starts with a one dimensional lattice on a ring with N nodes in which

every node is connected to its nearest neighbors up to the distance d.

(2) One removes every edges with probability p.

(3) One rewires the removed edges by changing the endpoints uniformly at

random (without self-loops or repeated links).

Figure 2.2 demonstrates small-world networks obtained by the above steps for

various values of probability p.
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Figure 2.3: The S-shape curve of algebraic connectivity gain λ2(p)/λ2(0) for
small-world network with (N, d) = (1000, 5) [OS05].

In small-world networks, the algebraic connectivity λ2(p)
4 can be made more

than 1000 times greater than a regular network by increasing randomness [OS05].

By defining the algebraic connectivity gain λ2(p)/λ2(0), the curve of λ2(p)/λ2(0)

has S-shape in Figure 2.3. Thus, it can be observed that the algebraic connectivity

increases as the randomness of the network increases.

Moreover, the algebraic connectivity is also affected by the number of nodes N

and the distance d. The effects of N and d can be shown in Figures 2.4 and 2.55,

respectively. In Figure 2.4, the algebraic connectivity has decreasing tendency as

N increase, and it can also be seen from [Hol06] that the algebraic connectivity

decreases with increasing the number of nodes in random network. On the other

hand, an increase in d leads to a considerable increase in the algebraic connectivity

in Figure 2.5.

4Here, instead of the Laplacian matrix index L, we use the probability p as the parameter of
the algebraic connectivity.

5Each data point in these figures are obtained by averaging over 10 randomly rewired net-
works
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Figure 2.4: Small-world networks with (N, d) = (100, 2) for p = 0, 0.1, 0.5, 1.
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Figure 2.5: Small-world networks with (N, d) = (100, 2) for p = 0, 0.1, 0.5, 1.
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2.2.2 Useful Properties for Consensus and Synchronization

As a next step, we will establish some useful properties for consensus and synchro-

nization problems. The algebraic connectivity λ2(L) is completely related to the

graph connectivity as mentioned in 2.2.1. The following theorem is well-known

result in spectral graph theory.

Theorem 2.2.2. Let Ĝ = (N , E) be a graph, and let L be the Laplacian matrix

of the graph Ĝ. Then, λ2(L) > 0 if and only if Ĝ is connected. ♦

Proof. (⇒) We first show that λ2(L) = 0 if Ĝ is disconnected. If Ĝ is disconnected,

then it can be described as the disjoint union of graphs, Ĝ1 and Ĝ2. Without loss

of generality, after suitably re-numbering the nodes, we have

L =

[
LĜ1

0

0 LĜ2

]
.

In this case, we obtain[
LĜ1

0

0 LĜ2

][
1N1

0

]
=

[
0

0

]
and

[
LĜ1

0

0 LĜ2

][
0

1N2

]
=

[
0

0

]
,

where N1 = dim(LĜ1
) and N2 = dim(LĜ2

). Hence, there are at least two orthogo-

nal eigenvectors, col(1N1 , 0) and col(0, 1N2), of L corresponding to the eigenvalue

zero, i.e., at least two eigenvalues are zero, we know that λ1L = λ2L = 0.

(⇐) Assume that v ∈ RN is an eigenvector of L corresponding to the eigen-

value zero. Since Lv = 0, we have

vTLv =
∑

(i,j)∈E

(vi − vj)
2 = 0.

Consequently, vi − vj = 0 for each (i, j) ∈ E . As there is a path between any two

nodes of the graph Ĝ, we may inductively use this result to show that vi = vj

for all nodes i, j ∈ N . Thus, every eigenvector for zero eigenvalue is multiple of

1N . This shows that eigenspace corresponding to zero eigenvalue has dimension

1, that is, the geometric multiplicity of zero eigenvalue is 1. Since the Laplacian
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matrix is symmetric, it is diagonalizable, and therefore algebraic and geometric

multiplicity are the same.

As was mentioned in 2.2.1, the algebraic connectivity λ2(L) may decrease as

the number of nodes N increases in some cases (e.g., path and circle topologies in

Table 2.1). However, Theorem 2.2.2 ensures that as long as the graph is connected,

the algebraic connectivity is always positive (λ2(L) > 0).

In order to achieve the consensus and synchronization problems by using the

algebraic properties of the Laplacian matrix, we introduce the following useful

theorem which will be used throughout this dissertation. To develop this, we first

recall the following decomposition lemma of linear algebra.

Lemma 2.2.3. (Schur decomposition [HJ12]). If A ∈ Cn×n, then A can be ex-

pressed as A = UTU−1 where U is a unitary matrix (i.e., U−1 is also the conju-

gate transpose U∗, U−1 = U∗), and T is an upper triangular matrix. Moreover,

since T is similar to A, it has the same eigenvalues as A, and therefore those

eigenvalues are the diagonal entries of T . ♦

Theorem 2.2.4. Let Ĝ = {N , E} and L be a connected graph and the Laplacian

matrix of Ĝ. Then, there exists a nonsingular matrix W such that

WLW−1 =

[
0 0

0 Λ

]
,

where Λ = diag(λ2(L), . . . , λN (L)). In particular, the nonsingular matrices W

and W−1 can be expressed as

W =

[
1
N 1TN

RT

]
, and W−1 = [1N , Q], (2.2.1)

where R and Q are real matrices of size N × (N − 1) such that RTR = (1/N)I,

QTQ = NI, RT 1N = 0, QT 1N = 0, and RTQ = I. ♦

Proof. A direct consequence of the connected graph Ĝ is that the Laplacian matrix

L is symmetric and has zero eigenvalue which is simple. By Schur decomposition,

we can write the Laplacian matrix as L = UTUT where U is a unitary matrix
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and T is an upper triangular matrix. Since the Laplacian matrix L is symmetric,

one sees that LLT = LTL, and therefore it ensures TT T = T TT . It means that

T must be diagonal matrix since a normal upper triangular matrix is diagonal,

and T = diag(0,Λ). Without loss of generality, we can express the first row of

the orthogonal matrix U as (1/
√
N)1TN from the property of the Laplacian matrix

that all rows of the Laplacian sum up to zero. Define the matrix W := (1/
√
N)U .

Then,

W =

[
1
N 1TN

RT

]
, W−1 =

√
NUT = [1N , Q]

where R and Q are real matrices of size N × (N − 1). Since U is a unitary

matrix and UUT = UTU = I, it follows that RTR = (1/N)I, QTQ = NI,

RT 1N = 0, QT 1N = 0, and RTQ = I. From above properties, we can also find

that ∥Q∥ =
√
N and ∥R∥ = 1/

√
N .

Theorem 2.2.4 ensures that the problems of consensus and synchronization

can be considered as the convergence to a invariant subspace M which implies

that any trajectory starting in M remains in M. We call this invariant subspace

M as the consensus subspace which is spanned by the eigenvector 1N of L with

corresponding eigenvalue zero.

For example, consider the consensus algorithm (2.1.1) with a connected graph

Ĝ. By the coordinate transformation in (2.2.1)

ξ =

[
ξ1

ξ̃

]
= Wx =

[
1
N 1TN

RT

]
x

where ξ̃ = [ξ2, . . . , ξN ]T , the overall system (2.1.1) is transformed into

ξ̇1 = 0 (2.2.2a)
˙̃
ξ = −Λξ̃ (2.2.2b)

because 1TNL = 0 and RTLQ = Λ. Since Λ is a positive definite matrix, it is easy

to see from (2.2.2a) and (2.2.2b) that ξ1(t) = (1/N)
∑N

i=1 xi(0) and ξ̃(t) → 0 as
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t → ∞. Therefore, it explains the following properties:

i) Since x = 1Nξ1 + Qξ̃, if ξ̃(t) → 0 as t → ∞, then the consensus and syn-

chronization is achieved. Thus, the consensus and synchronization problem

can be considered as the convergence problem, and the transformed system

(2.2.2b) can be also considered as the error dynamics between agents.

ii) Consensus (or synchronized) trajectory can be expressed as ξ1(t) due to the

fact that ξ̃(t) → 0 implies xi(t) → ξ1(t).

iii) Since the solution of the transformed system (2.2.2b) is ξ̃(t) = e−Λtξ̃(0), the

inequality

|ξ̃(t)| ≤ |ξ̃(0)|e−λ2(L)t

holds for all t ≥ 0. Therefore, the algebraic connectivity λ2(L) of the graph

Ĝ is related to the rate of convergence to consensus subspace M, as well as

the connectivity of the graph.

Based on these properties, a generalization to heterogeneous agents will be devel-

oped in Chapter 3.



Chapter 3

Robustness by Strong Coupling

In this chapter, we deal with the robust consensus and synchronization of het-

erogeneous multi-agent systems by strong coupling. In fact, strong coupling is

somewhat well-known condition to achieve asymptotic consensus and synchro-

nization with static diffusive coupling [WS05, PS07, TSP10, DdG09, DdBR11].

Static diffusive couplings with strong interaction have been used in several se-

tups. Contraction theory has been shown to be an effective tool for understand-

ing synchronization in terms of convergence properties of all solutions between

each other rather than toward some asymptotic solution [WS05, PS07, TSP10].

In [DdG09, DdBR11], the so-called QUAD condition is assumed to be satisfied as

a starting point to derive conditions for synchronization of the network of interest.

Even though the above studies provided strong coupling condition, the au-

thors assumed that the dynamical model of the individual systems are identical

and have some stability properties (e.g., contraction system or QUAD condition).

Unfortunately, in many real-world networks, it is often unrealistic to assume that

all nodes share the same identical dynamics. For example, between the agents,

there are parameter mismatches which cannot avoid and rather large in biochem-

ical or power networks [KHHPB07, DB12, HC06]. Moreover, the networked sys-

tem may have some abnormal agents, and therefore it will cause some problems

which are propagated through the communication network. Nevertheless, practi-

cal consensus and synchronization is still possible as observed from nature such as

flashing in fireflies, flocking of birds, schooling of fishes, and swarming of insects.

In order to effectively deal with the robust consensus and synchronization

25
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of heterogeneous (non-identical) agents against the heterogeneities, we introduce

the notion of averaged dynamics, which is the average of the vector fields of each

agents. The aim of this chapter is to introduce the concept of the averaged

dynamics and investigate the robustness of heterogeneous multi-agent systems by

strong coupling. This chapter has its origin in these papers [KYKS12, KKYS13,

KS15, KYS+].

3.1 Problem Formulation

In this section, we address the robust consensus and synchronization problem of

heterogeneous multi-agent systems. We consider a group of non-identical individ-

ual systems represented by

ẋi = fi(t, xi) + ui, i ∈ N := {1, 2, . . . , N} (3.1.1)

where N is the number of agents, xi ∈ R is the state1 and ui ∈ R represents

interactions with other agents through the network. Here the function fi : [0,∞)×
R → R may include time-varying signals persistently exciting the agent, and

disturbances to the agent, as well as parametric variations or uncertainties of

each agent.

The local interaction among the agents (3.1.1) is modeled by a fixed un-

weighted undirected graph Ĝ. In this section, it is supposed that the agents are

interconnected by static diffusive-type coupling [Hal97]

ui = k

N∑
j=1

αij(xj − xi) (3.1.2)

where k represents the coupling strength and αij is the (i, j)-th entry of the

adjacency matrix of the given network.
1The class of systems considered in this section is restrictive in the sense that it is a scalar

dynamics. Actually, this restriction arose because we have focused on the simplest case, which
is because we wanted to find the main ingredients that yield practical consensus and synchro-
nization in spite of heterogeneity of the agents and its robustness against heterogeneity (that in-
cludes external disturbances and parametric uncertainties), leaving aside the relaxation of these
restrictions to Section 3.3.
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Definition 3.1.1. (Robust consensus and synchronization). The N individuals

(3.1.1) are said to achieve robust consensus and synchronization if there exists

some trajectory ζ : R → R such that for any given ϵ > 0,

lim sup
t→∞

|xi(t)− ζ(t)| ≤ ϵ

for all i ∈ N . �

Note that Definition 3.1.1 is equivalent to the ultimate boundedness problem

with arbitrary ultimate bound, i.e., the robust consensus and synchronization of

(3.1.1) can be achieved if there exist some trajectory ζ : R → R and T ≥ 0 such

that for any given ϵ > 0,

|xi(t)− ζ(t)| ≤ ϵ, ∀t ≥ T

for all i ∈ N . On the other hand, the considered problem can be viewed as

achieving the practical consensus from the viewpoint of achieving the asymptotic

consensus problems. Since the terminology ‘practical consensus’ is used differently

in [XJZY11] where just boundedness of the difference |xi(t)−xj(t)| is of interest,

we emphasize that the error could be made arbitrarily small in Definition 3.1.1.

We study the problem under the following assumptions.

Assumption 3.1.1. (Individual agent). The function fi(t, xi) of the individual

system (3.1.1) is uniformly bounded in t, continuously differentiable, and globally

Lipschitz in xi uniformly in t; i.e., there exist a non-decreasing continuous function

M : R≥0 → R≥0 and a constant L > 0 such that

|fi(t, xi)| ≤ M(|xi|),
∣∣∣∣∂fi∂xi

(t, xi)

∣∣∣∣ ≤ L, ∀t ≥ 0 (3.1.3)

for all xi ∈ R and i ∈ N . ♦

Assumption 3.1.1 also guarantees uniqueness of the solutions xi(t) for all i ∈
N , for (3.1.1) and (3.1.2). By letting x := col(x1, . . . , xN ) ∈ RNn and f(t, x) :=

col(f1(t, x1), . . . , fN (t, xN )) ∈ RNn, the dynamics of the overall system, composed
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of (3.1.1) and (3.1.2), is written as

ẋ = −kLx+ f(t, x) (3.1.4)

where L is the Laplacian matrix describing the network connection.

Assumption 3.1.2. (Connected network). Given a graph Ĝ, the coupling net-

work topology under consideration is connected. ♦

A direct consequence of the assumption is that the Laplacian matrix L is

symmetric and has zero eigenvalue which is simple (see the results of the graph

theory in Chapter 2), and therefore there exists a nonsingular matrix W such that

W =

[
1
N 1TN

RT

]
, W−1 = [1N , Q], and WLW−1 =

[
0 0

0 Λ

]

where Λ = diag(λ2(L), . . . , λN (L)). From now on, we will drop the Laplacian

matrix index of the eigenvalues for simplicity of notation, i.e., λi := λi(L) for all

i ∈ N .

Note that since the heterogeneities of f(t, x), the collective dynamics (3.1.4)

is no longer possible to decouple the synchronized trajectory dynamics and the

error dynamics between agents (See the transformed system (5.2.24) in Section

2.2.2). Therefore, one hardly can predict the collective behavior of (3.1.4), and

thus we need to think a new concept of the group behavior.

3.2 Averaged Dynamics

In this section, we introduce the concept of the averaged dynamics which is a

useful tool for understanding the collective behavior of the heterogeneous multi-

agent systems. In general, it is not easy to achieve asymptotic consensus and syn-

chronization between non-identical agents. Therefore, while most of the results of

consensus and synchronization problems have focused on the homogeneous multi-

agent systems, only a few papers [KSS11, WSA11, ZHL12, IMC14, DDBL15]

considered heterogeneous cases. In particular, Kim et al. and Wieland et al.
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Figure 3.1: Trajectories of 2-agent systems with coupling strength k are de-
picted as solid curves, and the trajectory s(t) of the averaged
dynamics is given as the dashed curve.

[KSS11, WSA11] introduced the internal model into the consensus problem in or-

der to achieve asymptotic consensus. Instead of achieving asymptotic consensus,

bounded convergence of networks of heterogeneous multi-agent systems is consid-

ered in [ZHL12, DDBL15]. However, the bounded convergence condition cannot

give the information of the collective behavior of the heterogeneous multi-agent

systems. Therefore, it is important to know the synchronized trajectory of the

heterogeneous agent, as well as the bounded convergence. Then, how to find out

the group behavior in the case of non-identical individual systems? The following

example gives us the insight of the solution to this problem.
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Consider a group of 2 agents given by

ẋ1(t) = −3x1(t) + φ(t) + k(x2(t)− x1(t)), x1(0) = 0,

ẋ2(t) = x2(t) + sin(t) + k(x1(t)− x2(t)), x2(0) = 0,

where

φ(t) =

t, t ≥ 15,

15, t > 15.

Here, k is the coupling strength. In many studies of the heterogeneous multi-agent

systems, the average of the states x̄(t) := (1/N)
∑N

i=1 xi(t) has been considered

as a reference of the collective behavior. However, since the trajectory x̄(t) is

dependent on the coupling strength k, it cannot be the proper reference signal.

This observation can be seen in the Figure 3.1. Figure 3.1(a) shows the trajec-

tories of the uncoupled agents (i.e., k = 0). If we consider x̄(t) as the reference

of the collective behavior, we may expect that the synchronized trajectory will

diverge, and therefore the trajectories of the agents will diverge, too. However,

as we can see in Figure 3.1(b), the actual trajectories are bounded if k = 10.

Furthermore, by comparing Figures 3.1(b), 3.1(c), and 3.1(d), it can be observed

that increasing k makes the trajectories x1(t) and x2(t) converge to a trajectory

s(t). It is interesting that s(t) is not the average of the states but the trajectory

which is generated by the average of the vector fields of each agent, i.e.,

ṡ(t) = −s(t) +
φ(t) + sin(t)

2
, s(0) =

x1(0) + x2(0)

2
. (3.2.1)

Note that the system (3.2.1) can be a reference system which is not affected by

the coupling strength k.

Motivated by this observation, the averaged dynamics (or, so-called ‘blended

dynamics’) of (3.1.1) is defined as

ṡ =
1

N

N∑
i=1

fi(t, s) =
1

N
1TNf(t, 1Ns) =: f̄(t, s) (3.2.2)

with the averaged initial condition s(0) =
∑N

i=1 xi(0)/N . It is natural that f̄(t, s)
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is not the same as any of fi(t, s) so that s(t) is different from any of xi(t).

We assume stability of the averaged dynamics stated in the following way.

Assumption 3.2.1. (Stability of averaged dynamics). There exists a constant

p > 0 such that, for all s ∈ R and t ≥ 0,

∂f̄

∂s
(t, s) =

1

N

∂1TNf(t, 1Ns)

∂s
=

1

N

N∑
i=1

∂fi
∂xi

(t, s) ≤ −p. (3.2.3)

♦

Note that this assumption does not require stability of individual systems,

and allows unstable agents if their instability is compensated by the stability of

other agents so that their sum is somehow stable in the sense of (3.2.3). A direct

consequence of Assumption 3.2.1 is ultimate boundedness of the solution s(t) of

(3.2.2) as seen in the following lemma.

Lemma 3.2.1. For a scalar system ṡ = F (t, s) with C1 function F satisfying

(∂F )/(∂s) ≤ −p < 0 for all s and t ≥ 0,

lim sup
t→∞

|s(t)| ≤ lim supt→∞ |F (t, 0)|
p

. (3.2.4)

♦

Proof. Since, by the mean-value theorem,

d|s|
dt

= sign(s)

(
F (t, 0) +

∂F (t, s)

∂s

∣∣∣
s=q

· s
)

≤ |F (t, 0)| − p|s(t)|, almost everywhere,

with some q ∈ R, the comparison lemma [Kha02] yields |s(t)| ≤ w(t), ∀t ≥ 0,

where w(t) is the solution of ẇ = −pw + |F (t, 0)| with w(0) = |s(0)|. This

concludes the claim.

As a reference system of the collective behavior, there are some advantages of

the averaged dynamics:
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• By constructing averaged dynamics, trading stability among heterogeneous

agents is clearly seen, and thus, it could be dealt with unstable agent in the

framework. Note that it is a unique feature of the averaged dynamics that

an unstable node dynamics is allowed, because there is no result that allows

unstable agent in the literature (to the author’s knowledge up to now). For

example, if f1(t, x1) = 2x1, f2(t, x2) = −2x2, and f3(t, x3) = −x3, then we

can easily see that the averaged dynamics

ṡ = f̄(t, s) = (2− 2− 1)s = −s

is stable, and so, one immediately knows (from the result of Section 3.3)

that strong coupling will ensure (practical) synchronization. Even if the

averaged dynamics is not used, one may check the stability (or, contracting

property) of the overall system, but this is quite complicated and tedious

task (see [WS05, PTS09] for more details).

• Note that s(t) is the solution to the averaged dynamics (3.2.2), while x̄(t) is

the averaged trajectory of individual solution xi(t) to individual dynamics

(3.1.1) with diffusive input (3.1.2). They are the same at t = 0; i.e., s(0) =

x̄(0), but they become different for t > 0 in general when the agents are

different. We will claim in Section 3.3 that working with s(t) as the reference

is more convenient than x̄(t), because s(t) is not dependent on the value of

k while x̄(t) is. (However, since lim supt→∞ |s(t)− x̄(t)| converges to zero as

k → ∞, both will eventually result in the same conclusion with sufficiently

large k. The issue is the level of difficulty in the analysis.)

• Use of s(t), that is the solution to the averaged dynamics, makes prediction

of the collective behavior much easier when the coupling is strong (since

just solving ṡ = f̄(t, s) gives the answer). This is again because s(t) is not

dependent on k. (The average trajectory x̄(t) plays similar role, but it is

not simple to compute x̄(t) before choosing k.)

Overall, since the contribution of the averaged dynamics is not just dealing

with the heterogeneous multi-agent, we will emphasize the contributions such as
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treatment of unstable agent, the quantitative analysis about the size of residual

error versus the size of the coupling gain k (in Section 3.3), and the analysis of

the robustness from large number of agents (in Chapter 4).

3.3 Analysis of Robustness by Strong Coupling

The following particular ultimate boundedness lemma, whose proof is found

in the Appendix A.1, will play a key role for the main result in this section.

Lemma 3.3.1. Let

ρκ(x, y) = −

[
|x|
|y|

]T [
p a

a κ

][
|x|
|y|

]
+ θ(t)|y|

with x ∈ Rl, y ∈ Rm, p > 0, θ(t) ≥ 0, and a is a constant. Then, there are a

class-K function r and a positive number c such that

ρκ(x, y) ≤ −c(|x|2 + |y|2) if |x|2 + |y|2 > θ2(t)r

(
1

κ

)
for all κ > 3a2/p. ♦

Now one of the two main ingredients of the robustness is presented in the

following theorem, which shows strong coupling among agents makes the trajec-

tories of all agents remain in an arbitrarily small neighborhood of the trajectory

of the averaged dynamics.

Theorem 3.3.2. Under Assumptions 3.1.1, 3.1.2, and 3.2.1, there exists a class-

K function γN such that the solutions of the overall system, composed of (3.1.1)

and (3.1.2), with arbitrary initial conditions, and the solution s(t) to the averaged

dynamics (3.2.2) with s(0) =
∑N

i=1 xi(0)/N satisfy

lim sup
t→∞

|xi(t)− s(t)| ≤ γN

(
1

kλ2 − L

)
, ∀k > K̄, (3.3.1)

for all i = 1, . . . , N , where

K̄ =
3L2

pλ2
+

L

λ2
. (3.3.2)
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In particular, the function γN is defined on [0, p/3L2) and given by

γN (χ) = M

(
M(0)

p

)√
N
√

r(χ) (3.3.3)

in which,

r(χ) =


0, χ = 0,

4χ
p−3L2χ

, 0 < χ ≤ 4p
p2+20L2 ,

(p2+8L2)χ2

(p−3L2χ)2
, 4p

p2+20L2 < χ < p
3L2 .

(3.3.4)

♦

Remark 3.3.1. The following remarks are intended to clarify the meaning of the

parameters and the significances in Theorem 3.3.2:

(a) Theorem 3.3.2 asserts that for any given ϵ > 0, there is a sufficiently large

k such that lim supt→∞ |xi(t) − s(t)| ≤ ϵ for all i ∈ N , and therefore the

robustness of the N individuals is achieved from Definition 3.1.1.

(b) The ultimate bound in (3.3.1) expressed by the function γN of (3.3.3), and the

value of K̄ of (3.3.2) may be conservative. However, the expressions (3.3.2)

and (3.3.3) yield a reasonable interpretation. For example, (3.3.2) indicates

that the minimal coupling strength K̄ increases as the Lipschitz constant

L increases while it decreases as the degree of stability p and the algebraic

connectivity λ2 of the network get larger.

(c) It should be noted that the function γN and the value of K̄ are affected by the

number N . The former is obvious due to the appearance of
√
N in (3.3.3), but

the latter is indirect through the value of λ2. As was mentioned in Chapter

2, the second smallest eigenvalue λ2 of the Laplacian matrix is called the

algebraic connectivity (or, density) of a graph G, which indicates how well

connected the graph is. It depends both on the topology of the graph and

the number N of the nodes. In Table 2.1, for the all-to-all network (with unit

weights), λ2 is the same as the number N , but for the ring network, increasing

N decreases λ2 (because λ2 = 2 (1− cos(2π/N))).

(d) Remark 3.3.1(c) implies that, in order to maintain the same level of error while
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the number N increases, the coupling strength k may need to be increased.

In fact, the ultimate error bound is given in (3.3.1) and it can be seen that

γN (1/(kλ2 − L)) = O
(√

N/(kλ2)
)

when k is large enough (so that χ is small

enough). Therefore, for the ring network where λ2 = 2 (1− cos(2π/N)), we

have γN = O
(√

N3/k
)
, and for the same level of error, k should be increased

when N is increased. This phenomenon is observed in the simulations of

Chapter 4 as well. On the other hand, for the all-to-all network, the error

bound is O
(√

1/k
)

since λ2 = N .

(e) In the particular case where k = 1 (e.g., [WS05, RBA07]), Theorem 3.3.2

can also be used to deal with the robustness of networked system when the

coupling strength cannot be available such as biological systems, existence of

limitation in communication network, and so on. In this case, we have

lim sup
t→∞

|xi(t)− s(t)| ≤ γN

(
1

λ2 − L

)
, ∀λ2 >

3L2

p
+ L. (3.3.5)

Instead of increasing the coupling strength k, we can design the robust net-

work by increasing the algebraic connectivity λ2 in (3.3.5). Therefore, it fol-

lows from Section 2.2.1 that the robustness of the heterogeneous multi-agent

systems can be enhanced by adding and rewiring (or increasing randomness)

links to the underlying network structure.

♦

Proof. By the coordinate transformation in (2.2.1)

ξ =

[
ξ1

ξ̃

]
= Wx =

[
1
N 1TN

RT

]
x

where ξ̃ = col(ξ2, . . . , ξN ), the overall system (3.1.4) is transformed into

ξ̇1 =
1

N
1TNf

(
t, 1Nξ1 +Qξ̃

)
(3.3.6a)

˙̃
ξ = −kΛξ̃ +RT f

(
t, 1Nξ1 +Qξ̃

)
(3.3.6b)

because W−1ξ = 1Nξ1+Qξ̃. With e := ξ1−s, equation (5.2.24a) can be rewritten
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as

ė =
1

N
1TNf

(
t, 1Ne+ 1Ns+Qξ̃

)
− 1

N
1TNf (t, 1Ns) (3.3.7a)

˙̃
ξ = −kΛξ̃ +RT f

(
t, 1Ne+ 1Ns+Qξ̃

)
. (3.3.7b)

Let V (e, ξ̃) := (1/2)e2+(1/2)|ξ̃|2. Then, the time derivative of V along (3.3.7)

becomes

V̇ =
e

N

[
1TNf

(
t, 1Ne+ 1Ns+Qξ̃

)
− 1TNf(t, 1Ne+ 1Ns)

+ 1TNf(t, 1Ne+ 1Ns)− 1TNf(t, 1Ns)
]
− kξ̃TΛξ̃ + ξ̃TRT f(t, 1Ns)

+
[
ξ̃TRT f

(
t, 1Ne+ 1Ns+Qξ̃

)
− ξ̃TRT f(t, 1Ns)

]
which leads, by the mean-value theorem, to

V̇ =
e

N

∂(1TNf)

∂x

∣∣∣
z
·Qξ̃ +

e

N

∂(1TNf)

∂e

∣∣∣
q
· e− kξ̃TΛξ̃

+
∂(ξ̃TRT f)

∂x

∣∣∣
w
·
(
1Ne+Qξ̃

)
+ ξ̃TRT f(t, 1Ns)

with some z ∈ RN , w ∈ RN , and q ∈ R. Since

∂(ξ̃TRT f)

∂x

∣∣∣
w
= ξ̃TRTdiag

(
∂f1
∂x1

(t, w1), . . . ,
∂fN
∂xN

(t, wN )

)
,

it is seen by (3.1.3) that∣∣∣∣∣∂(ξ̃TRT f)

∂x

∣∣∣
w

∣∣∣∣∣ ≤ L∥R∥|ξ̃|, ∀t ≥ 0

and similarly that ∣∣∣∣∂(1TNf)

∂x

∣∣∣
z

∣∣∣∣ ≤ L
√
N, ∀t ≥ 0.
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Therefore, using (3.2.3) and the fact that ∥Q∥ =
√
N and ∥R∥ = 1/

√
N ,

V̇ ≤ −p|e|2 + L∥Q∥√
N

|e||ξ̃| − kλ2|ξ̃|2 + L∥R∥|ξ̃|
(√

N |e|+ ∥Q∥|ξ̃|
)

+ |RT f(t, 1Ns)||ξ̃|

≤ −p|e|2 + 2L|e||ξ̃| − (kλ2 − L)|ξ̃|2 + |RT f(t, 1Ns)||ξ̃|.

Lemma 3.3.1 is employed with a := −L, κ := kλ2−L, and θ(t) := |RT f(t, 1Ns(t))|,
and we obtain that

V̇ ≤ −2cV if 2V = e2 + |ξ̃|2 > |RT f(t, 1Ns)|2r
(
1

κ

)
(3.3.8)

where c > 0 and the function r is given by (3.3.4) (which can be seen by following

the proof of Lemma 3.3.1 in the Appendix A.1). Inequality (3.3.8) implies that

lim sup
t→∞

2V (t) ≤ lim sup
t→∞

|RT f(t, 1Ns(t))|2r
(
1

κ

)
.

By (3.1.3) and Lemma 3.2.1, we have that

lim sup
t→∞

|RT f(t, 1Ns(t))| ≤ ∥R∥
√
NM

(
lim sup
t→∞

|s(t)|
)

≤ M

(
lim sup
t→∞

|f̄(t, 0)|
p

)
≤ M

(
M(0)

p

)
.

Finally, since

x− 1Ns = W−1ξ − 1Ns = 1Nξ1 − 1Ns+Qξ̃ = [1N , Q]

[
e

ξ̃

]
,

and the vector norm of the i-th row of [1N , Q] is
√
N by the construction of W ,

we have

|xi − s| ≤
√
N

√
|e|2 + |ξ̃|2 =

√
N
√
2V .
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Therefore, for any i ∈ N ,

lim sup
t→∞

|xi(t)− s(t)| ≤ M

(
M(0)

p

)√
N

√
r

(
1

κ

)

if κ = kλ2 − L > 3L2/p. This completes the proof with (3.3.2) and (3.3.3).

The proof of Theorem 3.3.2 enlightens the following. The quantity |RT f(t, 1Ns)|
has the meaning of ‘measure of heterogeneity’ in the sense that, if all agents are

identical; fi(t, s) = f0(t, s) for all s and i ∈ N , then

RT f(t, 1Ns) = RT 1Nf0(t, s) = 0.

More specifically, if we denote the first column of RT by r1 so that RT = [r1, R̃]

with a matrix R̃, then it follows from RT 1N = 0 that r1 = −R̃1N−1. Hence,

RT f(t, 1Ns) = [r1, R̃]


f1(t, s)

...

fN (t, s)

 = R̃


f2(t, s)− f1(t, s)

...

fN (t, s)− f1(t, s)

 .

In particular, if RT f(t, 1Ns) = 0, then it can be seen that

lim
t→∞

|xi(t)− xj(t)| = 0,

∀i, j ∈ N , with some k > 0. While this can be seen directly from (3.3.8), it also

follows from (3.3.6b) by appending RT f(t, 1Nξ1) (which is 0) and utilizing the

Lipschitzness of f (Assumption 3.1.1). (Indeed, if ξ̃(t) → 0 then xi(t) → x1(t),

∀i, since ξ̃ = RTx = R̃[x2 − x1, . . . , xN − x1]
T .) The latter approach reveals that

convergence of ξ̃(t) to zero is in fact regardless of the behavior of ξ1(t). Under the

stability property of f0 (Assumption 3.2.1), the state ξ1(t) reaches a certain steady

state forgetting the effect of the initial condition of ξ1(0) and ξ̃(0), and this is in

contrast to the ‘average consensus’ of [SSB09, OS07, WSA11, KSS11, ZHL11], in

which the agreed trajectory reflects the initial conditions of the networked agents.

Corollary 3.3.3. (Asymptotic convergence to s(t)). Under Assumptions 3.1.1,
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3.1.2, and 3.2.1, the trajectories of the individual systems (3.1.1) with (3.1.2)

and arbitrary initial conditions asymptotically converge to the solution s(t) of the

averaged dynamics (3.2.2) with s(0) =
∑N

i=1 xi(0)/N , if all agents are identical

(fi(t, s) = f0(t, s) for all s and i ∈ N ) and k > K̄, that is,

lim
t→∞

|xi(t)− s(t)| = 0, ∀k > K̄,

for all i = 1, . . . , N , where

K̄ =
3L2

pλ2
+

L

λ2
.

♦

In particular, if we only care about the asymptotic consensus and synchro-

nization between individual systems in the case of homogeneous multi-agent sys-

tems, the averaged dynamics and the stability property (Assumption 3.2.1) are

no longer needed.

Corollary 3.3.4. (Asymptotic consensus and synchronization). Under Assump-

tions 3.1.1 and 3.1.2, the trajectories of the individual systems (3.1.1) with (3.1.2)

and arbitrary initial conditions asymptotically converge to each other, if all agents

are identical and k > L/λ2, that is,

lim
t→∞

|xi(t)− xj(t)| = 0, ∀k >
L

λ2
,

for all i, j = 1, . . . , N . ♦

3.4 Illustrative Example

3.4.1 Effect of strong coupling

In this section, we illustrate, through simulation studies, that strong coupling

enhances the robustness among heterogeneous multi-agent systems. In computa-

tional neuroscience, one often uses the following simplified leaky integrate-and-fire
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model [OBH09].

cmV̇i(t) = −gmiVi(t) + Iexti (t) + Iinti (t)

where Vi is the membrane potential of the i-th cell, cm and gmi are the mem-

brane capacitance and conductance which can be perturbed by variations, Iexti

is an external input current flowing into each cell, and Iinti is the current due to

the interactions with other cells within the network. The external current Iexti

represents the collective effect of inputs coming from other areas, outside of the

studied network, and is modeled as

Iexti (t) = Imean
i (t) + ∆ηi(t)

where Imean
i (t) is the mean value of the input, ∆ measures the amplitude of

input fluctuation, ηi(t) is the noise of unit intensity. The interaction current Iinti

represents the effect of gap junctions connecting neuron i and other neurons within

the network, which is usually modeled as a simple ohmic conductance between

their membranes,

Iinti (t) = γgap

N∑
j=1

αij (Vj(t)− Vi(t))

where γgap is a strength parameter and αij is the (i, j)-th entry of the adjacency

matrix of the given network.2 This model fits to the system (3.1.1)–(3.1.2) con-

sidered in Section 3.3 with Vi = xi and γgap = k. In particular, if Iexti (t) =

10 sin t+10mi sin(ωit+ θi) where mi, ωi are realizations of standard normal dis-

tribution N(0, 1) and θi is a realization of uniform distribution on [0, 2π], then it

is the same as the model in the following group of heterogeneous subsystems with

cm = 1 and gm1 = −1, gm2 = −0.75, gm3 = −0.5, gm4 = 0.5, gm5 = 0.75:

2In this model, the membrane potential is known only in the subthreshold domain, as the
precise voltage trace of the spike is ignored.
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(b) N = 5, k = 10

Figure 3.2: Simulation results with k = 2 and k = 10. The blue and the
black curves represent the trajectories of 5-agent systems and
the trajectory s(t) of the averaged dynamics, respectively.

f1(t, x1) = −x1 + 10 sin(t) + 7.15 sin(−0.38t+ 1.90),

f2(t, x2) = −0.75x2 + 10 sin(t) + 3.72 sin(0.80t+ 1.85),

f3(t, x3) = −0.5x3 + 10 sin(t)− 18.25 sin(−0.94t+ 1.63),

f4(t, x4) = 0.5x4 + 10 sin(t)− 1.42 sin(−0.87t+ 2.91),

f5(t, x5) = 0.75x5 + 10 sin(t) + 6.01 sin(0.90t+ 6.21).

(3.4.1)

Note that there are two unstable agents (i = 4, 5) in the group (3.4.1). In this

case, the averaged dynamics of the subsystems is obtained as

ṡ = −1

5
s+ 10 sin(t) +

1

5

{
7.15 sin(−0.38t+ 1.90) + 3.72 sin(0.80t+ 1.85)

− 18.25 sin(−0.94t+ 1.63)− 1.42 sin(−0.87t+ 2.91) + 6.01 sin(0.90t+ 6.21)
}
.

Although the group includes two unstable agents, the averaged dynamics is stable

in the sense of averaging effect. Therefore, we can predict the bounded collective

behavior when the coupling is strong. Here, we assume the network topology is

the undirected connected ring graph with unit weights.

The effect of strong coupling k is seen clearly by comparing Figure 3.2(a) with

3.2(b). The simulation results show that by increasing the coupling strength, the
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(a) Error bounds, ring topology
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(b) Error bounds, all-to-all topology
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Figure 3.3: (a)–(b): The solid and dashed curves represent the maximum er-
ror distance between xi(t) and s(t) (i.e., max0≤t≤10,i∈N |xi(t) −
s(t)|) of 30-agent systems and the theoretical upper bound in
Theorem 3.3.2 with respect to the coupling gain k. (c)–(d):
Tightness gain curves, Eg(k, 30).

behaviors of all agents approach the trajectory of the averaged dynamics.

3.4.2 Tightness of upper bound

Our remaining task is to verify whether the proposed upper bound (3.3.1) in

Theorem 3.3.2 can be a tight upper bound. We consider a group of heterogeneous

multi-agent systems with

fi(t, xi) = (−1 + δi)xi +mi sin(ωit+ θi), i ∈ {1, . . . , 30},
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where δi, ωi ∼ N(0, 1), θi ∼ uniform[0, 2π], and mi ∼ uniform[1, 10]. The tight-

ness of upper bound can be calculated by defining the tigtness gain as

Eg(k,N) : =
Theoretical upper bound with k and N

Maximum error bound with k and N

=
γN (k)

max0≤t≤10, i∈N |xi(t)− s(t)|
.

Figures 3.3(a) and 3.3(b) illustrate the theoretical upper bound in (3.3.1) and

the maximum error distance between xi(t) and s(t) when the coupling gain k is

given. Even though the theoretical upper bound can be determined conservatively

when the coupling gain k is small, but for a large k, the theoretical upper bound

can be tight, as seen in Figures 3.3(c) and 3.3(d) . Furthermore, by comparing

Figure 3.3(c) with 3.3(d), we can see that ring topology gives more tight bound

than all-to-all topology.

The effect of increasing the number of agents about the upper bound can be

seen in Figure 3.4. As mentioned in Remark 3.3.1(d), in Figures 3.4(a) and 3.4(b),

the upper bound for the ring and the all-to-all topologies has O(
√
N3) and O(1)

when k is large enough and fixed. In Figures 3.4(c) and 3.4(d), the upper bound

can hardly be “tightened” as the number of agents increases.
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Figure 3.4: (a)–(b): The solid and dashed curves represent the maximum
error distance between xi(t) and s(t) (i.e., max0≤t≤10,i∈N |xi(t)−
s(t)|) with the coupling strength k = 100 and the theoretical
upper bound in Theorem 3.3.2 with respect to the number of
agents N . (c)–(d): Tightness gain curves, Eg(100, N).
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3.5 High-Order Heterogeneous Multi-Agent Systems

In previous sections of Chapter 3, the robustness of the heterogeneous multi-

agent systems composed of first-order dynamics has been considered. However,

many physical systems usually result in complex high-order dynamic models, e.g.,

pendulum equation, mass-spring system, oscillators, and so on.

In this section, we establish a mathematical framework for robust consensus

and synchronization of high-order heterogeneous multi-agent systems and inves-

tigating the interplay between robustness and strong coupling.

We consider a group of N dynamic objects represented by

ẋi = f i(t, xi) + ui, i ∈ N = {1, 2, . . . , N}, (3.5.1)

where xi = col(xi1, . . . , x
i
n) ∈ Rn is the state and ui ∈ Rn indicates interactions

with other objects through the network. Let f i
j : Rn → R be the j-th component

function of f i, so that f i(t, xi) = col(f i
1(t, x

i), . . . , f i
n(t, x

i)).

Assumption 3.5.1. (Individual system). The function f i(t, xi) of the individual

system (3.5.1) is uniformly bounded in t, continuously differentiable, and globally

Lipschitz in xi uniformly in t; i.e., there exist a non-decreasing function β(a) and

a constant L such that

|f i(t, a)| ≤ β(a),

∥∥∥∥∂f i

∂xi
(t, xi)

∥∥∥∥ ≤ L, ∀xi ∈ Rn, ∀t ≥ 0, ∀i ∈ N , (3.5.2)

where ∂fk

∂xk (t, x
k) is a n× n matrix whose (i, j)-entry is ∂fk

i

∂xk
j

(t, xk). ♦

By letting x := col(x1, . . . , xN ) and f(t, x) := col(f1(t, x1), . . . , fN (t, xN )),

the inequalities (3.5.2) can be written as

|f(t, (1N ⊗ In)a)| ≤
√
Nβ(a),∥∥∥∥∂f∂x (t, x)

∥∥∥∥ =

∥∥∥∥diag
(
∂f1

∂x1
(t, x1), . . . ,

∂fN

∂xN
(t, xN )

)∥∥∥∥ ≤ L.
(3.5.3)

We assume that the agent i collects only the relative state information between
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the i-th agent and its neighborhood by diffusive coupling input

ui = k
N∑
j=1

αij(x
j − xi), (3.5.4)

where k represents the coupling strength and αij is the (i, j)-entry of the adjacency

matrix of the given network.

Let s(t) be the solution of the following averaged dynamics of (3.5.1)

ṡ =
1

N

N∑
i=1

f i(t, s) =

(
1

N
1TN ⊗ In

)
f
(
t, (1N ⊗ In)s

)
=: f̄(t, s), (3.5.5)

with the averaged initial condition s(0) =
∑N

i=1 x
i(0)/N .

Assumption 3.5.2. (Stability of averaged dynamics). There exist positive defi-

nite matrices P (t) and F (t) such that

0 < c1In ≤ P (t) ≤ c2In, F (t) ≥ c3In > 0, ∀t ≥ 0, (3.5.6)

which satisfies the matrix differential equation

−Ṗ (t) ≥ P (t)

{(
1

N
1TN ⊗ In

)
∂f

∂s
(t, (1N ⊗ In)s)(1N ⊗ In)

}
+

{(
1

N
1TN ⊗ In

)
∂f

∂s
(t, (1N ⊗ In)s)(1N ⊗ In)

}T

P (t)

+ F (t), ∀s ∈ Rn,

(3.5.7)

where c1, c2 and c3 are positive constants. ♦

In fact, the Jacobian matrix of the averaged dynamics in (3.5.7) is a n × n

matrix whose (i, j)-entry is

(
1

N
1TN ⊗ In

)
∂f

∂x
(t, x)(1N ⊗ In) =

[
1

N

N∑
k=1

∂fk
i (t, x

k)

∂xkj

]
∈ Rn×n,



3.5. High-Order Heterogeneous Multi-Agent Systems 47

and equivalently, the matrix differential equation (3.5.7) can be written as

−Ṗ (t) ≥ P (t)

(
∂f̄

∂s
(t, s)

)
+

(
∂f̄

∂s
(t, s)

)T

P (t) + F (t), ∀s ∈ Rn.

Notice that if the Jacobian matrix of the averaged dynamics is Hurwitz and

constant, then there always exist positive definite matrices P (t) and F (t) satisfy-

ing Assumption 3.5.2. The following lemma is well-known mean-value theorem.

Lemma 3.5.1. (Mean-value theorem [Apo74]) Let S ∈ Rn be an open and assume

that f : S → Rm is differentiable at each point of S. Let x and y be two points in

S such that the whole line segment l(x, y) := {tx+ (1− t)y : 0 ≤ t ≤ 1} remains

in S. Then for every vector a ∈ Rm, there is a point z ∈ l(x, y) such that

aT {f(y)− f(x)} = aT
{
∂f(x)

∂x

∣∣∣
z
(y − x)

}
.

♦

From the stability condition of Assumption 3.5.2, s(t) can be ultimately

bounded. The following lemma ensures the ultimate boundedness of the solu-

tion s(t) of the averaged dynamics (3.5.5).

Lemma 3.5.2. Under Assumptions 3.5.1 and 3.5.2, the solution of the averaged

dynamics s(t) is globally ultimately bounded with ultimate bound (4c2/c3)β(0),

that is,

lim sup
t→∞

|s(t)| ≤ 4c2
c3

β(0). (3.5.8)

♦

Proof. We use V = sTP (t)s as a Lyapunov function candidate for the averaged

dynamics (3.5.5). The derivative of V along the trajectory of the system is given

by

V̇ = sTP (t)f̄(t, s) + sT Ṗ (t)s+ f̄T (t, s)P (t)s

= sTP (t)
(
f̄(t, s)− f̄(t, 0)

)
+ sT Ṗ (t)s+

(
f̄(t, s)− f̄(t, 0)

)T
P (t)s

+ 2sTP (t)f̄(t, 0)
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By Lemma 3.5.1, there is a point z ∈ l(0, s) such that

V̇ = sTP (t)

(
∂f̄

∂s

∣∣∣
z
s

)
+ sT Ṗ (t)s+

(
∂f̄

∂s

∣∣∣
z
s

)T

P (t)s+ 2sTP (t)f̄(t, 0)

= sT

{
P (t)

(
∂f̄

∂s

∣∣∣
z

)
+ Ṗ (t) +

(
∂f̄

∂s

∣∣∣
z

)T

P (t)

}
s+ 2sTP (t)f̄(t, 0).

Then, by Assumptions 3.5.1 and 3.5.2, we have

V̇ ≤ −sTF (t)s+ 2sTP (t)f̄(t, 0)

≤ −c3|s|2 + 2c2β(0)|s|

≤ −1

2
c3|s|2, ∀|s| ≥ 4c2

c3
β(0)

which show that the conditions of [Kha02, Theorem 4.18] are satisfied globally

with (4c2/c3)β(0). Thus, we conclude that the solution of the averaged dynamics

is globally ultimately bounded and the equation (3.5.8) is satisfied.

The following theorem has the similar interpretation as Remark 3.3.1 in The-

orem 3.3.2.

Theorem 3.5.3. Under Assumptions 3.5.1, 3.1.2, and 3.5.2, there exists a class-

K function σ∗ such that the solutions of (3.5.1) with arbitrary initial conditions

and the solution s(t) to the averaged system (3.5.5) with s(0) =
∑N

i=1 xi(0)/N

satisfy

lim sup
t→∞

|xi(t)− s(t)| ≤ σ∗
(

1

kλ2 − L

)
, ∀k > K̄, (3.5.9)

for all i = 1, . . . , N , where

K̄ =
3L2(2c2 + 1)2

4c3λ2
+

L

λ2
. (3.5.10)

In particular, the function σ∗ is defined on [0, 3L2(2c2 + 1)2/4c3) and given by

σ∗(χ) =
√
N

√
cmax

cmin
β

(
4c2
c3

β(0)

)√
r(χ) (3.5.11)
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in which,

r(χ) =


0, χ = 0,

8χ
4c3−L2(2c2+1)2χ

, 0 < χ ≤ 2c3
c23+L2(2c2+1)2

,{
16c23+8L2(2c2+1)2

}
χ2{

4c3−L2(2c2+1)2χ
}2 , 2c3

c23+L2(2c2+1)2
< χ < L2(2c2+1)2

4c3
,

(3.5.12)

where cmax := max{c2, (1/2)}, cmin := min{c1, (1/2)}. ♦

Proof. The dynamics of the overall system, composed of (3.5.1) and (3.5.4), is

written as

ẋ = −k(L ⊗ In)x+ f(t, x). (3.5.13)

By the coordinate transformation in (2.2.1)

ξ =

[
ξ1

ξ̃

]
= (W ⊗ In)x =

[
1
N 1TN ⊗ In

RT ⊗ In

]
x

where ξ̃ = col(ξ2, . . . , ξN ), the overall system (3.5.13) is transformed into

ξ̇1 =

(
1

N
1TN ⊗ In

)
f
(
t, (1N ⊗ In)ξ1 + (Q⊗ In)ξ̃

)
˙̃
ξ = −k(Λ⊗ In)ξ̃ +

(
RT ⊗ In

)
f
(
t, (1N ⊗ In)ξ1 + (Q⊗ In)ξ̃

)
,

(3.5.14)

because x = (W−1 ⊗ In)ξ = [1N ⊗ In, Q ⊗ In]ξ. With e := ξ1 − s and (3.5.5),

equation (5.2.24b) can be rewritten as

ė =

(
1

N
1TN ⊗ In

)
f
(
t, (1N ⊗ In)e+ (1N ⊗ In)s+ (Q⊗ In)ξ̃

)
−
(

1

N
1TN ⊗ In

)
f (t, (1N ⊗ In)s) (3.5.15)

˙̃
ξ = −k(Λ⊗ In)ξ̃ +

(
RT ⊗ In

)
f
(
t, (1N ⊗ In)e+ (1N ⊗ In)s+ (Q⊗ In)ξ̃

)
.

Let a Lyapunov function be

V (e, ξ̃) = eTP (t)e+
1

2
ξ̃T ξ̃.
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The time derivative of V along (3.5.15) becomes

V̇ = ėTP (t)e+ eT Ṗ (t)e+ eTP (t)ė+
1

2
˙̃
ξT ξ̃ +

1

2
ξ̃T

˙̃
ξ

=

{
fT
(
t, (1N ⊗ In)e+ (1N ⊗ In)s+ (Q⊗ In)ξ̃

)
− fT (t, (1N ⊗ In)e+ (1N ⊗ In)s)

+ fT (t, (1N ⊗ In)e+ (1N ⊗ In)s)− fT
(
t, (1N ⊗ In)s

)}( 1

N
1TN ⊗ In

)T

P (t)e

+ eT Ṗ (t)e+ eTP (t)

(
1

N
1TN ⊗ In

){
f
(
t, (1N ⊗ In)e+ (1N ⊗ In)s+ (Q⊗ In)ξ̃

)
− f

(
t, (1N ⊗ In)e+ (1N ⊗ In)s

)
+ f

(
t, (1N ⊗ In)e+ (1N ⊗ In)s

)
− f

(
t, (1N ⊗ In)s

)}
− kξ̃T (Λ⊗ In)ξ̃ + ξ̃T

(
RT ⊗ In

){
f
(
t, (1N ⊗ In)e+ (1N ⊗ In)s+ (Q⊗ In)ξ̃

)
− f

(
t, (1N ⊗ In)s

)}
+ ξ̃T

(
RT ⊗ In

)
f
(
t, (1N ⊗ In)s

)
.

By Lemma 3.5.1, we obtain

V̇ = eT (1N ⊗ In)
T ∂f

T (t, (1N ⊗ In)e)

∂e

∣∣∣
z

(
1

N
1TN ⊗ In

)T

P (t)e

+ ξ̃T (Q⊗ In)
T ∂f

T (t, x)

∂x

∣∣∣
w

(
1

N
1TN ⊗ In

)T

P (t)e+ eT Ṗ (t)e

+ eTP (t)

(
1

N
1TN ⊗ In

)
∂f(t, (1N ⊗ In)e)

∂x

∣∣∣
z
(1N ⊗ In)e

+ eTP (t)

(
1

N
1TN ⊗ In

)
∂f(t, x)

∂x

∣∣∣
w
(Q⊗ In)ξ̃ − kξ̃T (Λ⊗ In)ξ̃

+ ξ̃T
(
RT ⊗ In

)∂f(t, x)
∂x

∣∣∣
q
(1N ⊗ In)e+ ξ̃T

(
RT ⊗ In

)∂f(t, x)
∂x

∣∣∣
q
(Q⊗ In)ξ̃

+ ξ̃T
(
RT ⊗ In

)
f
(
t, (1N ⊗ In)s

)
,

with some z ∈ Rn, w ∈ RNn, and q ∈ RNn. It is seen by (3.5.3), (3.5.6), and the
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fact that ∥Q∥ =
√
N and ∥R∥ = 1/

√
N that∣∣∣∣∣ξ̃T (Q⊗ In)

T ∂f
T (t, x)

∂x

∣∣∣
w

(
1

N
1TN ⊗ In

)T

P (t)e

∣∣∣∣∣ ≤ c2L|ξ̃||e|, ∀t ≥ 0,∣∣∣∣ξ̃T (RT ⊗ In
)∂f(t, x)

∂x

∣∣∣
q
(1N ⊗ In)e

∣∣∣∣ ≤ L|ξ̃||e|, ∀t ≥ 0,∣∣∣∣ξ̃T (RT ⊗ In
)∂f(t, x)

∂x

∣∣∣
q
(Q⊗ In)ξ̃

∣∣∣∣ ≤ L|ξ̃|2, ∀t ≥ 0.

(3.5.16)

Therefore, using (3.5.7), and (3.5.16), it follows that

V̇ ≤ −c3|e|2 + 2c2L|e||ξ̃| − kλ2|ξ̃|2 + L|e||ξ̃|+ L|ξ̃|2 +
∣∣(RT ⊗ In

)
f
(
t, (1N ⊗ In)s

)∣∣ |ξ̃|
= −c3|e|2 + L(2c2 + 1)|e||ξ̃| − (kλ2 − L)|ξ̃|2 +

∣∣(RT ⊗ In
)
f
(
t, (1N ⊗ In)s

)∣∣ |ξ̃|
= −

[
|e|
|ξ̃|

]T [
c3 −L(2c2+1)

2

−L(2c2+1)
2 kλ2 − L

][
|e|
|ξ̃|

]
+
∣∣(RT ⊗ In

)
f
(
t, (1N ⊗ In)s

)∣∣ |ξ̃|.
With k1 := kλ2 − L and a = −L(2c2+1)

2 , the following lemma can be employed to

find the region for V̇ < 0. By Lemma 3.3.1 and (3.5.6), it is seen that

V̇ ≤ −h(|e|2+|ξ̃|2) if |e|2 + |ξ̃|2 ≥ V

cmax
>
∣∣(RT ⊗ In

)
f
(
t, (1N ⊗ In)s

)∣∣2 r( 1

k1

)
,

which implies that

lim sup
t→∞

V (t) ≤ lim sup
t→∞

cmax

∣∣(RT ⊗ In
)
f
(
t, (1N ⊗ In)s

)∣∣2 r( 1

k1

)
.

By (3.5.3) and (3.5.8), we have that

lim sup
t→∞

V (t) ≤ cmax

∣∣∣∣(RT ⊗ In
)√

Nβ(lim sup
t→∞

|s(t)|)
∣∣∣∣2 r( 1

k1

)
= cmaxβ

2

(
4c2
c3

β(0)

)
r

(
1

k1

)
.
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Finally, note that

x− (1N ⊗ In)s = (W−1 ⊗ In)ξ − (1N ⊗ In)s

= (1N ⊗ In)ξ1 − (1N ⊗ In)s+ (Q⊗ In)ξ̃

=
(
[1N , Q]⊗ In

) [ e

ξ̃

]
.

Then, by the fact that ∥[1N , Q]⊗ In∥ ≤
√
N and (3.5.6),

|xi − s| ≤ |x− (1N ⊗ In)s| ≤
√
N

√
|e|2 + |ξ̃|2 ≤

√
N

√
V

cmin
.

Therefore, for any i ∈ N ,

lim sup
t→∞

|xi(t)− s(t)| ≤
√
N

√
cmax

cmin
β

(
4c2
c3

β(0)

)√
r

(
1

k1

)
, (3.5.17)

if k1 = kλ2 − L > 3L2(2c2+1)2

4c3
. From this, the class-K function σ∗ in (3.5.11) and

the constant K̄ (3.5.10) are found.

In this section, it is worthwhile to mention that Assumption 3.5.2 is more

general assumption than Assumption 3.2.1 in Section 3.2, and Theorem 3.5.3

ensures that the robust properties with the strong coupling can be also hold for

high-order heterogeneous multi-agent systems.



Chapter 4

Robustness by A Large Number of
Agents

In this chapter, we extend the result of Chapter 3 to the case where the het-

erogeneities of multi-agent systems are affected by the parametric variations in

the individual agents. This chapter is devoted to explain how a large number of

agents may be robust to the variations which is realized by the random variables.

Consideration of heterogeneous agents in this way may explain one of the

features of biological organs that they are meaningfully working well even though

they consist of nonideal, imperfect, and fragile building blocks [PLS+07, BS11,

PS07]. Indeed, the fact that any organ is composed of huge number of cells reduces

the chance of ending up with abnormal averaged dynamics, and the fact that they

are interconnected in a certain way (possibly with large coupling coefficients)

implies the operations of the individual cells are not too different from others,

and in this way, some malfunctioning cells can operate like normal ones within

the network. If the lesson is transferred to another domain such as sensor networks

[OSS05], it becomes clear that one can enhance accuracy not by equipping with

precision device but by employing many (cheap) sensors (which may include a

few of defective ones) and combining their internal filters, such as Kalman filters,

through the strong consensus network.

The analysis of the effect of large number of agents is very rare in the literature,

although there is only one paper [TSP10] in author’s knowledge that deals with the

similar problem. However, they dealt with identical node dynamics interconnected

53
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with all-to-all network topology, by different analysis method. On the other hand,

when we deal with large number of agents, the use of the averaged dynamics is

very helpful. To see this, we note that the averaged dynamics is still affected

by the variations of individual agents. For example, suppose that there is only

one abnormal agent (i.e., having different vector field from others) in a group of

identical and normal agents. If N is not large, the averaged dynamics may be

affected heavily by the abnormal dynamics of the agent. Then, how to make the

averaged dynamics robust to the perturbations in the abnormal agents? This is

where the large number N comes into the picture. Indeed, the law of large number

plays a central role in the averaged dynamics, and therefore the robustness of the

averaged dyanmics can be obtained.

In this chapter, only the parametric variations are dealt with for quantitative

analysis, and the vector field fi(t, xi) is supposed to be dependent on some param-

eters of random variables. With this setup, we additionally introduce the expected

averaged dynamics as a reference system which is not affected by the variation of

the agents, and show that amount of individual variation of each agent, that is

contributed to the averaged dynamics, gets smaller as the number of agents in-

creases, and thus, the averaged dynamics becomes close to the expected averaged

dynamics. Finally, combining the results of Chapter 3 and Chapter 4, it is not

difficult to infer that strong coupling and a large number of agents imply robust-

ness of consensus and synchronization against heterogeneity (here, heterogeneity

also includes uncertainty and/or external disturbance in each agent).

4.1 Problem Formulation

In this section we are more specific on the system diversity and derive quantitative

robustness measure under a large number of agents. For this, we introduce ran-

dom variables to represent the heterogeneous group of N dynamic agents1 under

1For a similar reason as discussed above in Section 3.1, the class of systems considered in
this section is scalar dynamics.
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consideration as

ẋi = fi(t, xi) + ui = g0(t, xi) +
d∑

j=1

∆ijgj(t, xi) + ui (4.1.1)

for i ∈ N , where gj ’s are C1 “generating functions" for the individual agent

function fi, and ∆ij ’s are random variables having the expectation E{∆ij} = 0

(without loss of generality) and the variance V {∆ij} = σ2
j (σj ≥ 0) for all i ∈ N

and j ∈ D := {1, . . . , d}.2 It is assumed that ∆ij ’s are mutually independent for

all i, but possibly dependent for j. The individual system (4.1.1) is divided into

two parts: a deterministic model for heterogeneous multi-agent systems g0(t, xi)

and a sum of d randomly determined functions
∑d

j=1∆ijgj(t, xi) depending on

time and the state. In fact, this term cannot handle realistic noise (e.g., white

Gaussian noise), but can handle the sinusoidal signal with random phase (see

Section 4.2.2 for more details).

The averaged dynamics of (4.1.1) is then given by

ṡ = f̄(t, s) =
1

N

N∑
i=1

fi(t, s) = g0(t, s) +

d∑
j=1

∆̄jgj(t, s) (4.1.2)

where ∆̄j :=
∑N

i=1∆ij/N . It should be noted from [YG05] that

E{∆̄j} = 0, V {∆̄j} =
σ2
j

N
. (4.1.3)

Now let us consider the expected averaged dynamics which will be used as a ref-

erence for comparison:

ṡE = E{f̄(t, sE)} = g0(t, sE), sE(0) = s(0). (4.1.4)

For the given dynamical system, we now define the notion of robustness in

probability for multi-agent systems which has variations.

2It is noted that (4.1.1) is not a stochastic differential equation. Once those random variables
are drawn (or, realized) when the system is created, it remains deterministic. In this sense, we
share the philosophy of ‘random differential equation’ in [TS13].
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Definition 4.1.1. (Robustness in probability). The N individuals (4.1.1) is said

to achieve robust consensus and synchronization in probability if for any given

ϵ > 0,

lim
N→∞

P

(
lim sup
t→∞

|xi(t)− sE(t)| ≤ ϵ

)
= 1.

for all i ∈ N . �

Since we do not impose any particular conditions (such as probability distri-

bution) on the random variables ∆ij , they are unbounded, and thus, Assumptions

3.1.1 and 3.2.1 cannot hold for all cases. Instead, we impose assumptions on the

generating functions.

Assumption 4.1.1. There exist non-decreasing continuous functions Mj : R≥0 →
R≥0 and constants Lj > 0 such that

|gj(t, xi)| ≤ Mj(|xi|),
∣∣∣∣∂gj∂xi

(t, xi)

∣∣∣∣ ≤ Lj , ∀t ≥ 0, (4.1.5)

for all xi ∈ R, and j ∈ D ∪ {0}. ♦

Assumption 4.1.2. There exists p > 0 such that

∂g0
∂s

(t, s) ≤ −p, (4.1.6)

for all s ∈ R and t ≥ 0. ♦

4.2 Robustness of Averaged Dynamics

In this section, we develop the robustness of the averaged dynamics by a large

number of agents. To show this, we first claim that as the number of agents N

increases in the network, the averaged dynamics (4.1.2) with variations approaches

the expected averaged dynamics (4.1.4) without them. For example, if fi(t, xi) =

aixi + ∆i, where ai and ∆i are independent and identically distributed random

variables with the average ā and 0, respectively, then the averaged dynamics
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becomes

ṡ =

(
1

N

N∑
i=1

ai

)
s+

1

N

N∑
i=1

∆i.

When N gets large, the effects of individual variations in ai and ∆i get weakened

in the sense that the averaged dynamics can be regarded as

ṡE = āsE

which we may regard as a ‘nominal’ averaged dynamics with the standard devia-

tions are in the order of (1/
√
N).

4.2.1 Probabilistic Analysis of Robust Averaged Dynamics

The objective of this section is to develop simple, but efficient procedures for

probabilistic analysis of robust averaged dynamics. To develop, we recall a well-

known fact for probability.

Lemma 4.2.1. (Chebyshev’s inequality). Let X be a random variable with

E{X} = µ and V {X} = σ2 (σ ≥ 0). Then, for any h > 0, it holds that

P (|X − µ| ≥ h) ≤ σ2

h2
,

and therefore,

1− σ2

h2
≤ P (|X − µ| < h) ≤ P (|X − µ| ≤ h).

♦

The weak law of large number follows immediately from Lemma 4.2.1. By

(4.1.3), for any given ϵ > 0, we have

P
(
|∆̄j | ≤ ϵ

)
≥ 1−

σ2
j

N2ϵ2
, ∀j ∈ D,
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and

lim
N→∞

P
(
|∆̄j | ≤ ϵ

)
= 1, ∀j ∈ D.

It means that if the sample size increases, then the arithmetic average ∆̄j tends

more and more closely to the expected value E{∆̄j} = 0. We note that the

variations in the averaged dynamics can be smoothened by the weak law of large

number.

The following lemma is the generalization of the addition rule for probability.

Lemma 4.2.2. Let A1, . . . , Ad be d arbitrary events. Then

d∑
i=1

P (Ai)− d+ 1 ≤ P

(
d⋂

i=1

Ai

)
.

Proof. We will prove by induction. It is clearly true for d = 1. If it holds for

d = k − 1, then

k∑
i=1

P (Ai)− k + 1 =
k−1∑
i=1

P (Ai)− (k − 1) + 1 + P (Ak)− 1

≤ P

(
k−1⋂
i=1

Ai

)
+ P (Ak)− 1

≤ P

((
k−1⋂
i=1

Ai

)⋂
Ak

)

= P

(
k⋂

i=1

Ai

)

in which, the second inequality follows from the fact that

P (A) + P (B)− P (A ∩B) ≤ 1

for any two events A and B.

Now we compare two trajectories s(t) and sE(t) and claim that they tend to

be arbitrarily close with high probability when N is sufficiently large. For this,
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note first that

lim sup
t→∞

|sE(t)| ≤ lim sup
t→∞

|g0(t, 0)|
p

≤ M0(0)

p
,

which follows from Lemma 3.2.1 for (4.1.4) under Assumptions 4.1.1 and 4.1.2.

Lemma 4.2.3. Under Assumptions 4.1.1 and 4.1.2, the solutions of the averaged

dynamics (4.1.2) and the expected averaged dynamics (4.1.4) satisfy that, for any

given ϵ > 0,

lim
N→∞

P

(
lim sup
t→∞

|s(t)− sE(t)| ≤ ϵ

)
= 1. (4.2.1)

♦

Proof. Let s̃ := s− sE be the error between (4.1.2) and (4.1.4). Then,

˙̃s = g0(t, s̃+ sE)− g0(t, sE) +

d∑
j=1

∆̄jgj(t, s̃+ sE)

=: f̃(t, s̃)

with s̃(0) = 0. With this, suppose that

|∆̄j | ≤
p

2dLj
=: φj , ∀j ∈ D. (4.2.2)

Then, it follows from Asummptions 4.1.1 and 4.1.2 that

∂f̃

∂s̃
(t, s̃) =

∂f̄

∂s
(t, s) =

∂g0
∂s

(t, s) +

d∑
j=1

∆̄j
∂gj
∂s

(t, s)

≤ −p+

d∑
j=1

|∆̄j |Lj

≤ −p

2
.
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Lemma 3.2.1 now yields that

lim sup
t→∞

|s̃(t)| ≤ lim sup
t→∞

∣∣∣f̃(t, 0)∣∣∣
p/2

= lim sup
t→∞

∣∣∣∑d
j=1 ∆̄jgj(t, sE(t))

∣∣∣
p/2

.

Therefore, if, in addition to (4.2.2),

|∆̄j | ≤
ϵp

2dMj (M0(0)/p)
=: ϕj , ∀j ∈ D, (4.2.3)

with any ϵ > 0, then

lim sup
t→∞

|s̃(t)| ≤
∑d

j=1 |∆̄j |Mj(lim supt→∞ sE(t))

p/2

≤
∑d

j=1 |∆̄j |Mj (M0(0)/p)

p/2

≤ ϵ.

(4.2.4)

Finally,

P
(
|∆̄j | ≤ φj and |∆̄j | ≤ ϕj , ∀j ∈ D

)
= P

 d⋂
j=1

{(
|∆̄j | ≤ φj

)⋂(
|∆̄j | ≤ ϕj

)}
≥

d∑
j=1

P
((

|∆̄j | ≤ φj

)⋂(
|∆̄j | ≤ ϕj

))
− d+ 1 by Lemma 4.2.2,

≥
d∑

j=1

P
(
|∆̄j | ≤ φj

)
P
(
|∆̄j | ≤ ϕj

)
− d+ 1

since one event implies the other and probability is not larger than 1, and Lemma

4.2.1 leads to

≥
d∑

j=1

(
1− 1

φ2
j

σ2
j

N

)(
1− 1

ϕ2
j

σ2
j

N

)
− d+ 1. (4.2.5)
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In summary, we conclude that

d∑
j=1

(
1−

4d2σ2
jL

2
j

p2N

)(
1−

4d2σ2
jMj(M0(0)/p)

2

ϵ2p2N

)
− d+ 1

≤ P

(
lim sup
t→∞

|s(t)− sE(t)| ≤ ϵ

)
. (4.2.6)

Note that this also implies (4.2.1).

4.2.2 Simulation Results

In this section we illustrate, through simulation studies, that a large number of

agents have robust averaged dynamics against the random variations which are

the realizations of the random variables.

As an example, consider a group of N agents with

fi(t, xi) = (−1 + δi)xi + 10 sin t+ 10m1
i sin(0.1t+ θ1i ) + 10m2

i sin(10t+ θ2i ),

for i = 1, 2, . . . , N , where δi, m1
i , and m2

i are realizations of independent random

variables of standard normal distribution N(0, 1), and θ1i and θ2i are realizations

of independent random variables of uniform distribution on [0, 2π]. Since, from

trigonometric addition formulas, we can handle the following sinusoidal signal

with random phase such that

10m1
i sin(0.1t+ θ1i ) = 10m1

i cos θ
1
i sin 0.1t+ 10m1

i sin θ
1
i cos 0.1t,

10m1
i sin(10t+ θ1i ) = 10m1

i cos θ
1
i sin 10t+ 10m1

i sin θ
1
i cos 10t.

In order to represent the agent in the form of (4.1.1), we take

∆i1 = δi,

∆i2 = 10m1
i cos θ

1
i ,

∆i3 = 10m1
i sin θ

1
i ,

∆i4 = 10m2
i cos θ

2
i ,

∆i5 = 10m2
i sin θ

2
i ,
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with

g0(t, xi) = −xi + 10 sin t,

g1(t, xi) = xi,

g2(t, xi) = sin 0.1t,

g3(t, xi) = cos 0.1t,

g4(t, xi) = sin 10t,

g5(t, xi) = cos 10t.

Indeed, E{∆ij} = 0 for all i and j since mj
i and θji are independent and

E{mj
i} = 0. Also, ∆ij are independent for i while it is not for j. The averaged

dynamics is given by

ṡ =

(
−1 +

1

N

N∑
i=1

δi

)
s+ 10 sin t+

1

N

N∑
i=1

10m1
i sin(0.1t+ θ1i )

+
1

N

N∑
i=1

10m2
i sin(10t+ θ2i ), s(0) =

1

N

N∑
i=1

xi(0)

and thus the expected averaged dynamics is given as

ṡE = −sE + 10 sin t, sE(0) =
1

N

N∑
i=1

xi(0).

Assuming that these agents are interconnected by the ring network, and it

can be observed by Monte Carlo experiments that the solution s(t) tends to sE(t)

as N increases. For example, Figure 4.1 is taken from six random samples of the

group of 5 agents, and shows the trajectories of s(t) (solid) and sE(t) (dashed),

while Figure 4.2 is for the case of 100 agents. It is seen that, as N increases, (the

solution of) the averaged dynamics from the random samples becomes closer to

(the solution of) the expected averaged dynamics, as expected.
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Figure 4.1: Plots of s(t) (solid) from 6 sample runs for N = 5. The solution
sE(t) of the expected averaged system is also drawn (dashed).
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Figure 4.2: Plots of s(t) (solid) from 6 sample runs for N = 100. The solution
sE(t) is also drawn (dashed).
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4.3 Strong Coupling with A Large Number of Agents

Until now, we have seen the effect of a large number of agents in the averaged

dynamics. In this section, we combine two ingredients (i.e., strong coupling and a

large number of agents) in order to achieve robust consensus and synchronization

in probability. As mentioned in Remark 3.3.1(a) of Section 3.3, strong coupling

makes the trajectories of individuals close to that of the averaged dynamics, i.e.,

for any ϵ > 0, there is a sufficient large coupling gain k such that

lim sup
t→∞

|xi(t)− s(t)| ≤ ϵ

2
, ∀i ∈ N .

Moreover, Lemma 4.2.3 ensures that the averaged dynamics can be robust if the

number of agents N increases, that is to say, for the given ϵ,

lim
N→∞

P

(
lim sup
t→∞

|s(t)− sE(t)| ≤
ϵ

2

)
= 1.

Therefore, we can easily infer from the triangular inequality that for any given

ϵ > 0,

lim
N→∞

P

(
lim sup
t→∞

|xi(t)− sE(t)| ≤ ϵ

)
= 1, ∀i ∈ N .

We note that the robust consensus and synchronization in probability can be

achieved by Definition 4.1.1.

The following theorem characterizes the effect of strong coupling and a large

number of agents and is the main result of this dissertation.

Theorem 4.3.1. Under Assumptions 4.1.1, 3.1.2, and 4.1.2, there exists a class-

K function γ∗N such that the solutions of the overall system, composed of (4.1.1)

and (3.1.2), satisfy that

P

(
lim sup
t→∞

|xi(t)− sE(t)| ≤ γ∗N

(
1

kλ2 − LN

)
+ ϵ, ∀k > K̄N , ∀i ∈ N

)

≥
(
1− d

N2

)N
+

d∑
j=1

(
1−

4d2σ2
jL

2
j

p2N

)(
1−

4d2σ2
jMj(M0(0)/p)

2

ϵ2p2N

)
− d

(4.3.1)
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where sE(t) is the solution of (4.1.4) with sE(0) =
∑N

i=1 xi(0)/N , ϵ is any positive

number, and

LN := L0 +N
d∑

j=1

σjLj and K̄N :=
6L2

N

pλ2
+

LN

λ2
. (4.3.2)

The function γ∗N is defined on [0, p/6L2
N ) and given by

γ∗N (χ) = MN

(
2MN (0)

p

)√
N
√

rN (χ) (4.3.3)

in which,

MN (a) := M0(a) +N
d∑

j=1

σjMj(a), and

rN (χ) :=


0, χ = 0,

8χ
p−6L2

Nχ
, 0 < χ ≤ 8p

p2+80L2
N
,

(p2+32L2
N )χ2

(p−6L2
Nχ)2

, 8p
p2+80L2

N
< χ < p

6L2
N
.

(4.3.4)

♦

A few factors are related to the upper bound of lim supt→∞ |xi(t)−sE(t)| and

the probability estimation in (4.3.1). The upper bound tends to increase as N

increases since LN and MN increase. (Also, λ2 is affected.) The lower bound of

the probability (the right-hand side of (4.3.1)) tends to decrease as the increment

of d, σj , Lj , Mj and the decrement of p, which intuitively makes sense. It is

also true that, with ϵ getting larger, the lower bound of the probability increases.

In any case, as k → ∞, the upper error bound in (4.3.1) tends to ϵ, and the

probability of achieving this error bound tends to 1 as N → ∞. The latter can

be seen from the right-hand side of (4.3.1), with

lim
N→∞

(
1− d

N2

)N

= lim
N→∞


(
1− d

N2

)−N2

d


− d

N

= 1.

Therefore, it is asserted that, with a large number of agents, it is more likely to
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have lim supt→∞ |xi(t)−sE(t)| less than or equal to the error bound for all i ∈ N ,

and the error bound can be made small with strong coupling k.

Remark 4.3.1. As in Remark 3.3.1(d) in Section 3.3, let us look into the ultimate

error bound γ∗N in more detail. For this, suppose that, without loss of generality,

the function Mj in Assumption 4.1.2 is taken as an affine function of |xi| (for

example, Mj(|xi|) = supt≥0 |gj(t, 0)|+Lj |xi| does the job). Then, with sufficiently

large k, one can show that γ∗N (1/(kλ2 − LN )) = O
(√

N5/(kλ2)
)
.

♦

Proof. In this proof we combine the analysis performed for Theorem 3.3.2 which

discusses the closeness between xi(t) and s(t), and the analysis about the closeness

between s(t) and sE(t). For this, let us first suppose that

|∆ij | ≤ Nσj , ∀i ∈ N , ∀j ∈ D. (4.3.5)

Then, it follows from Assumption 4.1.1 that

|fi(t, xi)| =

∣∣∣∣∣∣g0(t, xi) +
d∑

j=1

∆ijgj(t, xi)

∣∣∣∣∣∣
≤ M0(|xi|) +N

d∑
j=1

σjMj(|xi|) = MN (|xi|),

and that

∣∣∣∣∂fi∂xi
(t, xi)

∣∣∣∣ =
∣∣∣∣∣∣∂g0∂xi

(t, xi) +

d∑
j=1

∆ij
∂gj
∂xi

(t, xi)

∣∣∣∣∣∣
≤ L0 +N

d∑
j=1

σjLj = LN ,

so that Assumption 3.1.1 holds with M and L replaced with MN and LN , re-

spectively. Moreover, if (4.2.2) holds as well, then |(∂f̄/∂s)| ≤ −p/2 (not −p!)

as seen in Lemma 4.2.3. In this case, Theorem 3.3.2 guarantees that

lim sup
t→∞

|xi(t)− s(t)| ≤ γ∗N

(
1

kλ2 − LN

)
, ∀k > K̄N , ∀i ∈ N
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in which, γ∗N , K̄N , and rN are given by (4.3.3), (4.3.2), and (4.3.4), respec-

tively (which are obtained simply by replacing p in Theorem 3.3.2 with p/2).

Now, if (4.2.3) holds additionally with some ϵ > 0, then we have seen that

lim supt→∞ |s(t) − sE(t)| ≤ ϵ in (4.2.4). Thus, combining these two by trian-

gular inequality, we obtain that

lim sup
t→∞

|xi(t)− sE(t)| ≤ γ∗N

(
1

kλ2 − LN

)
+ ϵ

for all k > K̄N and i ∈ N .

To see (4.3.1), it is left to compute the probability that all (4.2.2), (4.2.3),

and (4.3.5) hold. For (4.3.5), it is seen that

P (|∆ij | ≤ Nσj , ∀i ∈ N , ∀j ∈ D)

=

N∏
i=1

P (|∆ij | ≤ Nσj , ∀j ∈ D) by independency of ∆ij for i

≥
N∏
i=1

 d∑
j=1

P (|∆ij | ≤ Nσj)− d+ 1

 by Lemma 4.2.2

≥
N∏
i=1

 d∑
j=1

(
1− 1

N2

)
− d+ 1

 by Lemma 4.2.1

=

(
1− d

N2

)N

.

Finally, we have that

P
(
((4.3.5) holds)

⋂
((4.2.2) and (4.2.3) hold)

)
≥ P ((4.3.5) holds) + P ((4.2.2) and (4.2.3) hold)− 1

≥
(
1− d

N2

)N
+

d∑
j=1

(
1− 1

φ2
j

σ2
j

N

)(
1− 1

ϕ2
j

σ2
j

N

)
− d from (4.2.5)

which concludes (4.3.1).
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4.3.1 Simulation Results

Here, the simulations are performed the same as in Section 4.2.2. In order to see

the effect of a large number of agent, the simulation results of two sample runs

with N = 5 and N = 100 are depicted in Figure 4.3. In each case, the coupling

gains of k = 5 and k = 500 are used, respectively.

The effect of strong coupling k is seen rather clearly by comparing Figure

4.3.(a) with (b), and (c) with (d), respectively. On the other hand, by comparing

(a) with (c), and (b) with (d), it is seen that, when N is larger, the solutions

of each agents (solid blue) tend closer to the dashed black curve, which is the

solution of the expected averaged dynamics

ṡE = −sE + 10 sin t, sE(0) =
1

N

N∑
i=1

xi(0).

This is because the averaged dynamics, given by

ṡ =

(
−1 +

1

N

N∑
i=1

δi

)
s+ 10 sin t+

1

N

N∑
i=1

10m1
i sin(0.1t+ θ1i )

+
1

N

N∑
i=1

10m2
i sin(10t+ θ2i ),

gets close to the expected averaged dynamics with large N . In the sample run for

N = 5, it was

ṡ = −0.437s+ 10 sin t+ 0.445 sin 0.1t+ 6.005 cos 0.1t+ 6.588 sin 10t

− 5.523 cos 10t,

and

ṡ = −1.034s+ 10 sin t+ 0.608 sin 0.1t− 0.833 cos 0.1t− 0.671 sin 10t

+ 0.08 cos 10t

for N = 100.

It is also observed that increasing N (under the same k) results in more
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(c) N = 100, k = 5
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(d) N = 100, k = 500

Figure 4.3: Trajectories of N -agent systems with coupling strength k are de-
picted as blue solid curves, and the trajectory sE(t) of the ex-
pected averaged system is given as the black dashed curve.

deviation by comparing (a) and (c); (b) and (d), as discussed in Remark 3.3.1(d).

Finally, it is stressed that there were 2 unstable agents out of 5 when N = 5, and

12 out of 100 when N = 100, in the sample run. By repeating the sample runs,

we observe that the error |xi(t) − xj(t)| is small for all i, j ∈ N when k is large,

and the deviation of xi(t) from sE(t) is small with high probability when both N

and k are large. Fig. 4.3 is a typical one of them.



Chapter 5

Optimal Distributed Kalman-Bucy
Filter in Sensor Network

In the first part of the dissertation, the robustness of consensus and synchro-

nization in the heterogeneous multi-agent systems has been addressed. As men-

tioned in Section 1.1.3, the phenomena of the robustness in networked systems

appear in various areas. In engineering, distributed sensor network is one of the

major application area of the robust consensus and synchronization, particularly

in surveillance and monitoring of an environment, tracking of target, and so on

[ASSC02, CHZ02, CMKB02, DW05, EGHK99, FOSPP06, GDW94, OSS05]. A

fundamental problem in distributed sensor network is to achieve estimation of

target by using distributed algorithms.

In [GDW94, RDWS93], the decentralized filtering problem involving the lo-

cal Kalman filters is solved with the information topology which is all-to-all net-

work, and thus it is not scalable1 since the complexity of the communication is

O(N2). In order to deal with scalable sensor network, the authors of [OS07]

proposed Kalman-Consensus filtering algorithm in which each node only com-

municates messages with its neighbors on a network. Furthermore, in accordance

with the local measurement and error covariance matrices, some novel distributed

Kalman filtering methods are provided to further improve the local estimation
1In the context of interconnected dynamical systems, scalability is the property that analysis

and design complexity grows slowly as compared to system size, i.e., number of subsystems. In
practice, if there are a large number of things (N) that affect scaling, then resource requirements
(for example, algorithmic time-complexity) must grow less than N2 as N increases.

71
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performance for each node by applying the internal model average consensus es-

timator [BFL11, Geo13].

This chapter addresses a design and analysis of distributed Kalman filter

(Kalman-Bucy filter for continuous-time system) in the sensor network. In or-

der to recover the optimality of the centralized Kalman-Bucy filter, we intro-

duce the averaged distributed Kalman-Bucy filter which is the average of all dis-

tributed Kalman-Bucy filters’ dynamics. The underlying philosophy for designing

distributed Kalman-Bucy filter is similar to the robustness of the consensus and

synchronization problem.

5.1 Reviews of Distributed Kalman-Bucy Based Filter-

ing for Sensor Network

In this section, we briefly review the previously proposed Kalman-based filters

in sensor network. To formulate the distributed sensor network, we consider a

continuous-time linear system2

ẋ = Ax+Bw, (5.1.1)

z = Hx+ v =


H1

...

HN

x+


v1
...

vN

 =


z1
...

zN

 (5.1.2)

where x = col(x1, . . . , xn) ∈ Rn is the state, z ∈ Rp is the measurement output,

w ∈ Rm is the input (process) noise, and v ∈ Rp is the measurement noise. The

submatrix Hi ∈ Rpi×n is a partition of H such that
∑N

i=1 pi = p, and vi, zi ∈ Rpi .

The noise signals {w, v1, · · · , vN} are independent Gaussian signals of zero mean

with

E{w(t)wT (τ)} = Qδ(t− τ), E{vi(t)vTi (τ)} = Riδ(t− τ)

for all i ∈ N := {1, . . . , N}, where δ(t−τ) = 1 if t = τ and δ(t−τ) = 0 otherwise.

The forthcoming discussion is based on the following assumption.

2We consider a time-invariant linear system here for simplicity.
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Assumption 5.1.1. The matrix Ri is positive definite (Ri > 0) for all i ∈ N ,

and Q is positive semi-definite (Q ≥ 0). The pair (A,B
√
Q) is controllable, and

the pair (A,H) is observable. ♦

Our assumption on the dynamical system to be estimated is that it is observ-

able only in a centralized sense, that is, the state of the dynamical system may

not be observable to individual agents but is observable when the measurements

from the agents are fused (i.e., (A,Hi) is not necessarily observable).

5.1.1 Centralized Kalman-Bucy Filter

We first review the centralized Kalman-Bucy filter (CKBF) [BJ68]. The CKBF

of the plant (5.1.1) can be written as

˙̂x = Ax̂+ PHTR−1(z −Hx̂) (5.1.3a)

Ṗ = AP + PAT +BQBT − PHTR−1HP (5.1.3b)

with P (0) = P0 > 0, where x̂ ∈ Rn is the estimated state vector of x and

R = diag(R1, . . . , RN ).

It follows from optimal control theory that the CKBF is optimal in cases

where i) the model perfectly matches the real system, ii) the entering noise is

white and Gaussian, and iii) the covariances of the noise are exactly known.

We note that the error covariance matrix P (t) is the solution of the differential

Riccati equation (5.1.3b), and converges to steady state (finite) covariance if the

pair (A,H) is observable. Moreover, the steady state error covariance matrix P ∗

is the solution of the algebraic Riccati equation of (5.1.3b), and thus it gives the

optimal gain. The following lemma is well-known result in optimal control theory.

Lemma 5.1.1. Under Assumption 5.1.1, it follows that

(a) [LXP07, Theorem 3.2] the origin of the system ẋ =
(
A− P ∗HTR−1H

)
x

with the unique positive definite solution P ∗ > 0 to the algebraic Riccati

equation of (5.1.3b) is exponentially stable.

(b) [BJ68, Theorem 3.1] the origin of the system ẋ =
(
A− P (t)HTR−1H

)
x

with the solution P (t) of (5.1.3b) is exponentially stable.
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Figure 5.1: Centralized Kalman-Bucy filter.

(c) [BJ68, Thorem 5.1] P0 > 0 ensures that the solution P (t) of (5.1.3b) satisfies

P (t) > 0 for all t ≥ 0.

(d) [AM71, Theorem 5.3] P (t) → P ∗ as t → ∞.

♦

A centralized filter requires communicating the entire measurement vectors

to a central node, and the implementation is depicted in Figure 5.1. Although

CKBF is theoretically optimal, the CKBF is impractical in large-scale dynamical

systems because it has some following disadvantages:

• CKBF requires long-distance communication since the sensors span a large

geographical area, e.g., surveillance and monitoring of an environment.

• A centralized scheme results in large latency.

• The centralized network cannot be robust under the malicious attack to the

center node, and it will leave severe consequences in the network.

In [HRL88, RDW91], the authors focused on reducing the computational com-

plexity of centralized Kalman filtering by parallelizing computations. However,

they require all-to-all communication topology and assume that each subsystem

has full knowledge of the whole dynamics.

5.1.2 Kalman-Consensus Filter

In the sensor network, the most fundamental problem was how to develop a

distributed algorithm based on some traditional Kalman filtering schemes. A
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Figure 5.2: Kalman-Consensus filter.

distributed Kalman filter has been proposed by Olfati-Saber in [OS07], which has

attracted a lot of attention in the literature.

The distributed Kalman-Bucy filter of [OS07] consists of N nodes, and each

node i has the dynamics

˙̂xi = Ax̂i + PiH
T
i R

−1
i (zi −Hix̂i) + γPi

∑
j∈Ni

(x̂j − x̂i), γ > 0 (5.1.4a)

Ṗi = APi + PiA
T +BQBT − PiH

T
i R

−1
i HiPi (5.1.4b)

with

Pi(0) = P0 > 0, x̂i(0) = x(0), ∀i ∈ N (5.1.4c)

where x̂i = col(x̂1i , . . . , x̂
n
i ) ∈ Rn is the i-th estimated state vector of x and

the set Ni is the neighboring nodes of the node i. This is a “distributed” filter,

called ‘Kalman-Consensus filter (KCF)’, because each node i receives the partial

measurement zi only, and communicates the estimates x̂j with its neighborhood

under the communication network. The implementation of KCF can be seen in

Figure 5.2.

The KCF estimates the state of plant in two steps: i) in the first step, local

Kalman filtering is performed on each sensor node to track the observable state of

the target, and ii) in the second step, each sensor node fuses the estimates of all
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its neighbors locally to get an improved estimate by using consensus algorithm.

Unfortunately, this idea has a few drawbacks as follows.

• Unless (A,Hi) is observable for all i ∈ N , some component of the error

covariance matrix Pi(t) may diverge that can be shown in Example 5.1.1.

Then, this will cause some overflow error in a digital computer and make

its implementation hard in practice.

• By the above observation, it is clear that each node maintains different error

covariances even if the estimate x̂i(t) converges to x(t), and the optimal

estimation property of the Kalman-Bucy filter is lost, and therefore the

matrix Pi(t) does not have the meaning of error covariance anymore.

• The condition (5.1.4c), x̂i(0) = x(0) for all nodes, is unrealistic for estima-

tion problem. In fact, unless it satisfies the initial conditions, a simulation

shows the estimate error indeed diverges (see Example 5.1.2).

Since the boundedness of Pi(t) is guaranteed under the assumption that

(A,Hi) is observable, we can observe the divergence property of KCF.

Example 5.1.1. With A = 02×2 and H = B = Q = R = P0 = I2 (H1 is the first

row of H), the solution to the Riccati equation (5.1.4b) for i = 1 is

P1 =

[
1 0

0 t+ 1

]

The same phenomenon occurs also for the discrete-time version (Algorithm 3

of [OS07]). Consider A = 2I4 and H = B = Q = R = P0 = I4 (Hi is the i-th

row of H) under the cyclic graph (so that the node 2 has its neighbors 1 and 3).

Then, it can be seen that Algorithm 3 of [OS07] results in S2(k) = diag(1, 1, 1, 0),

and so, P2(k) is diagonal and pi,i(k) (i = 1, 2, 3) converges to 2+
√
5 while p4,4(k)

diverges as 1, 5, 21, 85, · · · , where pi,j(k) is the (i, j) component of P2(k). ♦
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Figure 5.3: Simulation results of KCF with divergent P (t).

Example 5.1.2. Consider the plant with process noise as

ẋ =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

x+


0

1

0

1

w, w ∼ N(0, 1),

=: Ax+Bw

and the initial condition x(0) = col(0, 1, 0, 1). The group of N sensors can par-

tially observe the states of the target with measurement noise; that is,

zi = Hix+ vi, vi ∼ N(0, 1)

where

Hi =



[1 0 0 0], 1 ≤ i ≤ N/4,

[0 1 0 0], N/4 + 1 ≤ i ≤ N/2,

[0 0 1 0], N/2 + 1 ≤ i ≤ 3N/4,

[0 0 0 1], 3N/4 + 1 ≤ i ≤ N.

The plant is not observable by individual sensors, but is observable by all the



78 Chap. 5. Optimal Distributed Kalman-Bucy Filter in Sensor Network

Figure 5.4: Optimal distributed Kalman-Bucy filter.

sensors. Now, the KCF [OS07] is given by (5.1.4) with the initial conditions

x̂i(0) are randomly determined and Pi(0) = P0 > 0 for all i ∈ N . We assume

that the sensors (N = 12) are interconnected by the ring topology network and

Q = Ri = 1 for all i ∈ N . In Figure 5.3(a), since (A,Hi) is not observable, it is

seen that some components of the error covariance matrices Pi(t) actually diverge.

In Figure 5.3(b), it is also observed that the estimation error indeed diverges. ♦

5.2 Design of Optimal Distributed Kalman-Bucy Filter

In this section, we present a modified solution which overcomes all the above

drawbacks of the KCF. The proposed optimal distributed Kalman-Bucy filter (O-

DKBF) is given by

˙̂xi = Ax̂i +NPiH
T
i R

−1
i (zi −Hix̂i) + γ

N∑
j=1

αij(x̂j − x̂i) (5.2.1a)

Ṗi = APi + PiA
T +BQBT −NPiH

T
i R

−1
i HiPi + k

N∑
j=1

αij(Pj − Pi) (5.2.1b)

where x̂i ∈ Rn is the i-th state, γ > 0 and k > 0 represent the coupling strengths,

and αij is the (i, j)-entry of the adjacency matrix of the given network.

Here, the initial conditions x̂i(0) and Pi(0) > 0 can be anything and all differ-
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ent. It is noted that the modifications from (5.1.4) are as follows: i) the number

of the agents, N , appears in the gains in (5.2.1a) and (5.2.1b), ii) the diffusive

coupling gain matrix is changed by In in (5.2.1a), and iii) more importantly, the

error covariance matrix is communicated in (5.2.1b).

Remark 5.2.1. As seen in Figure 5.4, the communication of error covariance

causes more information exchanged between nodes. The amount of information

exchanged between two nodes is 2(n+(n+1)n/2) = n2+3n. For a cyclic network

of N nodes, it becomes (n2 +3n)N . On the other hand, if each node is dispersed

in location and all the information is gathered by a center to use the CKBF, the

information delivered to the center is pN , and the estimated information delivered

to each node is nN . Therefore, in terms of the amount of exchanged information,

distributed filtering has no benefits over the centralized one. However, in wireless

sensor network for example, each node has limited power so that they can only

communicate with their neighbors. ♦

Our approach is to view (5.2.1) as a group of “heterogeneous” agents for i ∈ N .

(It is heterogeneous because HT
i R

−1
i Hi is not the same among the agents.) To

analyze the behavior of heterogeneous agents, we employ the notion of averaged

dynamics proposed in Section 3.2. The way to compute the averaged dynam-

ics of (5.2.1b) is to compute the “average of vector fields” of all agents after re-

placing the state of each agent (x̂i and Pi in our case) by a common state (say,

xs and S). Then, the dynamics about the common state is the averaged dy-

namics with its initial condition is also an average of the initial conditions of

all agents. (See Section 3.2 for more details.) In our case, by the fact that

(1/N)
∑N

i=1NHT
i R

−1
i Hi = HTR−1H, the averaged dynamics is obtained as

ẋs = Axs + SHTR−1H(x− xs) + S

N∑
i=1

HT
i R

−1
i vi

= Axs + SHTR−1(z −Hxs), (5.2.2a)

Ṡ = AS + SAT +BQBT − S

(
N∑
i=1

HT
i R

−1
i Hi

)
S

= AS + SAT +BQBT − SHTR−1HS (5.2.2b)
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with the averaged initial conditions (i.e., xs(0) = (1/N)
∑N

i=1 x̂i(0) and S(0) =

(1/N)
∑N

i=1 Pi(0)). According to Section 3.3, with sufficiently large coupling gains

(γ and k in our case), the behavior of multi-agent system (5.2.1) becomes close to

the solution of the averaged dynamics (5.2.2). And, fortunately, we note that the

averaged dynamics is nothing but the CKBF. However, a few technical assump-

tions in Chapter 3 are not satisfied for our case, and so, we present an independent

analysis in this chapter.

Remark 5.2.2. The averaged dynamics is a conceptual one, and thus, it is natural

that the averaged dynamics (5.2.2) is not the same as any of (5.2.1) even when

x̂i(t) = x̂j(t) and Pi(t) = Pj(t) for all i, j ∈ N and t ≥ 0. ♦

Remark 5.2.3. (Optimal recovery problem). The above averaged O-DKBF

(5.2.2) is the same as the CKBF (5.1.3) for the plant (5.1.1) with a sensing

model z = Hx+ v. It follows from Lemma 5.1.1(c) that there exists the positive

definite solution S∗ > 0 to the algebraic Riccati equation of (5.2.2b), and the

error covariance matrix S(t) of (5.2.2) is bounded even when the plant system is

neutrally stable or unstable. Thus, Pi(t) → S(t) as t → ∞ for all i ∈ N ensures

that Pi(t) → S∗ as t → ∞ for all i ∈ N and all Pi(t), i ∈ N , are bounded even

when (A,Hi) is not observable which cannot be guaranteed in KCF (5.1.4). In

addition, if x̂i(t) → xs(t) as t → ∞, then we can expect that the proposed filter

(5.2.1) can recover the optimality of the centralized Kalman-Bucy filter in the

sense that the distributed filter estimate x̂i(t) and the error covariance matrix

Pi(t) converge to xs(t) and S(t) of the averaged O-DKBF, respectively. ♦

Remark 5.2.4. An internal model requirement is necessary and sufficient for

asymptotically synchronized behavior of heterogeneous agents [WSA11]. It means

that without global information of the matrix HTR−1H, it can hardly be obtained

that Pi(t) → S(t) as t → ∞ for all i ∈ N . In [BFL11], in order to estimate the

constant value of HTR−1H and achieve optimal filtering by distributed scheme,

the number of node N and the structure of the network (all the eigenvalues of

the Laplacian matrix) are assumed to be known to all filters in advance. In this

section, instead of assuming that all filters know the structure of the network

in advance, we will show that all Pi(t) approximately converge to S(t) and the
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strong coupling makes the trajectories Pi(t) of arbitrarily close to S(t). ♦

5.2.1 Robustness of Heterogeneous Agents with Locally Lipschitz

Nonlinearity

In order to consider the differential Riccati equation (5.2.1b) as a group of hetero-

geneous multi-agent systems, we need to reformulate the problem for the agent

having locally Lipschitz nonlinearity, because Assumption 3.5.1 is not satisfied for

the quadratic matrix equation in (5.2.1b).

We recall a group of N dynamic objects (3.5.1) with coupling input (3.5.4)

represented by

ẋi = fi(t, xi) + k
N∑
j=1

αij(xj − xi), i ∈ N , (5.2.3)

where fi : [0,∞)×Rn → Rn is a nonlinear vector valued function, and xi ∈ Rn is

the state.

Assumption 5.2.1. (Locally Lipschitz nonlinearity). The function fi(t, xi) of

the individual system (5.2.3) is bounded with respect to xi, uniformly in t, con-

tinuously differentiable and the Jacobian matrix [∂fi/∂xi] is bounded on a com-

pact convex set Ω ⊂ Rn, uniformly in t; i.e., there exist a non-decreasing function

M : R≥0 → R≥0 and constant L > 0 such that, ∀a ∈ Ω, ∀t ≥ 0, ∀i ∈ N ,

|fi(t, a)| ≤ M(|a|),
∥∥∥∥∂fi∂xi

(t, a)

∥∥∥∥ ≤ L. (5.2.4)

♦

By letting x := col(x1, . . . , xN ) and f(t, x) := col(f1(t, x1), . . . , fN (t, xN )),

the inequality (5.2.4) leads to

|f(t, (1N ⊗ In)a)| ≤
√
NM(|a|),

∥∥∥∥∂f∂x (t, b)
∥∥∥∥ ≤ L (5.2.5)

for all t ≥ 0, a ∈ Ω, and b ∈ ΩN ⊂ RnN where ΩN is the N -th Cartesian power

of the set Ω.
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Let s(t) be the solution of the following averaged dynamics of the agents

(5.2.3)

ṡ =
1

N

N∑
i=1

fi(t, s) =
1

N
(1TN ⊗ In)f

(
t, (1N ⊗ In)s

)
=: f̄(t, s).

(5.2.6)

with the averaged initial condition s(0) =
∑N

i=1 xi(0)/N .

Assumption 5.2.2. The origin s = 0 of the averaged dynamics (5.2.6) is a

globally exponentially stable equilibrium point. ♦

At a consequence of Assumption 5.2.2, there is a continuously differentiable

function W1 : [0,∞)× Rn → R that satisfies the inequalities

c1|s|2 ≤ W1(t, s) ≤ c2|s|2 (5.2.7a)
∂W1

∂t
+

∂W1

∂s
f̄(t, s) ≤ −c3|s|2 (5.2.7b)∥∥∥∥∂W1

∂s

∥∥∥∥ ≤ c4|s| (5.2.7c)

for some positive constants c1, c2, c3, and c4. In fact, Assumption 5.2.2 is more

restrictive than Assumption 3.5.2 in the sense that the origin s = 0 is an equilib-

rium point for (5.2.6), but it is not necessary in (3.5.5). However, it can be seen

from [Kha02, Theorem 4.15] that Assumption 3.5.2 implies Assumption 5.2.2, but

not vice versa when the origin s = 0 is an equilibrium point for (3.5.5).

The following theorem shows the robustness of consensus and synchronization

against heterogeneity of multi-agent systems and will play a key role to show the

ultimate boundedness of xi(t).

Theorem 5.2.1. Take r > 0 such that Br ⊂ Ω. Under Assumptions 5.2.1, 3.1.2,

and 5.2.2, there exists a class-K function σ and for every initial state xi(0), satisfy-

ing |xi(0)| ≤
√

c/(Nc̄)r, ∀i ∈ N , where c := min{c1, 1/2} and c̄ := max{c2, 1/2},
there is T ≥ 0 such that the solutions of (5.2.3) satisfy

|xi(t)| ≤ σ

(
1

kλ2 − L

)
, ∀t ≥ T, ∀k > K̄, ∀i ∈ N
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where σ(χ) := M(0)
√
Nc̄ω(χ)/c and

K̄ := max

{
3L2(c4 + 1)2 + 4c3L

4c3λ2
,

(
λ2ω

−1

(
c2r2

Nc̄2M2(0)

))−1

+
L

λ2

}
.

In particular, the class-K function ω is given by

ω(χ) =


0, χ = 0

4χ
c3−3a2χ

, 0 < χ ≤ 4c3
c23+20a2

(c23+8a2)χ2

(c3−3a2χ)2
, 4c3

c23+20a2
< χ < c3

3a2

where a := −L(c4 + 1)/2. ♦

Remark 5.2.5. (Semi-global ultimate boundedness). In Theorem 5.2.1, for any

a priori given (arbitrarily large) compact convex set Ω of the state space, we can

find a threshold K̄ of the coupling gain k such that the solutions xi(t) of (5.2.3)

can be ultimately bounded with initial condition, |xi(0)| ≤
√

c/(Nc̄)r, ∀i ∈ N .

Note that r can be arbitrarily large as long as Br ⊂ Ω. Therefore, for all initial

conditions in some arbitrarily large but compact subset, the solutions of (5.2.3)

are semi-globally ultimately bounded. ♦

Proof. The dynamics of the stacked system of (5.2.3) is written as

ẋ = −k(L ⊗ In)x+ f(t, x). (5.2.8)

By the coordinate transformation in (2.2.1)

ξ =

[
ξ1

ξ̃

]
= (W ⊗ In)x =

[
1
N 1TN ⊗ In

RT ⊗ In

]
x (5.2.9)

where ξ̃ = col(ξ2, . . . , ξN ), the overall system (5.2.8) is transformed into

ξ̇1 =

(
1

N
1TN ⊗ In

)
f
(
t, (1N ⊗ In)ξ1 + (Q⊗ In)ξ̃

)
˙̃
ξ = −k(Λ⊗ In)ξ̃ + (RT ⊗ In)f

(
t, (1N ⊗ In)ξ1 + (Q⊗ In)ξ̃

)
,

(5.2.10)
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because x = (W−1 ⊗ In)ξ = [1N ⊗ In, Q⊗ In]ξ. Let a Lyapunov function be

V (ξ) = W1(t, ξ1) +
1

2
ξ̃T ξ̃,

and from (5.2.7a), the Lyapunov function satisfies the following inequality

c|ξ|2 ≤ V (ξ) ≤ c̄|ξ|2 (5.2.11)

where c = min{c1, 1/2} and c̄ = max{c2, 1/2}. The time derivative of V along

(5.2.10) becomes

V̇ =
∂W1

∂t
+

∂W1

∂ξ1

[(
1

N
1TN ⊗ In

)
f (t, (1N ⊗ In)ξ1)

]
+

∂W1

∂ξ1

(
1

N
1TN ⊗ In

)[
f
(
t, (1N ⊗ In)ξ1 + (Q⊗ In)ξ̃

)
− f (t, (1N ⊗ In)ξ1)

]
− kξ̃T (Λ⊗ In) ξ̃ + ξ̃T (RT ⊗ In)

[
f
(
t, (1N ⊗ In)ξ1 + (Q⊗ In)ξ̃

)
− f

(
t, (1N ⊗ In)ξ1

)]
+ ξ̃T (RT ⊗ In)

[
f
(
t, (1N ⊗ In)ξ1

)
− f(t, 0)

]
+ ξ̃T (RT ⊗ In)f(t, 0).

By the mean-value theorem in Lemma 3.5.1, we obtain

V̇ =
∂W1

∂t
+

∂W1

∂ξ1
f̄(t, ξ1) +

∂W1

∂ξ1

(
1

N
1TN ⊗ In

)
∂f

∂x
(t, z)(Q⊗ In)ξ̃

− kξ̃T (Λ⊗ In)ξ̃ + ξ̃T (RT ⊗ In)
∂f

∂x
(t, w)(Q⊗ In)ξ̃

+ ξ̃T (RT ⊗ In)
∂f

∂x
(t, (1N ⊗ In)q)(1N ⊗ In)ξ1 + ξ̃T (RT ⊗ In)f(t, 0)

in which, z ∈ RnN and w ∈ RnN are some points on the line segment connecting

(1N ⊗In)ξ1+(Q⊗In)ξ̃ and (1N ⊗In)ξ1, and q ∈ Rn is a point on the line segment

connecting ξ1 and 0. Since x = (1N ⊗ In)ξ1 + (Q⊗ In)ξ̃ and ξ1 = (1TN ⊗ In)x/N ,

we have

z, w ∈ l

{
x,

(
1

N
1N1TN ⊗ In

)
x

}
, and q ∈ l

{(
1

N
1TN ⊗ In

)
x, 0

}
where l{x, y} := {θx+ (1− θ)y : 0 ≤ θ ≤ 1}. By the construction of l{x, y} and
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the convex property of Ω, it can be easily obtained that

xi ∈ Ω, ∀i ∈ N ⇒ z, w, (1N ⊗ In)q ∈ ΩN ,

and it is seen by (5.2.5) that∥∥∥∥∂f∂x (t, z)
∥∥∥∥ ≤ L,

∥∥∥∥∂f∂x (t, w)
∥∥∥∥ ≤ L,

∥∥∥∥∂f∂x (t, 1N ⊗ Inq)

∥∥∥∥ ≤ L.

Therefore, using (5.2.7) and the fact that ∥Q∥ =
√
N and ∥R∥ = 1/

√
N , it follows

that

V̇ ≤ −c3|ξ1|2 +
∥∥∥∥∂W1

∂ξ1

∥∥∥∥∥∥∥∥1TN ⊗ In
N

∥∥∥∥∥∥∥∥∂f∂x (t, z)
∥∥∥∥ ∥Q⊗ In∥ |ξ̃|

− kλ2|ξ̃|2 +
∥∥RT ⊗ In

∥∥∥∥∥∥∂f∂x (t, 1N ⊗ Inq)

∥∥∥∥ ∥1N ⊗ In∥ |ξ1||ξ̃|

+
∥∥RT ⊗ In

∥∥∥∥∥∥∂f∂x (t, w)
∥∥∥∥ ∥Q⊗ In∥ |ξ̃|2 +

∣∣(RT ⊗ In)f(t, 0)
∣∣ |ξ̃|

≤ −c3|ξ1|2 + L(c4 + 1)|ξ1||ξ̃| − (kλ2 − L)|ξ̃|2 +M(0)|ξ̃|

= −

[
|ξ1|
|ξ̃|

]T [
c3 −L(c4+1)

2

−L(c4+1)
2 kλ2 − L

][
|ξ1|
|ξ̃|

]
+M(0)|ξ̃|.

With p = c3, a = −L(c4 + 1)/2, κ := kλ2 − L and θ(t) := M(0), Lemma 3.3.1

can be employed to find the region for V̇ < 0. By Lemma 3.3.1, it is seen that

V̇ < −h|ξ|2, if |ξ|2 > M2(0)ω(1/κ) (5.2.12)

for all

k >
3L2(c4 + 1)2

4c3λ2
+

L

λ2
=: k1.

Let ΩN
ξ be a transformed compact convex set such that

ΩN
ξ := {ξ ∈ RnN : ξ = (W ⊗ In)x, x ∈ ΩN}.

From the properties of ΩN , it can be easily shown that ΩN
ξ is a compact convex
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set. Moreover, since ∥W ⊗ In∥ = 1/
√
N , it follows that

x ∈ BN
r := {x ∈ RnN : |x| ≤ r} ⇒ ξ = (W ⊗ In)x ∈ BN

r1

where r1 := r/
√
N . The fact that Br ⊂ Ω ensures that BN

r ⊂ ΩN and BN
r1 ⊂ ΩN

ξ .

From the left inequality (5.2.11), we have

ξ ∈ LV (c) := {ξ ∈ RnN : V (ξ) ≤ c} ⇒ |ξ| ≤
√

c

c

Taking c := cr21 ensures that the level set LV (c) is in the interior of BN
r1 ; that is

LV (c) ⊂ BN
r1 . From the right inequality of (5.2.11), it follows that

|ξ| ≤
√

c

c̄
⇒ V (ξ) ≤ c̄|ξ|2 ≤ c ⇔ ξ ∈ LV (c).

Thus, taking r2 :=
√
c/c̄ ensures that BN

r2 ⊂ LV (c). Note that BN
r2 is the set of

initial conditions of ξ and it can be arbitrarily enlarged by increasing r. Now we

will find the ultimate bound on ξ. From the left inequality of (5.2.11), we have

|ξ| ≤ ρ(k) ⇒ V (ξ) ≤ c̄ρ2(k) =: ϵ(k) ⇔ ξ ∈ LV (ϵ(k))

where ρ(k) := M(0)
√
ω (1/κ). Consequently, from the left inequality of (5.2.11),

we have

ξ ∈ LV (ϵ(k)) ⇔ V (ξ) ≤ ϵ(k) ⇒ |ξ| ≤

√
ϵ(k)

c
.

Therefore, taking b(k) :=
√
ϵ(k)/c ensures that

BN
ρ(k) ⊂ LV (ϵ(k)) ⊂ BN

b(k).

To obtain BN
b(k) ⊂ BN

r2 , we must have
√
ϵ(k)/c <

√
c/c̄. Thus, if we choose k > 0

such that

k >

(
λ2ω

−1

(
cc

c̄2M2(0)

))−1

+
L

λ2
=: k2,
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then we can see that the relationship between sets is obtained as

BN
ρ(k) ⊂ LV (ϵ(k)) ⊂ BN

b(k) ⊂ BN
r2 ⊂ LV (c) ⊂ BN

r1 ⊂ ΩN
ξ .

Moreover, from (5.2.12), if k > K̄ = max{k1, k2}, then all trajectories starting

in LV (c) enter LV (ϵ(k)) within a finite time T . The ultimate bound on ξ can be

taken as

b(k) =

√
c̄

c
M(0)

√
ω

(
1

kλ2 − L

)

with every initial state ξ(0) satisfying |ξ(0)| ≤
√

c/(Nc̄)r. It follows from (5.2.9)

that

|xi(0)| ≤
√

c

Nc̄
r, ∀i ∈ N ⇒ |ξ(0)| ≤

√
c

Nc̄
r.

Finally, since

x = (W−1 ⊗ In)ξ = [1N ⊗ In, Q⊗ In]ξ,

and by the fact that ∥1N ⊗ In, Q⊗ In∥ ≤
√
N , we have

|xi| ≤ |x| ≤
√
N |ξ|.

Therefore, for any i ∈ N , there exists T ≥ 0 (dependent on xi(0), ∀i ∈ N ) such

that

|xi(t)| ≤ M(0)

√
Nc̄

c
ω

(
1

kλ2 − L

)
, ∀t ≥ T, (5.2.13)

if k > K̄ and |xi(0)| ≤
√
c/(Nc̄)r, ∀i ∈ N .

5.2.2 Stability Analysis

With proper vectorization, the coupled differential Riccati equation (5.2.1b) can

be considered as a heterogeneous multi-agent systems in (5.2.3). The vectoriza-
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tions of (5.2.1b) and (5.2.2b) are obtained as

v(Ṗi) = gi(v(Pi)) + k
N∑
j=1

αij (v(Pj)− v(Pi)) (5.2.14a)

v(Ṡ) = ḡ(v(S)) (5.2.14b)

where

gi(v(Pi)) := (In ⊗A+A⊗ In) v(Pi) + v(BQBT )−N(In ⊗ PiH
T
i R

−1
i Hi)v(Pi),

ḡ(v(S)) := (In ⊗A+A⊗ In) v(S) + v(BQBT )− (In ⊗ SHTR−1H)v(S).

Since for any n × n matrix X, |v(X)| is the same as the Frobenius norm of X,

it always holds that ∥X∥ ≤ ∥X∥F = |v(X)|. From the fact that ∥In ⊗ X∥ =

∥X ⊗ In∥ = ∥X∥ for arbitrary matrix X, we have

|gi(v(X))| ≤ Ā|v(X)|+ |v
(
BQBT

)
|+NH̄|v(X)|2

=: M̄(|v(X)|) (5.2.15)

where Ā := ∥In⊗A+A⊗In∥, H̄ := maxi∈N
{∥∥HT

i R
−1
i Hi

∥∥}. Defining derivatives

of matrices with respect to matrices is accomplished by vectorizing the matrices, so

dF (A)/dA is considered as dv(F (A))/dv(A). Therefore, from the simple product

(Theorem 9 in [MN85]), it follows that, for all v(X) ∈ Ωn ⊂ Rn2 where Ωn is the

n-th Cartesian power of the set Ω,∥∥∥∥ ∂gi
∂v(Pi)

(v(X))

∥∥∥∥ ≤ Ā+ 2N∥X∥
∥∥HT

i R
−1
i Hi

∥∥
≤ Ā+ 2N Ω̄H̄ =: L

(5.2.16)

where Ω̄ := maxv(X)∈Ωn{|v(X)|}. Note that L increases as the compact convex set

Ωn enlarges. Now, by letting xi(t) := v(Pi(t))−v(S∗) and s(t) := v(S(t))−v(S∗),
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∀i ∈ N , the transformed system can be seen as

ẋi = gi(xi + v(S∗)) + k
N∑
j=1

αij (xj − xi)

=: fi(xi) + k

N∑
j=1

αij (xj − xi) (5.2.17a)

ṡ = ḡ(s+ v(S∗)) =: f̄(s) (5.2.17b)

with respect to the bound function M3 and the constant L in (5.2.16). We note

that the origin s = 0 is an equilibrium point for (5.2.17b). By using the result

of Theorem 5.2.1, we can show the ultimate boundedness of the error covariance

matrix.

Lemma 5.2.2. Take r > 0 such that Bn
r := {x ∈ Rn2

: |x| ≤ r} ⊂ Ωn. Under

Assumptions 5.1.1 and 3.1.2, there exists a class-K function σ and for every initial

state Pi(0) satisfying ∥Pi(0)− S∗∥ ≤
√

c/(nNc̄)r and Pi(0) > 0, ∀i ∈ N , there is

T1 ≥ 0 such that the solutions of the coupled differential Riccati equation (5.2.1b)

satisfy

∥Pi(t)− S∗∥ ≤ σ

(
1

kλ2 − L

)
, ∀t ≥ T1, ∀k > K̄, ∀i ∈ N

where c, c̄, K̄, and σ are the same as defined in Theorem 5.2.1. ♦

Remark 5.2.6. It follows from the initial condition bound,
√
c/(nNc̄)r, that the

initial condition of Pi(t) seems like it should be located near S∗. However, the

initial condition Pi(0) can be any positive definite matrix by increasing the radius

r of the ball. As a result, in order to contain the ball Bn
r , the compact convex

set Ωn may need to be enlarged, and thus the bound L of the Jacobian matrix

increases as well. Even though the minimal coupling strength K̄ increases as the

constant L increases, a sufficiently large k ensures that all Pi(t) approximately

converge to the solution S∗ for all initial conditions. ♦

Proof. In order to use the result of Theorem 5.2.1, we only need to show that

the origin s = 0 is a globally exponentially stable equilibrium point of the system
3The bound function M∗ can be obtained from (5.2.15), i.e., for a matirx X, |fi(v(X))| ≤

M̄(|v(X) + v(S∗)|) =: M(|v(X)|)
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(5.2.17b). We recall here the well-known result in [AM71] as follows.

Consider the equations[
Ẋ

Ẏ

]
=

[
−AT HTR−1H

BQBT A

][
X

Y

]
=: H

[
X

Y

]
(5.2.18)

with initial conditions X(0) = I and Y (0) = S(0) =: S0. Since S0 =
∑N

i=1 Pi(0)/N ,

we have S0 > 0. Assumption 5.1.1 and S0 > 0 ensure that the solution S(t) of

the averaged differential Riccati equation (5.2.1b) satisfies S(t) > 0 for all t ≥ 0

(Theorem 5.1 in [BJ68]). Then, the solution of (5.2.18) has the property that

X−1(t) exists and that S(t) = Y (t)X−1(t).

The matrix H is the so-called ‘Hamiltonian matrix’, and it has no imaginary

eigenvalue, given Assumption 5.1.1. It follows that if γ is an eigenvalue of H, then

so is −γ [LS95]. Thus, there exists a real Θ such that Θ−1HΘ = diag(−Γ,Γ)

where Γ is a block diagonal matrix containing the 1 × 1 blocks [γi] with γi < 0,

or 2× 2 blocks [
γi µi

−µi γi

]
with γi < 0.

Then, define new matrices X̂(t) and Ŷ (t) by

[
X̂

Ŷ

]
= Θ−1

[
X

Y

]
.

It follows that  ˙̂
X
˙̂
Y

 =

[
−Γ 0

0 Γ

][
X̂

Ŷ

]
,

and therefore, [
X̂(0)

Ŷ (t)

]
=

[
eΓt 0

0 eΓt

][
X̂(t)

Ŷ (0)

]
.
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From the coordinate transformation, we have

I = X(0) = θ11X̂(0) + θ12Ŷ (0) (5.2.19a)

S0 = Y (0) = θ21X̂(0) + θ22Ŷ (0). (5.2.19b)

We multiply (5.2.19a) by S0, and subtract this from (5.2.19b), then we have

Ŷ (0) = DX̂(0) where D := −(Θ22 − S0Θ12)
−1(Θ21 − S0Θ11), and Θij is the

(i, j)-block of Θ. Now, using S(t) = Y (t)X−1(t), we obtain

S(t) =
(
Θ21 +Θ22e

ΓtDeΓt
) (

Θ11 +Θ12e
ΓtDeΓt

)−1
.

It follows from eΓt → 0 as t → ∞, that

lim
t→∞

S(t) = Θ21Θ
−1
11 = S∗.

Note that the solution S(t) converges to S∗ at an exponential rate equal to twice

the smallest real part of any eigenvalue of −Γ and is independent of the initial

condition S0 as long as S0 > 0. In addition, the exponential convergence of the

solution S(t) can be also seen from [CWW94].

Now, we restrict our concern to the convex set of the positive definite matrix

which is the interior of the positive semidefinite cone. Then, in this convex set,

S(t) is invariant (i.e., S0 > 0 implies S(t) > 0 for all t ≥ 0), and therefore it is seen

that the origin s = v(S)−v(S∗) = 0 is a globally exponentially stable equilibrium

point of (5.2.17b) with respect to the convex set of the positive definite matrix.

Therefore, the assumptions of Theorem 5.2.1 are hold, and for any initial state

∥Pi(0)− S∗∥ ≤
√
c/(nNc̄)r, ∀i ∈ N , it follows that, ∀t ≥ T1, ∀i ∈ N ,

∥Pi(t)− S∗∥ ≤ |v(Pi(t))− v(S∗)| = |xi(t)|

≤ σ

(
1

kλ2 − L

)
.

Lemma 5.2.2 guarantees that there exist a class-K function σ and T1 ≥ 0 such
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that for any ϵ/2 > 0,

∥Pi(t)− S∗∥ ≤ σ

(
1

kλ2 − L

)
≤ ϵ

2
, ∀t ≥ T1, ∀k > K̄, ∀i ∈ N .

Moreover, it follows from the exponential convergence in Lemma 5.2.2 that there

exists T2 ≥ 0 such that

∥S(t)− S∗∥ ≤ ϵ

2
, ∀t ≥ T2.

Thus, combining these two results by triangular inequality with T := max{T1, T2},
for any ϵ > 0, there is a sufficiently large k such that

∥Pi(t)− S(t)∥ ≤ ϵ, ∀t ≥ T, ∀i ∈ N .

Now, let x̃i = x̂i − xs be the error of i-th filter with respect to xs and x̃s =

xs − x be the estimation error of the averaged O-DKBF. From the fact that

x̂j − x̂i = x̃j − x̃i and thus, by letting ei := col(x̃i, x̃s), the error dynamics of

(5.2.1a) and (5.2.2a) can be written as

ėi = Gi(t)ei + γ
N∑
j=1

αij(ej − ei) (5.2.20)

where

Gi(t) :=

[
A−NPi(t)H

T
i R

−1
i Hi −NPi(t)H

T
i R

−1
i Hi + S(t)HTR−1H

0 A− S(t)HTR−1H

]
.

By letting e := col(e1, . . . , eN ), the group dynamics (5.2.20) can be written as4

ė = Ge− γ(L ⊗ I2n)e (5.2.21)

where G := diag (G1, . . . , GN ). It follows from the definitions of x̃i and x̃s that

the i-th estimation error, ẽi := x̂i − x, can be converged to zero (without noise),

if x̃i(t) → 0 and x̃s(t) → 0 as t → ∞.

4We dropped the time index of the time-varying matrices for simplicity of notation.
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Now, we are ready to apply this result to the main theorem of this chapter

with the fact that by the exponential stability result of Lemma 5.1.1(b), there

exist positive matrices Φ(t) and Ψ(t) such that

0 < η1In ≤ Φ(t) ≤ η2In, 0 < η3In ≤ Ψ(t), ∀t ≥ 0,

which satisfies the differential matrix equality,

−Φ̇(t) = Φ(t)
(
A− S(t)HTR−1H

)
+
(
A− S(t)HTR−1H

)T
Φ(t) + Ψ(t), ∀t ≥ 0,

(5.2.22)

where η1, η2 and η3 are positive constants.

The following theorem shows that with strong coupling, the estimates of the

O-DKBF (5.2.1) asymptotically converge to the state of the plant without noise.

Theorem 5.2.3. (Stability analysis). Consider a plant system (5.1.1) with sens-

ing model (5.1.2) and the O-DKBF (5.2.1). Suppose that every initial state Pi(0)

of (5.2.1b) satisfies the assumptions of Lemma 5.2.2. Under Assumptions 5.1.1

and 3.1.2, the origin ẽi = 0, ∀i ∈ N of the estimation error dynamics (with-

out noise) ẽi = x̂i − x, ∀i ∈ N , is globally asymptotically stable if the coupling

strengths satisfy that

γ >
Ḡ

λ2
+

ϵḠ

2

(
2η2 +

1

λ2

)
k > max

{
K̄,

(
σ̄−1

(
η3

16η2NH̄

))−1
} (5.2.23)

where Ḡ := maxt≥0{∥G(t)∥}, ϵ > (Ḡ/η3) (2η2 + 1/λ2), σ̄ (1/k) := σ (1/(kλ2 − L)),

and K̄, H̄, and σ are the same as defined in Theorem 5.2.1 and Lemma 5.2.2.

♦

Remark 5.2.7. As long as the scale and the structure of the network are fixed,

the thresholds of the coupling strengths in (5.2.23) are fixed, too. Thus, with γ

and k sufficiently large, it can be obtained that all x̂i(t) → x(t) as t → ∞. ♦
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Proof. By the coordinate transformation in (2.2.1)

ξ =

[
ξ1

ξ̃

]
= (W ⊗ I2n)e =

[
1
N 1TN ⊗ I2n

RT ⊗ I2n

]
e

where ξ̃ = col(ξ2, . . . , ξN ), the group dynamics (5.2.21) is transformed into

ξ̇1 = (I2 ⊗A− SHTR−1H)ξ1 +

[
−∆ ∆

0 0

]
ξ1 +

(
1

N
1TN ⊗ I2n

)
G(Q⊗ I2n)ξ̃

(5.2.24a)
˙̃
ξ = −γ(Λ⊗ I2n)ξ̃ + (RT ⊗ I2n)G(1N ⊗ I2n)ξ1 + (RT ⊗ I2n)G(Q⊗ I2n)ξ̃

(5.2.24b)

where ∆ :=
∑N

i=1(Pi − S)HT
i R

−1
i Hi. Now, we use

V (ξ1, ξ̃) = ξT1 (I2 ⊗ Φ)ξ1 +
1

2
ξ̃T (Λ−1 ⊗ I2n)ξ̃

as a Lyapunov function. By calculating V̇ , It is seen by (5.2.22) that

V̇ = ξT1 (I2 ⊗ Φ̇)ξ1 + ξ̇T1 (I2 ⊗ Φ)ξ1 + ξT1 (I2 ⊗ Φ)ξ̇1 +
1

2
˙̃
ξT (Λ−1 ⊗ I2n)ξ̃

+
1

2
ξ̃T (Λ−1 ⊗ I2n)

˙̃
ξ

= −ξT1 (I2 ⊗Ψ)ξ1 + 2ξT1 (I2 ⊗ Φ)

[
−∆ ∆

0 0

]
ξ1

+ 2ξT1 (I2 ⊗ Φ)

(
1

N
1TN ⊗ I2n

)
G(Q⊗ I2n)ξ̃

− γξ̃T ξ̃ + ξ̃T (Λ−1RT ⊗ I2n)G(1N ⊗ I2n)ξ1 + ξ̃T (Λ−1RT ⊗ I2n)G(Q⊗ I2n)ξ̃.

The time T1 and the class-K function σ̄ can be found in Lemma 5.2.2, and also

from the exponential convergent property in Lemma 5.2.2, there exists T2 ≥ 0

such that

∥S(t)− S∗∥ ≤ η3
16Nη2H̄

, ∀t ≥ T2.
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Hence, it follows with k > K̄ that

∥Pi(t)− S(t)∥ ≤ ∥Pi(t)− S∗∥+ ∥S∗ − S(t)∥

≤ σ̄

(
1

k

)
+

η3
16Nη2H̄

, ∀t ≥ T = max{T1, T2}.
(5.2.25)

By Young’s inequality and (5.2.25), we have

V̇ ≤ −ξT1 (I2 ⊗Ψ)ξ1 + 4∥Φ∥
N∑
i=1

∥Pi − S∥∥HT
i R

−1
i Hi∥|ξ1|2

+
2

N
Ḡ∥Φ∥

∥∥1TN∥∥ ∥Q∥|ξ̃||ξ1| − γ|ξ̃|2 + Ḡ∥Λ−1∥∥RT ∥|1N ||ξ1||ξ̃|

+ Ḡ∥Λ−1∥∥RT ∥∥Q∥|ξ̃|2

≤ −
{
3η3
4

− 4Nη2H̄σ̄

(
1

k

)
− Ḡ

2ϵ

(
2η2 +

1

λ2

)}
|ξ1|2

−
{
γ − Ḡ

λ2
− ϵḠ

2

(
2η2 +

1

λ2

)}
|ξ̃|2, ∀t ≥ T.

Choosing

γ >
Ḡ

λ2
+

ϵḠ

2

(
2η2 +

1

λ2

)
,

k > max

{
K̄,

(
σ̄−1

(
η3

16η2NH̄

))−1
}
,

and ϵ > (Ḡ/η3) (2η2 + 1/λ2) ensure that V̇ (ξ1, ξ̃) is negative definite. Hence, for

a fixed T ≥ 0, there exist β1 > 0 and µ1 > 0 such that

|ξ(t)| ≤ β1|ξ(T )|e−µ1(t−T ), ∀t ≥ T ≥ 0. (5.2.26)

It means that for each ϵ1 > 0, there is δ1(ϵ1) > 0 such that

|ξ(T )| < δ1(ϵ1) ⇒ |ξ(t)| < ϵ1, ∀t ≥ T ≥ 0. (5.2.27)

Let us consider the transformed system (5.2.24) as ξ̇ = Ã(t)ξ. Lemma 5.1.1 and

Lemma 5.2.2 ensure that Pi(t) and S(t) are bounded for all i ∈ N , t ≥ 0, and it

follows that there exists ζ ≥ 0 such that ∥Ã(t)∥ ≤ ζ, ∀t ≥ 0. Gronwall-Bellman
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inequality to the function |ξ(t)| results in

|ξ(t)| ≤ |ξ(0)|eζt. (5.2.28)

From the inequalities (5.2.26) and (5.2.28), we obtain that

|ξ(0)| < δ1(ϵ1)e
−ζT ⇒ |ξ(T )| < δ1(ϵ1), ∀t ≥ T ≥ 0 (5.2.29)

Thus, by (5.2.29) and (5.2.27), the equilibrium point ξ = 0 is stable. Since for

any initial condition, |ξ(T )| is bounded by |ξ(0)|eζT , it follows from (5.2.26) that

ξ(t) → 0 as t → ∞. Therefore, we conclude that the origin of (5.2.20) is globally

asymptotically stable. Since e = [1N ⊗ In, Q⊗ In]ξ, due to the fact that ξ(t) → 0

as t → ∞ implies that ei(t) → 0, ∀i ∈ N as t → ∞. Finally, x̃i → 0, ∀i ∈ N and

x̃s → 0 as t → ∞ ensure that x̂i(t) → x(t), ∀i ∈ N as t → ∞.

5.2.3 Flexible Sensor Network

Until now, we proposed the O-DKBF (5.2.1) due to achieve optimality of the

CKBF (5.1.3). However, the proposed O-DKBF is not a completely distributed

one because the information of the number of nodes N is required. In Theorem

5.2.3, it also be seen that the thresholds, which γ and k should be larger than, are

dependent of the number of nodes as well. In this circumstance, it is difficult to

deal with the expansion and reduction of the nodes. However, the thresholds can

be simply large enough, and so, if one knows the maximum number of nodes, one

can compute γ and k that work with any number of nodes below the maximum.

So, we then present another type of flexible distributed Kalman-Bucy filter (F-

DKBF) in this section; that is,

˙̂xi = Ax̂i + PiH
T
i R

−1
i (zi −Hix̂i) + γ

N∑
j=1

αij(x̂j − x̂i) (5.2.30a)

Ṗi = APi + PiA
T +BQBT − PiH

T
i R

−1
i HiPi + k

N∑
j=1

αij(Pj − Pi). (5.2.30b)
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Note that the proposed filter (5.2.30) is no more dependent of the number of node

N . The averaged distributed Kalman-Bucy filter of (5.2.30) can be obtained as

ẋs = Axs +
1

N
SHTR−1(z −Hxs) (5.2.31a)

Ṡ = AS + SAT +BQBT − 1

N
SHTR−1HS (5.2.31b)

with the initial conditions xs(0) =
∑N

i=1 x̂i(0)/N and S(0) =
∑N

i=1 Pi(0)/N .

Remark 5.2.8. (Suboptimality problem). Since the averaged F-DKBF (5.2.31)

is scaled from R to NR (or Ri to NRi for all i ∈ N ), the error covariance

matrix S(t) of (5.2.31b) does not converge to that of the CKBF (5.1.3). Instead,

it converges to the error covariance of (5.1.3) with the noise covariance matrix

NR, i.e., S(t) → S∗ as t → ∞ where S∗ > 0 is the solution to the algebraic

Riccati equation of (5.2.31b). Therefore, even if Pi(t) → S(t) and x̂i(t) → xs(t)

as t → ∞ for all i ∈ N , the proposed F-DKBF (5.2.30) cannot achieve optimality

but suboptimality. ♦

As was formulated in Section 5.2.2, a similar approach is used in this section.

It follows from the vectorizations of (5.2.30b) and (5.2.31b) that

v(Ṗi) = hi(v(Pi)) + k

N∑
j=1

αij (v(Pj)− v(Pi)) (5.2.32a)

v(Ṡ) = h̄(v(S)) (5.2.32b)

where

hi(v(Pi)) := (In ⊗A+A⊗ In) v(Pi) + v(BQBT )− (In ⊗ PiH
T
i R

−1
i Hi)v(Pi),

h̄(v(S)) := (In ⊗A+A⊗ In) v(S) + v(BQBT )−
(
In ⊗ 1

N
SHTR−1H

)
v(S).

By letting xi(t) := v(Pi(t)) − v(S∗) and s(t) := v(S(t)) − v(S∗), ∀i ∈ N , the
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transformed system (5.2.32) can be rewritten as

ẋi = hi(xi + v(S∗)) + k
N∑
j=1

αij (xj − xi)

=: fi(xi) + k

N∑
j=1

αij (xj − xi) (5.2.33a)

ṡ = h̄(s+ v(S∗)) =: f̄(s) (5.2.33b)

with respect to the bound function M and the constant L (which are obtained

from (5.2.15) and (5.2.16)) such that

|fi(v(X))| ≤ Ā|v(X) + v(S∗)|+ |v
(
BQBT

)
|+ H̄|v(X) + v(S∗)|2

=: M(|v(X)|),∥∥∥∥ ∂fi
∂v(Pi)

(v(X))

∥∥∥∥ ≤ Ā+ 2∥X∥
∥∥HT

i R
−1
i Hi

∥∥ ≤ Ā+ 2Ω̄H̄

=: L, ∀v(X) ∈ Ωn ⊂ Rn2

where Ω̄ = maxv(X)∈Ωn{|v(X)|}. Now, by letting x̃i = x̂i−xs and ei := col(x̃i, x̃s),

the error dynamics of can be written as

ėi = Fiei + γ
N∑
j=1

αij(ej − ei) (5.2.34)

where

Fi :=

[
A− PiH

T
i R

−1
i Hi −Pi(t)H

T
i R

−1
i Hi +

1
N SHTR−1H

0 A− 1
N SHTR−1H

]
.

By letting e := col(e1, . . . , eN ), the group dynamics can be written as

ė = Fe− γ(L ⊗ I2n)e (5.2.35)

where F := diag (F1, . . . , FN ).

Suboptimal state estimation with the F-DKBF (5.2.30) is shown in the fol-
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lowing corollary.

Corollary 5.2.4. Consider a plant system (5.1.1) with sensing model (5.1.2)

and the F-DKBF (5.2.30). Suppose that every initial state Pi(0) of (5.2.30b)

satisfies the assumptions of Lemma 5.2.2. Under Assumptions 5.1.1 and 3.1.2,

the origin ẽi = 0, ∀i ∈ N of the estimation error dynamics (without noise)

ẽi = x̂i − x, ∀i ∈ N , is globally asymptotically stable if the coupling strengths

satisfy that

γ >
F̄

λ2
+

ϵF̄

2

(
2η2 +

1

λ2

)
k > max

{
K̄,

(
σ̄−1

(
η3

16η2H̄

))−1
} (5.2.36)

where F̄ := maxt≥0{∥F (t)∥}, and K̄, H̄, and σ̄ are the same as defined in Theo-

rems 5.2.1 and 5.2.3. ♦

The proof of Corollary 1 directly follows from Lemma 5.2.2 and Theorem 5.2.3

with R and Ri replaced with NR and NRi, respectively.

Remark 5.2.9. (Design of flexible network). In (5.2.36), the thresholds of the

coupling gains γ and k are dependent on λ2. As mentioned in Section 2.2, it

depends both on the topology of the graph and the number N of the nodes.

For example, for the path graph with unit weights, increasing N decreases λ2

(because λ2 = 2(1 − cos(π/N)) in Table 2.1). It means that γ and k may need

to be increased when N is increased. In order to deal with the expansion and

reduction of scale, we consider the maximum number of nodes. If the number

of nodes is bounded above by N∗, then we can consider the worst scenario of

the network (path topology with N∗ nodes). Under the assumption that the rest

parameters are bounded with respect to the worst network and the upper bounds

are known, the thresholds can be computed with respect to the worst network.

Hence, γ and k can work with any numbers of nodes below N∗ and any topology

which is connected. ♦
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5.3 Simulation Results

In this section, we recall the same sensor network model in Example 5.1.2. Thus,

we reconsider the plant system with process noise as

ẋ =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

x+


0

1

0

1

w, w ∼ N(0, 1),

and the initial condition x(0) = x0. The group of N sensors can partially observe

the states of the target with measurement noise; that is,

zi = Hix+ vi, vi ∼ N(0, 1)

where

Hi =



[1 0 0 0], 1 ≤ i ≤ N/4,

[0 1 0 0], N/4 + 1 ≤ i ≤ N/2,

[0 0 1 0], N/2 + 1 ≤ i ≤ 3N/4,

[0 0 0 1], 3N/4 + 1 ≤ i ≤ N.

Note that the plant is controllable and not observable by individual sensors, but

observable by all the sensors. The initial condition of the target is given by x0 =

col(0, 1, 0, 1), and that of the distributed Kalman-Bucy filter x̂i(0) are randomly

determined5. Moreover, the initial conditions of the coupled differential Riccati

equation are any positive definite matrices; that is Pi(0) > 0, ∀i ∈ N . Noise

covariance matrix are the identity matrices, that is, Q,Ri = 1 for all i ∈ N in

this case.

5In Example 5.1.2, it is observed that the KCF in [OS07] cannot deal with the randomly
determined initial values
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Figure 5.5: Trajectories of 4-sensor errors between vectorized error covariance
matrices Pi(t) of O-DKBF and the vectorized solution S∗ to the
algebraic Riccati equation of CKBF. v(Pi(t))−v(S∗) are depicted
as solid curves.

5.3.1 Optimal Recovery

We assume that the sensors (N = 12) are interconnected by the ring topology

network. In order to evaluate the performance of the proposed algorithms, we

compare the estimation error of the state for the following three kinds of Kalman-

Bucy filters: i) CKBF, ii) O-DKBF, and iii) F-DKBF.

The effect of strong coupling k is seen rather clearly by comparing Figure

5.5(a) with 5.5(b) and Figure 5.6(a) with 5.6(b), respectively. It is observed that

the strong coupling k makes the entries of the error covariance matrix Pi(t) of

O-DKBF in (5.2.1) close to the solution S∗ of the algebraic Riccati equation of

CKBF and the level of estimation error of O-DKBF become lower. Thus, it can be

seen from the simulation that O-DKBF can achieve the optimality of the CKBF

when k → ∞. In Figure 5.6, it is also observed that F-DKBF yields a larger

estimation error than O-DKBF because the error covariance matrix of F-DKBF

cannot approximately converge to that of CKBF even when k → ∞.

5.3.2 Various Network Topologies

In this section, we simulate the case of various network topologies including ex-

pansion and reduction of scale. Here, we assume that the maximum number of
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Figure 5.6: A comparison of filter 3’s absolute estimation error of the first
state, |x1(t)−x̂13(t)|, between three different Kalman-Bucy filters.
Estimation error of CKBF is depicted as black thick dashed curve.
O-DKBF and F-DKBF are given as the blue thin solid curve and
the red thin dashed curve, respectively.

nodes is N∗ = 12. As mentioned in Remark 5.2.9, the worst network with respect

to N∗ is a path topology with 12 nodes. In this case, the algebraic connectivity

of the graph is λ2 = 2(1− cos(π/12)), and thus the thresholds of γ and k can be

determined with respect to λ2 and N∗. To see the effect of flexible sensor network,

we compare 4 cases of different communication networks with F-DKBF: i) path

topology with N = 12, ii) path topology with N = 4, iii) all-to-all topology with

N = 12, and iv) all-to-all topology with N = 4. We note that path and all-to-all

topologies are extreme cases of connected network.

It is observed from Figure 5.7(a) that even though we consider the worst

network topology, the proposed F-DKBF can estimate the states of the plant

with γ = 10 and k = 50. The result of expansion and reduction of scale is seen

by comparing Figure 5.7(a) with (b), and (c) with (d), respectively. Furthermore,

by comparing (a) with (c), and (b) with (d), it is seen that the F-DKBF is robust

against various network topologies which are connected.
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Figure 5.7: Trajectories x̂i(t) of N -sensor network with F-DKBF which have
coupling strength γ = 10 and k = 50 are depicted as solid curves,
and the trajectory x(t) of plant system is given as the black
dashed curve.





Chapter 6

Conclusions

6.1 Summary and Discussion

We started this dissertation with the observation that the consensus and syn-

chronization are everywhere and the robustness is a very significant property in

consensus and synchronization problems. In view of this, the objectives of this

dissertation was to contribute to an improved analysis theoretic understanding of

robustness underlying consensus and synchronization.

The problems of consensus and synchronization are dealt with the diffusive

couplings between agents which is the phenomena occurring consecutively in na-

ture. In order to effectively handle the diffusive coupling, some definitions and

results of algebraic graph theory are presented in Chapter 2. By the proposed

transformation, we can see that the solvability of the consensus and synchroniza-

tion problems result in the stabilizability problem of certain (N − 1) subsystems.

Throughout this dissertation, we have considered the robustness of multi-

agent systems, which has inherent heterogeneities from the nature. Averaged

dynamics is the most important notion to deal with heterogeneous multi-agent

systems. For this reason, the averaged dynamics constituted the main theme in

this dissertation. In Chapter 3, the group behavior of the heterogeneous multi-

agent systems can be represented by the averaged dynamics under strong coupling

condition. Moreover, the averaging effect in the averaged dynamics ensures that

a large number of agent enhances the robustness of the group behavior against

randomly determined variations, in Chapter 4. As stated in Chapter 5, distributed

105



106 Chap. 6. Conclusions

sensor network is the one of the most important application area to use the concept

of the averaged dynamics. By using this, we recovered the optimality of the

centralized Kalman-Bucy filter in distributed sense.

In Chapter 3, we found out that strong coupling is the one of two main in-

gredients in robustness of diffusively connected multi-agent systems against het-

erogeneities. In particular, all trajectories of the agents converge (approximately)

to that of averaged dynamics, and thus the error are ultimately bounded by the

class-K function of coupling gain k. Another ingredient in robustness against

the heterogeneities from the random variations was a large number of agents. In

Chapter 4, we focused on the robustness of the averaged dynamics, and therefore

we presented the notion of expected averaged dynamics. Finally, we showed that

strong coupling and a large number of agents both enhance robustness of the

networked group behavior.

A framework for achieving optimal filtering of distributed sensor network has

been proposed in Chapter 5, when the sensors can obtain the partial state (not

observable) of the plant and exchange the estimations through the network. In

order to achieve optimal estimation, we presented the design and analysis of the

distributed Kalman-Bucy filter and proved that strong coupling enforces the tra-

jectories of each error covariance matrix tend to that of the centralized Kalman-

Bucy filter by considering the averaged distributed Kalman-Bucy filter. Flexible

sensor network was implemented by completely distributed Kalman-Bucy filter

which can achieve the suboptimality.

Throughout this dissertation, we considered a general nonautonomous multi-

agent system model which has Lipschitz nonlinearity. In Chapters 3 and 4, the

function fi(t, xi) of the individual system is globally Lipschitz in xi, and locally

Lipschitz nonlinearity was dealt with in Chapter 5. Therefore, LTI and LTV with

bounded system matrix are the special cases of this system.

6.2 Further Issues

Some further issues regarding the topics of this dissertation are listed as follows.

i) One of the main assumptions of this dissertation is that the communication
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network is constrained to be fixed, undirected, and unweighted. Researches

on the general network model are further studies, including time-varying, di-

rected, and weighted graph model [Kim12, WSA11], and so on. In particu-

lar, if we consider the concept of uniformly connectedness [Mor05] of a time-

varying graph, then we can deal with the situation when the agents leave

and join the group. In this case, the averaged dynamics cannot represent the

group behavior any more, since the collective behavior is determined by the

network structure, e.g., leader-follow topology, weighted averaged consensus,

and so on.

ii) The other main assumption is the stability of the averaged dynamics. In

order to show that the trajectories of all agents converge approximately to

that of averaged dynamics, the global stability condition, (e.g, contraction

property, or negative definiteness of the Jacobian matrix, etc), was required

in this dissertation. However, some oscillator model, including Van der Pol

oscillator, cannot satisfy this global stability assumption. In [WS05], semi-

contraction property has been proposed, and thus the authors proved that

two coupled identical Van der Pol oscillators are synchronized under strong

coupling. It may be very interesting to carry this idea over to stability of the

averaged dynamics. Another extension of the assumption in averaged dy-

namics may concern the incremental properties such as incremental stability

[Ang02], incremental dissipativity [LHZ14], and so on.

iii) In Chapter 4, we considered the deterministic system which cannot guarantee

the stochastic variations, e.g., white Gaussian noise. It means that once the

random variables are drawn (or, realized) when the system is created, it

remains deterministic. Thus, it is natural to expand the system dynamics

and consider stochastic differential equation.

iv) Throughout this dissertation, state diffusive coupling is considered. How-

ever, it might be interesting to ask what are the distinctive features of dif-

ferent coupling mechanisms and how do these features affect the results pre-

sented in this dissertation. Usually, it is difficult to achieve the consensus

and synchronization via output diffusive coupling [SSB09, KSS11, Wie10].
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They presented diffusive couplings extended by dynamic compensators in or-

der to overcome various limitations inherent to static diffusive couplings, and

thereby allowing for increased system and topological complexity of the net-

work.

v) In Chapter 5, the proposed distributed Kalman-Bucy filter causes more com-

munication bandwidth than Kalman-Consensus filter in [OS07], because it

needs the diffusive coupling of the error covariance matrix. From the vector-

ization of the error covariance matrix, the additional amount of information

exchanged between two nodes is 2n2. In fact, for a symmetric matrix the

vectorized vector contains more information than is strictly necessary. In

this case, half-vectorization is sometimes more useful than the vectorization.

Since the error covariance matrix is symmetric, the additional amount of in-

formation is n(n+ 1) by half-vectorization.



APPENDIX

A.1 Ultimate boundedness lemma in Section 3.3.

Claim: Let

ρκ(x, y) = −

[
|x|
|y|

]T [
p a

a κ

][
|x|
|y|

]
+ θ(t)|y|

with x ∈ Rl, y ∈ Rm, p > 0, θ(t) ≥ 0, and a is a constant. Then, there are a

class-K function r and a positive number c such that

ρκ(x, y) ≤ −c(|x|2 + |y|2) if |x|2 + |y|2 > θ2(t)r(1/κ)

for all κ > 3a2/p.

Proof. With κ > 3a2/p, note that

ρκ(x, y) +
p

2
|x|2 + a2

p
|y|2

= −p|x|2 − 2a|x||y| − κ|y|2 + θ(t)|y|+ p

2
|x|2 + a2

p
|y|2

= −p

2

(
|x|+ 2a

p
|y|
)2

−
(
κ− 3a2

p

)
|y|2 + θ(t)|y|

= −p

2
X2 − δ(κ)|y|2 + θ(t)|y| = −δ(κ)

(
p

2δ(κ)
X2 + |y|2

)
+ θ(t)|y|

≤ −δ(κ)|Yκ|2 + θ(t)|Yκ|

where X := |x| + (2a/p)|y|, δ(κ) := κ − 3a2/p, and Yκ := [
√

p/2δ(κ)X, |y|]T .

The last inequality holds because |Yκ| ≥ |y|. Therefore, it follows that if |Yκ| ≥
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θ(t)/δ(κ), then ρk(x, y) ≤ −c(|x|2 + |y|2) with c := min{p/2, a2/p}. Now, it is

seen that

|x|2 + |y|2 =
(
X − 2a

p
|y|
)2

+ |y|2 ≤ 2X2 +
8a2

p2
|y|2 + |y|2

≤ max

{
4δ(κ)

p
,
8a2

p2
+ 1

}(
p

2δ(κ)
X2 + |y|2

)
=: η(κ)|Yκ|2.

With η(κ)/δ2(κ) being monotonically decreasing to zero as κ → ∞ for κ > 3a2/p,

define a class-K function r : [0, p/3a2) → [0,∞) as follows:

r(χ) =

0, χ = 0

η(1/χ)
δ2(1/χ)

, 0 < χ < p
3a2

=


0 χ = 0

4χ
p−3a2χ

, 0 < χ ≤ 4p
p2+20a2

(p2+8a2)χ2

(p−3a2χ)2
, 4p

p2+20a2
< χ < p

3a2

in which, if a = 0, the number p/3a2 is considered as ∞.

Therefore, if |x|2 + |y|2 > θ2(t)r(1/κ), then

|Yκ|2 ≥
1

η(κ)

(
|x|2 + |y|2

)
>

θ2(t)

η(κ)
r

(
1

κ

)
≥ θ2(t)

η(κ)

η(κ)

δ2(κ)
=

(
θ(t)

δ(κ)

)2

which completes the proof.
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국문초록

Robust Consensus and Synchronization in
Heterogeneous Multi-Agent Systems

이종 다개체 시스템의 상태 일치 및 동기화에 대한 강인성 연구

상태 일치 (consensus) 또는 동기화 (synchronization) 모두 집단 내 각 개체들

의 의견이 어떤 관점에서 모두 합의를 보이는 것과 관련이 있고 이 현상들은 시스

템들이상호작용하는생물물리학이나사회과학,공학분야와같은여러집단에서

종종 발견이 된다. 새들이 무리를 지어 움직이는 현상이나 물고기들의 군집 유영,

벌들의 무리 현상들은 자연에서 나타나는 매우 흥미로운 현상들이다. 때때로 상태

일치이론은사회현상을설명하는좋은도구로쓰이게되고특히공학적인관점에

서 보면 상태 일치와 동기화연구는 매우 많은 응용분야와 관련이 있다. 예를 들어

센서네트워크,무인자동차,군집로봇제어,이동통신시스템등과같은분야들이

좋은 예시가 될 수 있다.

특히 생물 물리학 분야에서는 상호 연결된 시스템에서 상태 일치와 동기화가

외부로부터의 교란 (perturbation)에 대해서 강인성을 보장해 준다는 내용은 잘

알려진 사실이고 이는 여러 연구들의 실험과 시뮬레이션으로부터 입증되어 왔다.

따라서 본 논문에서는 다개체 시스템 (multi-agent systems) 의 강인한 상태 일치

와 동기화에 대한 내용을 전개한다. 여기서 다개체 시스템이란 다수의 이종 동적

시스템들이 네트워크 통신을 통해 특정 정보를 교환하며 상호작용하는 시스템을

말한다. 각 개체들의 상호 연결이 정해진 특정 네트워크에서 상태 일치와 동기화

문제를다루게되는데여기서특정네트워크라함은그래프로모델이된통신구조

와 개별 개체들의 동역학 특성이 비선형 상미분 방정식으로 이루어진 네트워크를

지칭한다.

본 논문은 크게 두 가지 연구로 나눌 수 있는데 첫 번째 연구는 동기화가 어

떤 방식으로 상호 연결된 다개체 시스템을 이종성 (heterogeneity) 과 임의의 변이

(random variation)로부터강인하게지켜주는지에대해서다루게될것이다. 사실,

강인성은 동기화 자체로부터가 아니라 동기화를 이끄는 두 가지 특정 요인에 의한

것으로부터 나온다는 사실을 강조할 필요가 있다. 즉, “많은 수”의 개체들이 “상호

연결” 된 것이 중요하다는 것이다. 따라서 이를 수학적으로 증명하고 그 내용은
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다음과같다. (가)개체들사이의이종성이매우큰상황에서도각개체들의궤적이

상호연결강도가클수록다른개체들과가까워지게되고실용적동기화 (practical

synchronization)들 달성하게 된다. (나) 개체들의 수가 많으면 많을수록 달성된

동기화 현상이 각 개체들의 변이들에 대해서 영향을 덜 받게 된다.

일반적으로이종네트워크에서의상태일치와동기화문제들은단일개체를제

어할 때보다 어려운 본질적인 복잡성을 내포하고 있다. 가령 전체 개체수의 많고

적음으로 인한 복잡도, 개별 시스템 동역학의 복잡성, 다수 시스템들로 이루어진

네트워크 위상 구조의 복잡도 등이 존재하게 된다. 따라서 본 논문에서는 이종

다는체시스템의군집행동을잘이해할수있는평균동역학 (averaged dynamics)

개념을 새로이 제시한다.

본 논문의 두 번째 연구에서는 강인한 상태 일치와 동기화의 응용 연구로서

최적의 분산 센서 네트워크 구현을 위한 설계 방법을 제시한다. 비록 중앙 집중형

칼만-부시 필터 (centralized Kalman-Bucy filter) 가 최적의 필터라는 것이 최적

제어 이론 (optimal control theory) 연구들에서 잘 알려져 있지만, 분산 센서 네트

워크에서는 분산 기법을 이용하여 대상 시스템의 상태를 추정하는 것이 본질적인

문제이기 때문에 이는 효율적이지 않게 된다. 분산형 칼만-부시 필터 (distribued

Kalman-Bucy filter)의설계는기존의강인한상태일치와동기화문제를달성하는

것과 같은 맥락에 있기 때문에 본 논문에서는 중앙 집중형 칼만-부시 필터의 최적

성을 분산 기법을 이용하여 달성하기 위한 평균 분산형 칼만-부시 필터 (averaged

distributed Kalman-Bucy filter)개념을제시하고제안한알고리즘이강한상호연

결 하에서는 실제로 각 개체의 오차 공분산 행렬 (error covariance matrix)이 중앙

집중형 칼만-부시 필터의 오차 공분산 행렬로 근접하게 가까워진다는 것을 보이게

된다. 따라서 분산 기법을 통해 중앙 집중형 칼만-부시 필터의 최적성을 복구 할

수 있게 된다. 또한 센서 네트워크 크기를 늘이고 줄일 수 있는 유연한 분산형 칼

만-부시 필터 (flexible distributed Kalman-Bucy filter)를 제시하고 시뮬레이션을

통해 제시한 설계 기법들의 성능을 검증한다.

주요어 : 다개체 시스템, 상태 일치, 동기화, 강인성, 평균 동역학, 분산 센서 네트

워크, 분산형 칼만-부시 필터

학 번 : 2010–20777
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