creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

of
%

T

-l-l
>
1%
1o
rir
r4d

ROBUST CONSENSUS AND
SYNCHRONIZATION IN HETEROGENEOUS
MULTI-AGENT SYSTEMS
o]F TtlAl AXadle] e x| W 578l tig AN
St

2016 8¢



2 AT e

SECHRIL hATIOMAL LIMIVERSTY



ABSTRACT

RoBUST CONSENSUS AND SYNCHRONIZATION IN HETEROGENEOUS

MULTI-AGENT SYSTEMS

BY

JAEYONG KIM

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

August 2016

Consensus and synchronization both refer to the property that individuals in a
group reach agreement in some sense, and the phenomena in large communities of
interacting systems appear in various areas of biology, social sciences, engineering,
and so on. Flocking of birds, schooling of fish, and swarming of bees are fascinat-
ing phenomena to be observed in nature. Sometimes, the consensus theory is a
useful tool for understanding social phenomena. In engineering world, consensus
and synchronization are relevant in an extremely wide range of applications from
various disciplines including sensor networks, unmanned vehicles, robot coopera-
tion teams, mobile communication systems, and so on.

In particular, it is a common belief in biophysics and systems biology that
synchronization makes the behavior of an interconnected system robust to per-
turbation, which has often been verified in simulations and experiments. Moti-
vated by this, the dissertation addresses the robust consensus and synchroniza-
tion problems of multi-agent systems. A multi-agent system consists of several
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non-identical individuals, each of which has the ability that can interact with its
neighboring systems. We consider consensus and synchronization in networks of
individual dynamical systems interconnected according to a specific communica-
tion topology, where the individual systems are described by nonlinear ordinary

differential equations and the communication topology is modeled by a graph.

We devote the first part of this dissertation to explain how synchronization
may help protect interconnected multi-agent systems from heterogeneities in in-
dividuals and randomly determined variations. In fact, it is emphasized that the
robustness comes, rather than from the synchronization itself, from two specific
components that lead to synchronization; that is, “multi”-agents and “coupling”
among them. In particular, it is mathematically proved that (i) the solutions of
individual agents get closer to each other as the coupling gain gets larger, so that
practical synchronization is achieved, even under large heterogeneity among the
agents, and (ii) as the number of agents becomes larger, the achieved synchro-

nization becomes less affected by the variations in the individual agents.

In general, the consensus and synchronization problems of the heterogeneous
network systems are possessed of intrinsic complexities compared to controlling a
single system. The complexities arise from, for example, the number of systems
involved, system dynamics, and topological structure of the network. Thus, a
new notion of averaged dynamics which is a useful tool for understanding the

collective behavior of the heterogeneous multi-agent systems is introduced.

In the second part of the dissertation, we propose a design method to imple-
ment optimal distributed sensor network as an application of the robust consen-
sus and synchronization. Even though centralized Kalman-Bucy filter is an opti-
mal filter, it is not useful since a fundamental problem in distributed sensor net-
work is to achieve estimation of target by using distributed algorithms. Since the
underlying philosophy for designing distributed Kalman-Bucy filter is similar to
the robust consensus and synchronization, we introduce the averaged distributed
Kalman-Bucy filter which is the average of all distributed Kalman-Bucy filters’
dynamics, so as to recover the optimality of centralized Kalman-Bucy filter. The
proposed algorithm finds out that the strong coupling makes the error covariance
matrix approximately (but arbitrarily closely) converge to that of the centralized
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Kalman-Bucy filter and the optimality can be recovered. Moreover, we propose
a flexible distributed Kalman-Bucy filter so as to expand and reduce the scale of
the sensor network. Numerical simulations demonstrate the performance of the

proposed scheme.

Keywords: multi-agent systems, consensus, synchronization, robustness, aver-
aged dynamics, distributed sensor network, distributed Kalman-Bucy filter

Student Number: 201020777
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Symbols and Acronyms

Symbols

OmX’I’L

A—l

AT

field of real numbers

non—negative real numbers

real Euclidean space of dimension n

space of m X n matrices with real entries

the circle

real part of the complex number s
continuously differentiable

field of complex numbers

space of m X n matrices with complex entries
closed right-half complex plane; i.e., Csg|JC—y
for all

n X n identity matrix (subscript n is omitted when there is
no confusion.)

m X n zero matrix (subscript m x n is omitted when there
is no confusion.)

inverse of the square matrix A

transpose of the matrix A
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diag(Aq,..., Ag)
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P(A)
B{X}
ViX}
A®B

2 i Ti

| J -

IA]l
1Al
max{ai,...,ar}

min{ay,...,ar}

< b

O

stacking of vectors z; € R™, ¢ = 1,2,...,k; i.e.,
T 7T
[z7,..., 2]

stacking the columns of the m x n matrix A; i.e.,

[a1,17 Tt 7am,17 a1,27 Tt 7am,27 e 7a1,n7 Tt 7am,n] where
a; j represents the (7, j)-th element of A

block diagonal matrix with diagonal blocks A to Ay

signum function of z € R; ie., -1 if z < 0,0if x =0, and 1

ifx>0
probability of the event A

expectation value of the random variable X
variance value of the random variable X
Kronecker product of matrices A and B

summation of the sequence x;; i.e., T+ Tmy1+- -+ Tp_1+
rpifm<n, xymifm=n,and 0if m >n

product of the sequence x;; i.€., Ty - Tipt1 -+ * Tp—q * Ty if
m<n, Ty, ifm=n,and 1 if m>n

Euclidean norm of the vector x
induced 2-norm of the matrix A

Frobenius norm of the matrix A

maximum value among ai,as, - , ak
minimum value among ay,as, - ,ak
defined as

identically equal
implies

designation of the end of theorem, lemma, proposition, as-

sumption, remark, and so on

designation of the end of proof
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e A scalar continuous function v : [0,a) — [0,00) is a class-K function if it is

strictly increasing and v(0) = 0.

e Let f and g be two functions on some subset of real numbers, f(k) = O(g(k))
means that there exist constant ¢ and K such that f(k) < cg(k) for all
kE>K.

e A square matrix A is said to be Hurwitz (matrix) if every eigenvalue A of

A has strictly negative real parts, i.e., Re(\) < 0.
e For a matrix A € R™*", ||A|| < [|Al|r < y/min{m,n}||A]|.
e For arbitrary matrices A; and A;, ||A; @ A;|| = || Aill[|4;] [LS04].
e For matrices A, B and C, v(ABC) = (CT @ A)v(B) .
e For a positive constant r, B, := {x € R" : |z| < r}.
e For any state variable x(¢), its initial condition will be denoted by x(0).

e In order to messy notation, the time symbol ¢ is omitted when there in no

confusion.
Acronyms
CKBF Centralized Kalman-Bucy filter
KCF Kalman-Consensus filter
O-DKBF Optimal distributed Kalman-Bucy filter
F-DKBF Flexible distributed Kalman-Bucy filter
LTI Linear time-invariant
LTV Linear time-varying
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Chapter 1

Introduction

1.1 Research Background

1.1.1 Consensus and Synchronization

What is the difference between the notions of consensus and synchronization in
the networked system? Many researchers who are interested in the consensus and
synchronization problems may have this question. As expected, the two terms are
closely related in some sense. Both describe the effect of reaching agreement in a
group of individual systems. In the case of consensus, it deals with the problem
of agreement about the value of the members while synchronization deals with
the problem of the exact coincidence in time or rate, when the members take a
specific value. Therefore, we can argue that consensus with the coincidence in
time yields synchronization, and synchronized trajectory yields consensus. As a
result, whether some phenomenon is termed consensus or synchronization often
depends on the point of view one decides to take.

Cooperative collective behaviors in networks of individual agents have received
considerable attention in recent years due to their broad applications to biological
systems, neuroscience, social science, engineering, and so on. Flocking of birds,
schooling of fish, swarming of bees, and fireflies flashing in synchrony are fasci-
nating phenomena to be observed in nature [Rey87, [HBSMO04, [JMB05], Buc8§].
In biological systems and neuroscience, complex networks are found at different

scales from the molecular level up to the population level. In some of these net-



2 Chap. 1. Introduction

works, dynamical interactions between units, which are crucial for our current un-
derstanding of living systems, can be analyzed in the framework of synchroniza-
tion phenomena like, e.g., circadian rhythm [Str03, LWK™07|, neuronal network
[IMOS], and so on. Gossip-based algorithms [AYSS08| to achieve consensus over
a set of agents have recently received attention in social science.

In engineering area, distributed consensus and coordination control of multi-
agent systems over the complex networks have received a lot of attention in recent
years. Consensus and synchronization problems of coordinated motion of individ-
ual mobile agents is the most commonly cited example in its various occurrences
[FM04, [JTLMO03, [OSEMO07, RBA07, QWHOS|, [SPL0O8]. Advances in wireless com-
munications and microelectromechanical systems technology have enabled the use
of distributed sensor nodes, and the distributed estimation is one of the most fun-
damental collaborative information processing problems in wireless sensor net-
works [OSO07, BFLI1T [Geol3, YKKI15|. In addition, many consensus and syn-
chronization algorithms were developed and studied under various circumstances,
e.g., switching topology [Kim12l [KSBS13| Wiel(, WSATIl KA15|, communica-
tion delay [MPATO0L [LJOS]|, packet drop communication [FZ09|, and so on.

1.1.2 Complexity of Analysis

Even though the consensus and synchronization of individual systems are relevant
in an extremely wide range of applications, it is difficult to tackle the consensus
and synchronization problems in large communities with interacting systems. The
intrinsic complexities of consensus and synchronization can be identified with the
2-dimensional space: complexity of the individual system dynamics, and com-
plexity of the network. These two dimensions of complexity and the related refer-
ences are depicted in Figure The system complexity can be ranged from the
simple linear integrator models to heterogeneousﬂ stochastic nonlinear systems or
hybrid systems. The network complexity deals with the kind of topologies and

communication link constraint, and thus the range can be determined from two

!The definitions of the terms of network complexity can be found in Chapter
2The terms, heterogeneous, non-identical, have the same meaning in this dissertation. In ad-

dition, homogeneous, identical, have the same meaning, too. We will use them interchangeably.
T 1

.__:Ix_c L, 1_'. I



1.1. Research Background 3

System
complexity
A
da; = f(z;,t)dt + dW; | - PTS09 TSP10
iy = fi(wi,w) MMS91L - IMC14
HHK10
; = Ajx; + By / - -KS$11 -WSA
&y = fl@i, uw;) WS05
SSB09
T; = Ax; + Bu; i i~ ~Tun08a  KSBS13
Ty = Uy : : VEBF+95-LJ08-FZ09
. Network
all-to-all directed delay & packet drop' CompIeXity
2 coupled agents undirected time-varying

Figure 1.1: The complexity plane for networked systems and related refer-
ences.

coupled agents to time-varying topologies with communication delay and packet
drop.

Consensus and synchronization problems have been usually classified very
differently in the complexity plane. Consensus problems are often focused on
network complexity, in particular communication constraints, while individual
system dynamics are usually fairly simple that the individual agents modeled as
simple integrator [JLMO03, [OSEMO0T7, RBAO7]. This is because many researchers
in control systems were inspired by the Vicsek model [VCBJT95] and it triggered
the interest of consensus problems. This model is composed of N autonomous
subsystems which are driven by a constant absolute velocity (in discrete-time),
and updating the head angle by the average direction of motion of the agents in

its neighborhood with some random noises added, i.e.,

Hi(k+1)—9i(k):5i(k)+1+|/1v(k) S0k -0k, (111
L GEN (k)



Chap. 1. Introduction

where 6; € S is the heading angle of the i-th subsystem, §; € S represents

temperature-like noise, and N;(k) is the set of indices of the neighbors of the

i-th subsystem at time k. The Vicsek model can be modeled as a simple inte-

grator (without noise) with the time-varying communication network, and thus

many consensus problems are more focused on network complexity.

Nevertheless, the following results have struggled to develop the system com-

plexity in consensus problems.

i)

ii)

In virtue of the graph theory, the consensus problem of identical LTI systems
can be considered as simultaneous stabilizability problem of certain (N —1)

systems. It can be seen from [Tun08a]E| that

&; = Ax; + Buy,
Uy = kZBTP Z (l‘j - CCZ'),
JEN;

where x; € R” is the state, £ > 0 is the coupling strength, and P > 0 is the

solution of the following algebraic Riccati equation

ATP+PA-PBBTP+1,=0.

Output consensus of heterogeneous multi-agent systems was addressed by
introducing an internal model into the consensus problem in [KSS11],[WSATIT],

IMC14], for example, consider a group of heterogeneous LTT systems

&; = Ajz; + Biug,

yi = Cixy,

where z; € R™ is the state, y; € R the output of the i-th agent, and output

3Here, the assumptions are (A, B) is stabilizable and the graph is connected.

A L] &

L



1.1. Research Background )

feedback controller written as (relative degree 1 case of [KSSII])

G=FG+Gui+HY (y;—v)
JEN;

u; = JG + Ky;.

Even though they dealt with asymptotic consensus of the non-identical
agents with output information, an identical internal model requirement
is necessary for consensusability [WSATI], i.e., the models of the individual
systems together with their local controllers must embed an identical inter-

nal model of that virtual exosystem.

In contrast to consensus, the problems of synchronization usually deal with
more complex system dynamics, e.g., nonlinear oscillators, while putting less em-
phasis on the network complexity. Often, in order to simplify the analysis, the
extreme case of all-to-all topology is assumed, which can be considered as uncon-
strained communication. Similar to the Vicsek model , there is a famous
model for synchronization, namely the Kuramoto modeﬂ [Kur75, [HHKI0],

. KX
Gi:wiJrNZ;Sin(QjHi), (1.1.2)
]:

where 0; € S is the phase of the i-th oscillator, w; € R is the randomly drawn ¢-th
natural frequency of the oscillator, and K € R is the coupling gain. Some efforts
to expand the network compelxity and system complexity of the synchronization

problems are as follows.

i) A natural extension of the Kuramoto model with short-range interaction
effects was discussed in [SM88|. The authors considered the case in which

interactions occur between nearest neighbors. The model equation is

0; =wi + K Z sin(6; — 6;).
JEN;

“In fact, Kuramoto model was simplified from Winfree model [Win67] for the system of

weakly coupled and nearly identical limit-cycle oscillators. See [Str00] for more details.

2] &-t]] 8
i ] 1



ii)

iii)

Chap. 1. Introduction

Compare to the Kuramoto model ((1.1.2)) the coupling strength K does not

need to be scaled by the total number N of oscillators.

When the coupling is strong enough, the amplitude of each oscillator may be
affected, and thus a more comprehensive and general model was introduced
by [MMS91]. The authors considered limit-cycle oscillator with all-to-all

coupling,
X
(1— ]zl\2+\/ wz 2z + NZ = Zi), (1.1.3)

where z; is the position of the i-th oscillator in the complex plane, w; its
natural frequency (assumed to be randomly selected from a frequency dis-

tribution), and K is the coupling gain.
With z := Z 1 zi/N, the system (|1 can be written as
= (1— \zi\z—i—v—lwi) Zi—|—K(E—Zi). (1.1.4)

Define the amplitude and phase of the average position by z =: Reﬁgi’,
which enables (1.1.4]) to be written in polar form

7 = (1 —r? — K)r; + KRcos(¢ — 6;), (1.1.5a)
: K
T

Therefore, with the limit of weak coupling and narrowly distributed fre-
quencies, all the oscillators approach the unit circle and the system
becomes the Kuramoto phase model . In particular, the limit-cycle
oscillator was derived from the weakly coupled Van der Pol oscilla-
tors |Aiz76].

In [WS05], the authors considered the synchronization problems of nonlinear

networked systems including Van der Pol oscillator under a general coupling



1.1. Research Background 7
structure. A network containing identical individuals is given as

T; :f(l'i,t)-i- Z Kji(l'j —:CZ'), (1.1.6)
JEN;
where Kj; is the gain associated with coupling from node 7 to j. In this

case, if the couplings are strong enough, then a generally coupled network
(1.1.6) will achieve synchronization.

From the above researches, it is observed that consensus and synchronization
studies often focus on either network or system complexity, but rarely deal with
both at the same time. In particular, it seems that there is an intrinsic limitation
in the interconnected dynamical systems composed of non-identical dynamics. We
will devote to investigate the collective behavior of nonlinear and non-identical
systems with general communication networkﬂ and the limitation will be partly

solved in this dissertation.

1.1.3 Robustness of Interconnected Dynamical Systems

It is a common belief in biophysics and systems biology that synchronization
makes the behavior of an interconnected system robust to perturbation, which has
often been verified in simulations and experiments. Circadian rhythm is one of the
most well known example of this feature [LWK™07, AWJT15, KHHPBO7]. Stud-
ies have found that the circadian rhythm is governed by a biological clock, which
in mammals is located in brain area called the suprachiasmatic nuclei (SCN), and
have a period of approximately 24 hours. In addition, these circadian cycles can
be synchronized to external time signals but also can persist in the absence of
such signals. Moreover, it is robust against the mutations [LWK™'07| and noises
[AW.J ™15, [KHHPBOT7]. This robustness of synchronization in circadian rhythm
is important in determining the sleeping and feeding patterns of all animals, in-
cluding human beings, and thus we need to figure out a way of obtaining the

robustness.

®In this dissertation, we consider the system ; = fi(z:, u;) with undirected network in Figure

L4



8 Chap. 1. Introduction

This dissertation is devoted to explain how synchronization may help pro-
tect an interconnected multi-agent system from uncertainties and external dis-
turbances. Tabareau, Slotine, and Pham in [TSP10] mathematically analyze the
robustness of synchronization for a diffusive network of noisy identical nonlinear
systems. The authors showed that under specific, quantified conditions, the im-
pact of noise on individual interconnected systems and on their spatial mean can
essentially be canceled through synchronization. The main assumption is that
the dynamics is resistant to small perturbations, and thus all individual systems
have to be the ‘same’ and ‘good’ agents in some sense. As mentioned in Section
[I.1.2] however, the non-identical nature of individuals is intrinsic phenomenon in
biological systems. Motivated by this, we will tackle the robustness problem of

the network including ‘different’” and ‘bad’ agents in this dissertation.

1.2 Outline and Contributions

The following overview reveals the outline of this dissertation and briefly summa-

rizes the contributions of each chapter.

Chapter Graph Theory for Consensus and Synchronization Prob-
lems

In this chapter, we review basic definitions from graph theory and provide new
interpretations of consensus and synchronization problems. Parts of this chapter
are based on [KYKS12, [KKYS13| [KST5, KYS™]

i) We review basic definitions of graph theory, as far as they are relevant for
consensus and synchronization problems. In addition, a relation between

algebraic graph properties and the number of nodes is established.

ii) We provide new interpretations of the solvability of the consensus and syn-

chronization problems by introducing the useful coordinate transformation.

Chapter Robustness by Strong Coupling
This chapter addresses one of the main ingredients of robust synchronization
against heterogeneity. In particular, we discuss the key factors of synchronized

3 by y
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1.2. Outline and Contributions 9

behavior and provide reliable computations to be carried out even in the presence
of significant heterogeneity. Most of this chapter is based on [KYKS12, KKYS13|
KS15, IKYS™].

i) We introduce the new notion of the averaged dynamics which is a useful tool
for understanding the collective behavior of the non-identical multi-agent

systems.

ii) We provide the conditions to achieve robust consensus and synchronization
with strong coupling. From the results, we explain why strong coupling

enhances the robustness of the synchronized behavior.

iii) In order to deal with physical systems, we provide similar results of strong

coupling for high-order heterogeneous agents.

Chapter Robustness by A Large Number of Agents

In this chapter, we consider the robust synchronization against randomly selected
variations in individuals, and show that strong coupling and a large number of
agents imply robustness of synchronization against heterogeneity. This chapter is

mainly based on |[KYST].

i) A new notion of expected averaged dynamics is introduced as a reference

system which is not affected by the variations of the agents.

ii) We provide the effect of a large number of agents for the robustness of aver-

aged dynamics by using probability theory.

iii) We explain why strong coupling and a large number of agents need to be

used in robustness of consensus and synchronization problems.

Chapter Optimal Distributed Kalman-Bucy Filter in Sensor Net-
work

This chapter mainly deals with the distributed Kalman-Bucy filter which the
application of the results in Chapter[3] We focus on the optimal recovery problem

in the sense of distributed sensor network.
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i) As a preliminary of the subsequent sections, we recall some background ma-

terials on Kalman-Bucy filter in distributed sensor network.

ii) We derive sufficient condition for semi-global ultimate boundedness of het-

erogeneous multi-agent systems with locally Lipschitz nonlinearity.

iii) We propose a design method to implement optimal distributed Kalman-Bucy

filter with strong coupling.

iv) In order to expansion and reduction of scale, we propose a design method of

flexible distributed Kalman-Bucy filter.

Chapter [6l Conclusions

This final chapter provides some conclusive remarks summarizing the thesis and

hints to possible future directions of research.



Chapter 2

Graph Theory for Consensus and
Synchronization Problems

In order to effectively deal with the consensus and synchronization problems in
large communities of interacting systems, we need to consider networks of inidi-
vidual dynamical systems, which are interconnected according to a specific com-
municalion topology. The communication topology is chacracterized by the links
between the individual systems, and the systems can send or receive the informa-
tion through the links. Based on the links of the communication topology, the
set of neighbors (or senders if links are directional) can be determined for every
member of the network.

Graph theory is a useful tool for understanding or modeling the communica-
tion topology in a network of individual systems (see [Bon76l, [Bol02, Die06l [GROT,
Gro04, Big93, Moh92, Moh91l Mer95, [New(00] and the references therein for de-
tails about graph theory), and it has been used in the consensus and synchro-
nization problems (refer to, e.g., [FM04, RBA07, [OS07, [JLMO03|, [SSB09, WSATT,
EYTL06, Tun08al, Tun08bl, [KSST1) Kim12, Wiel0O, [MEI0]). In particular, the alge-
braic connectivity has been used in analysing the robustness and synchronizability
of networks. The theory related to the algebraic connectivity was introduced by
Miroslav Fiedler [Fie73] [Fie89).

In this chapter, we summarize the basic definitions and results from graph
theory for the study of the consensus and synchronization problems, and the

results will be used throughout this dissertation.

11 A 21 s
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27

g2

43

Q34
Figure 2.1: Fixed weighted directed graph with four nodes.

2.1 Basic Definitions of Graph Theory

Graph consist of nodes (or vertices), edges (or arcs) connecting the nodes, and
weights assigned to their corresponding edges. Time-varying weighted directed
graph is the most general case, because it contains fixed (or time-invariant), un-

weighted, and undirected graphs as special cases.

Definition 2.1.1. (Communication graph). A time-varying weighted directed
graph G(t) is a 3-tuple G(¢) := (N, E(t), A(t)) of nodes N := {1,2,..., N}, edge
set £(t) C N x N, and weighted adjacency matriz A(t) = [oj(t)] € RV*V | where

t € R represents time, satisfying the following properties:

(a) The graph contains no self-loops, i.e., (i,i) ¢ £(t) and a;;(t) = 0 for all
i1 €N and t > 0.

(b) The elements a;(t) of the adjacency matrix A(t) are nonnegative, bounded,

and piecewise continuous function for ¢ > 0[f]

(c) The edge (j,1) is contained in £(t) at time ¢ if and only if a;;(t) is positive
at time ¢. Otherwise, o;;(t) = 0.

g

LA function f(t) is said to be a piecewise continuous function on a closed interval [a,b] C R,
if there exists finite number of points a = to < ¢t1 < t2 < -+ < ty = b such that f(¢) is
continuous in each of the intervals (¢;—1,¢;) for 1 < i < N and has finite limits as ¢ approaches
the end points. A function f(¢) is said to be a piecewise continuous function for ¢ > 0, if f(¢) is

a piecewise continuous function on every closed interval [a,b] C [0, 00).

2] &-t]] 8
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2.1. Basic Definitions of Graph Theory 13

In the above definition, the nodes ¢ € N represent the individual systems and
the edges (i, j) € £(t) are modelled on the interconnections between the individual
systems. For a given edge (i, j) € £(t), j is called the head and i is called the tail
and (7, j) represents the information flow from the tail to the head of an edge.
Usually, an edge (i, 7) is represented by an arrow pointing from the tail i to the
head j. An example of a fixed weighted directed graph with four nodes, with
edges represented by arrows, is depicted in Figure [2.1

The special classes of graphs can be defined from Definition 2.1.1] A graph is
said to be fized (or time-invariant) if it does not change over time ¢. In this case, it
is simply denoted by G = (N, €, A). A graph G(t) is unweighted if a;;(t) € {0,1}
for all 4,j € N and for ¢ > 0 and thus, one can simply write G(t) = {N,E(¢)}.
Consequently, a fixed unweighted graph can be denoted by G = {N,E}. The
special case of an undirected graph is obtained by imposing «;;(t) = «;ji(t) for
all i,j € N and for t > 0, i.e., AT(t) = A(t). Throughout this dissertation,
we consider the fixed, unweighted, and undirected graph which is denoted by
G ={N,&}

2.1.1 Graph Connectedness

In order to achieve consensus or synchronization among the individual systems,
it is necessary to share a minimum amount of information with all individuals.
As explained before, the common information propagates through the network
modeled by the graph which represents the communication topology. To ensure
the propagation of the common information to all individuals, the graph needs to
be connected in some sense. Here, we first define the neighbors of a node and a

path of the graphﬂ

Definition 2.1.2. (Neighbors). Let G = {N,£} be a graph. For a given i € A,
a node j € N is called neighbor of the node i if (j,7) € £. The neighbors of the
node 7 is the set that contains every neighbor of the node 7, and denoted by N;

e, Ni:={jeN:(ji) €&} d

For a fixed weighted directed graph G = {N, £, A}, the definitions of the neighbors and the
path are the same as Definition @ and Definition @ respectively.

2] &-t]] 8
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14 Chap. 2. Graph Theory for Consensus and Synchronization Problems

Definition 2.1.3. (Path). Let G = {N,&} be a graph. For a given i,j € N, a
path of length | from the node ¢ to the node j is a sequence of nodes of the form
wpr for k=0,1,...,0 =1, and ;s
are distinct for all k. O

{ig,%1 ...,%;} such that ig =14, iy = j, ix €N

In networked systems, existence of a path from the node i € A/ to the node
j € N in the graph G implies that the information can propagate from the system
represented by the node ¢ to the system represented by the node j. By using the
definition of the path, we can define the connectedness of the graph as follows

[MELC, [GROT, Die06, Bol02, RBANT, RB0S].

Definition 2.1.4. (Connected graph). A graph G = {N, &} is said to be con-
nected if there is a path between any two nodes of the graph & , otherwise discon-

nected. O

For a directed graph, the connected graph in Definition is also called
quast strongly connected graph, and a different but equivalent statement of the
connected graph is that a graph has a directed spanning tree. See [TS11 [Lin06l,
Wu05, RBA07, RB08, [SSB09] for more details of the definitions.

2.1.2 Laplacian Matrix

As was mentioned in Chapter (1], the diffusive coupling is the most commonly used
mechanism potentially leading to consensus and synchronization. Therefore, we
need to establish the connection between the diffusive coupling and the algbraic
graph theory. To this end, consider the most common continuous consensus al-
gorithm [OSMO04, [FMO04] [JLMO03, RBAQT7| and assume the communication topol-
ogy is modeled by a graph G = {N,E}. Then, the consensus algorithm can be

expressed as
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where x; € R it the state of the i-th agent. The collective dynamics of the group

of agents can be written as
z(t) = —La(t) (2.1.1)

where z(t) := col(z1(t),...,zn(t)) and £ = [l;;] € RV*N is a matrix, the so-

called Laplacian matrix.

Definition 2.1.5. (Laplacian matrix). Given a graph G = {\/, £}, the matrix

L=D—-A

is called the Laplacian matriz of the graph Q, where D € RVXN

matrix of the graph G, which is defined as D := diag(Aly). O

is the degree

Note that the Laplacian matrix £ is symmetric, because of the undirected

graph. The Laplacian matrix can also be defined by element-wise

Zfil (677%) .] = ka
— Ly, j?é k.

lkj =

In (2.1.1)), the collective behavior of z(t) is determined by the Laplacian matrix L.
Moreover, since the Laplacian matrix £ can uniquely determines the adjacency
matrix A, it completely characterizes the graph Q, and therefore characterizes
the communication topology. Hence, the Laplacian graph can be a useful tool for
understanding the behavior of interconnection dynamics for linearly diffusively
coupled system. In order to figure out the relation between the algebric properties

of £ and the properties of the graph G , they will be discussed in the next section.

2.2 Algebraic Properties of Graph

The Laplacian matrix of a graph and its eigenvalues can be used in various areas,
and according to Mohar [Moh91], the Laplacian spectrum is much more natural
and more important than the spectrum of the adjacency matrix. Among all

eigenvalues of the Laplacian matix of a graph, one of the most popular is the

2] &-t]] 8
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16 Chap. 2. Graph Theory for Consensus and Synchronization Problems

second smallest, called by Fiedler [Fie73| [Fie89], the algebraic connectivity of a
graph. It is very important in the sense that it is a good parameter to measure

how well a graph is connected.

2.2.1 Algebraic Connectivity

In order to introduce the algebraic connectivity, we need to start with the spec-
trum of the Laplacian matrix. By the construction of the Laplacian matrix, all
rows of the Laplacian sum up to zero. Then, the all ones vector 1 is an eigenvec-
tor of the Laplacian matrix £ with corresponding eigenvalue 0 (i.e., L1 = 0). In
consensus and synchronization problems, this eigenvector 1, spans the subspace
in which all individual systems have reached to a certain trajectory in the sub-
space. Moreover, the zero eigenvalue of the Laplacian matrix can be interpreted
as that if all individuals are reached to the common trajectory in the subspace,
then the diffusive couplings vanish.

To analyze the locations of the eigenvalues of the Laplacian matrix, the fol-

lowing lemma, called the Gershgorin disk theorem, can be used.

Lemma 2.2.1. [HJ12| Theorem 6.1.1] Let A = [a;;] € C"*™ and let D; := {z €
C: |z —ai| <37, lai|} be the closed disk, called the i-th Gershgorin disk, in
the complex plane centered at a;;. Then all the eigenvalues of A lie in the union of
the disks D; for i = 1,...,n, that is, A\(A) C |J;_; D;, where A(A) is the spectrum
of the matrix A. O

Since the Laplacian matrix has the properties that the off-diagonal elements
are nonpositive and the diagonal elements are nonnegative, and each row sum of

the Laplacian matrix is zero, we have
ML) C | JqzeCrlz—1ul <D |yl p € Cxo.
1eEN j#i

Hence, every nonzero eigenvalue of £ lies in Csg. Based on this, we can sort the

eigenvalues of the Laplacain matrix as 0 = A1 (£) < Xo(L£) < -+ < /\N(L’)ﬁ

3Since the Laplacian matrix is symmetric, all eigenvalues are real.
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Table 2.1: The algebraic connectivity for some types of graphs

graph topology A2(L)

path 2(1 — cos(mw/N))
circle 2(1 — cos(2w/N))
star 1

all-to-all N

The algebraic connectivity of a graph G is the second-smallest eigenvalue Ao (L)
of the Laplacian matrix £. It is related to several important graph invariants and
connectivity of the graph. The generalization of the algebraic connectivity (see
[Wu05, DAQT]) is defined as

Ao (L) = min UTTﬂ
veERN vA0wlly VU

In general, adding new edges to a graph may increase the algebraic connec-
tivity, and higher Ao(L) indicates graphs with smaller diameter (the greatest dis-
tance between any pair of nodes) and higher connectivity. It has pointed out in
[Fie73| [Hol06] that the algebraic connectivity may be dependent on the number
of nodes, as well as the way in which nodes are connected. In Table the alge-
braic connectivity with respect to the number of nodes for some types of graphs
are presented. According to Table 2.I] except for the case of star topology, the
algebraic connectivity A2(L£) is dependent on the number of nodes N. Increasing
N decreases A\2(L) in the case of path and circle topologies. On the other hand,
increasing N increases A2(L) in the case of all-to-all topology.

In random graphs, the randomness is another factor of fundamental impor-
tance in A2(L£). Small-world network is one of the famous random networks in
which any two arbitrary nodes can be connected using a few links. In [WS9§|,
Watts & Strogatz introduced a model for small-world phenomenon that interpo-
lates between these two extremes, in which the edges of the network are divided
into ‘local’ and ‘long-range’ contacts (or a regular lattice and a random network,

respectively) using a probability p. Watts & Strogatz model can be constructed

2] &-t]] 8
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(c) p=05 () p=1

Figure 2.2: Small-world networks with (N, d) = (100, 2) for p = 0,0.1,0.5, 1.

with the following steps:

(1) One starts with a one dimensional lattice on a ring with N nodes in which

every node is connected to its nearest neighbors up to the distance d.
(2) One removes every edges with probability p.

(3) One rewires the removed edges by changing the endpoints uniformly at

random (without self-loops or repeated links).

Figure[2.2] demonstrates small-world networks obtained by the above steps for

various values of probability p.
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Figure 2.3: The S-shape curve of algebraic connectivity gain A2(p)/A2(0) for
small-world network with (N, d) = (1000,5) [OS05].

In small-world networks, the algebraic connectivity Ao (p)lﬂ can be made more
than 1000 times greater than a regular network by increasing randomness [OS05].
By defining the algebraic connectivity gain A2(p)/A2(0), the curve of Aa(p)/A2(0)
has S-shape in Figure[2.3] Thus, it can be observed that the algebraic connectivity
increases as the randomness of the network increases.

Moreover, the algebraic connectivity is also affected by the number of nodes N
and the distance d. The effects of N and d can be shown in Figures and 2.9]
respectively. In Figure [2.4] the algebraic connectivity has decreasing tendency as
N increase, and it can also be seen from [Hol06| that the algebraic connectivity
decreases with increasing the number of nodes in random network. On the other
hand, an increase in d leads to a considerable increase in the algebraic connectivity

in Figure [2.5

“Here, instead of the Laplacian matrix index £, we use the probability p as the parameter of

the algebraic connectivity.
SEach data point in these figures are obtained by averaging over 10 randomly rewired net-

works
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2.2.2 Useful Properties for Consensus and Synchronization

As a next step, we will establish some useful properties for consensus and synchro-
nization problems. The algebraic connectivity Aa(L) is completely related to the
graph connectivity as mentioned in The following theorem is well-known

result in spectral graph theory.

Theorem 2.2.2. Let G = (N, ) be a graph, and let £ be the Laplacian matrix
of the graph G. Then, A2(£) > 0 if and only if G is connected. O

Proof. (=) We first show that Ao(£) = 0if G is disconnected. If G is disconnected,
then it can be described as the disjoint union of graphs, G1 and Go. Without loss

of generality, after suitably re-numbering the nodes, we have

e Lg 0
0 L
In this case, we obtain
Lg O [1N1]_[0]and Lg O [0]_[0]’
0 L, 0 0 0 Lg, 1N, 0

where Ny = dim(Lg ) and Ny = dim(Lg,

nal eigenvectors, col(1y,,0) and col(0, 1y, ), of £ corresponding to the eigenvalue

). Hence, there are at least two orthogo-

zero, i.e., at least two eigenvalues are zero, we know that AL = AL = 0.
(<) Assume that v € RY is an eigenvector of £ corresponding to the eigen-

value zero. Since Lv = 0, we have

vl Loy = Z (v; — v)* = 0.
(1,5)e€

Consequently, v; —v; = 0 for each (i, j) € £. As there is a path between any two
nodes of the graph Q, we may inductively use this result to show that v; = v;
for all nodes 4,5 € N. Thus, every eigenvector for zero eigenvalue is multiple of
1. This shows that eigenspace corresponding to zero eigenvalue has dimension

1, that is, the geometric multiplicity of zero eigenvalue is 1. Since the Laplacian

.__:Ix_c L
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matrix is symmetric, it is diagonalizable, and therefore algebraic and geometric

multiplicity are the same. O

As was mentioned in the algebraic connectivity A2(L) may decrease as
the number of nodes N increases in some cases (e.g., path and circle topologies in
Table. However, Theoremensures that as long as the graph is connected,
the algebraic connectivity is always positive (A2(L) > 0).

In order to achieve the consensus and synchronization problems by using the
algebraic properties of the Laplacian matrix, we introduce the following useful
theorem which will be used throughout this dissertation. To develop this, we first

recall the following decomposition lemma of linear algebra.

Lemma 2.2.3. (Schur decomposition [HJ12]). If A € C"*" then A can be ex-
pressed as A = UTU ! where U is a unitary matrix (i.e., U~! is also the conju-
gate transpose U*, U~! = U*), and T is an upper triangular matrix. Moreover,
since T is similar to A, it has the same eigenvalues as A, and therefore those

eigenvalues are the diagonal entries of T. O

Theorem 2.2.4. Let G = {N,&} and L be a connected graph and the Laplacian

matrix of G. Then, there exists a nonsingular matrix W such that

wWLew—! = 00
0 A’

where A = diag(A2(L),...,An(L)). In particular, the nonsingular matrices W

and W~ can be expressed as

b
RT

W = , and W=y, Q] (2.2.1)

where R and Q are real matrices of size N x (N — 1) such that RTR = (1/N)I,
QTQ=NI,R"1y=0,Q"1xy =0, and RTQ = 1. O

Proof. A direct consequence of the connected graph G is that the Laplacian matrix
L is symmetric and has zero eigenvalue which is simple. By Schur decomposition,

we can write the Laplacian matrix as £ = UTU? where U is a unitary matrix

2] &-t]] 8
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and T is an upper triangular matrix. Since the Laplacian matrix £ is symmetric,
one sees that LLT = LT L, and therefore it ensures TT7 = TTT. It means that
T must be diagonal matrix since a normal upper triangular matrix is diagonal,
and T = diag(0,A). Without loss of generality, we can express the first row of
the orthogonal matrix U as (1/v/N)1%, from the property of the Laplacian matrix
that all rows of the Laplacian sum up to zero. Define the matrix W := (1/v/N)U.
Then,

4T

NN
RT

W = . W =VNU" =1y, Q]

where R and @ are real matrices of size N x (N — 1). Since U is a unitary
matrix and UUT = UTU = I, it follows that RTR = (1/N)I, QTQ = NI,
RT1y =0, QT1xy = 0, and RTQ = I. From above properties, we can also find

that ||Q|| = VN and ||R|| = 1/v/N. O

Theorem [2.2.4] ensures that the problems of consensus and synchronization
can be considered as the convergence to a invariant subspace M which implies
that any trajectory starting in M remains in M. We call this invariant subspace
M as the consensus subspace which is spanned by the eigenvector 1y of £ with
corresponding eigenvalue zero.

For example, consider the consensus algorithm with a connected graph
Q . By the coordinate transformation in

§ = F}] =Wax =
§

where £ = [€2,...,&n]T, the overall system (2.1.1)) is transformed into

11T
NlN
RT

T

&1=0 (2.2.2a)
£= A& (2.2.2b)

because 15,£ =0 and RT£Q = A. Since A is a positive definite matrix, it is easy

to see from and (2.2.2b)) that & () = (1/N) Zfil 2;(0) and £(t) — 0 as

2] -] 8} 3
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t — oco. Therefore, it explains the following properties:

i)

ii)

iii)

Since x = 15&; + QE, if £(t) — 0 as t — oo, then the consensus and syn-
chronization is achieved. Thus, the consensus and synchronization problem
can be considered as the convergence problem, and the transformed system

(2.2.2b)) can be also considered as the error dynamics between agents.

Consensus (or synchronized) trajectory can be expressed as £;(t) due to the

fact that £(t) — 0 implies z;(t) — & (t).

Since the solution of the transformed system (2.2.2B) is £(t) = e~ *£(0), the

inequality

E(0)] < [€(0)]e =0

holds for all ¢ > 0. Therefore, the algebraic connectivity A\a(L) of the graph
G is related to the rate of convergence to consensus subspace M, as well as

the connectivity of the graph.

Based on these properties, a generalization to heterogeneous agents will be devel-

oped in Chapter



Chapter 3

Robustness by Strong Coupling

In this chapter, we deal with the robust consensus and synchronization of het-
erogeneous multi-agent systems by strong coupling. In fact, strong coupling is
somewhat well-known condition to achieve asymptotic consensus and synchro-
nization with static diffusive coupling [WS05, [PS07, [TSP10, [DdG09, DdBR11].
Static diffusive couplings with strong interaction have been used in several se-
tups. Contraction theory has been shown to be an effective tool for understand-
ing synchronization in terms of convergence properties of all solutions between
each other rather than toward some asymptotic solution [WS05, [PS07, [TSP10].
In [DAG09, DABR11], the so-called QUAD condition is assumed to be satisfied as
a starting point to derive conditions for synchronization of the network of interest.

Even though the above studies provided strong coupling condition, the au-
thors assumed that the dynamical model of the individual systems are identical
and have some stability properties (e.g., contraction system or QUAD condition).
Unfortunately, in many real-world networks, it is often unrealistic to assume that
all nodes share the same identical dynamics. For example, between the agents,
there are parameter mismatches which cannot avoid and rather large in biochem-
ical or power networks [KHHPBOT7, [DB12, [HC06]. Moreover, the networked sys-
tem may have some abnormal agents, and therefore it will cause some problems
which are propagated through the communication network. Nevertheless, practi-
cal consensus and synchronization is still possible as observed from nature such as
flashing in fireflies, flocking of birds, schooling of fishes, and swarming of insects.

In order to effectively deal with the robust consensus and synchronization

3 ey 211
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26 Chap. 3. Robustness by Strong Coupling

of heterogeneous (non-identical) agents against the heterogeneities, we introduce
the notion of averaged dynamics, which is the average of the vector fields of each
agents. The aim of this chapter is to introduce the concept of the averaged
dynamics and investigate the robustness of heterogeneous multi-agent systems by
strong coupling. This chapter has its origin in these papers [KYKS12, KKYST3,
KST15, [KYS™].

3.1 Problem Formulation

In this section, we address the robust consensus and synchronization problem of
heterogeneous multi-agent systems. We consider a group of non-identical individ-

ual systems represented by
;ti:fi(t,xi)—i—ui, ieN = {1,2,...,N} (3.1.1)

where N is the number of agents, z; € R is the Stateﬂ and u; € R represents
interactions with other agents through the network. Here the function f; : [0, 00) x
R — R may include time-varying signals persistently exciting the agent, and
disturbances to the agent, as well as parametric variations or uncertainties of
each agent.

The local interaction among the agents is modeled by a fixed un-
weighted undirected graph G. In this section, it is supposed that the agents are
interconnected by static diffusive-type coupling [Hal97]

N
U; = k Z Oéij(l'j — .’Bz> (3.1.2)
7j=1

where k represents the coupling strength and cyj; is the (4, j)-th entry of the

adjacency matrix of the given network.

'The class of systems considered in this section is restrictive in the sense that it is a scalar
dynamics. Actually, this restriction arose because we have focused on the simplest case, which
is because we wanted to find the main ingredients that yield practical consensus and synchro-
nization in spite of heterogeneity of the agents and its robustness against heterogeneity (that in-
cludes external disturbances and parametric uncertainties), leaving aside the relaxation of these
restrictions to Section @
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Definition 3.1.1. (Robust consensus and synchronization). The N individuals
(3.1.1) are said to achieve robust consensus and synchronization if there exists

some trajectory ¢ : R — R such that for any given € > 0,

limsup |z;(t) — ((t)] < €

t—o00 o

foralli e N. O

Note that Definition [3.1.1]is equivalent to the ultimate boundedness problem
with arbitrary ultimate bound, i.e., the robust consensus and synchronization of
(3.1.1) can be achieved if there exist some trajectory ¢ : R — R and 7" > 0 such
that for any given € > 0,

lzi(t) —C()| <e, VE>T

for all 7 € N. On the other hand, the considered problem can be viewed as
achieving the practical consensus from the viewpoint of achieving the asymptotic
consensus problems. Since the terminology ‘practical consensus’ is used differently
in [XJZY11] where just boundedness of the difference |z;(t) — z;(t)] is of interest,

we emphasize that the error could be made arbitrarily small in Definition [3.1.1

We study the problem under the following assumptions.

Assumption 3.1.1. (Individual agent). The function f;(¢,z;) of the individual
system ({3.1.1]) is uniformly bounded in ¢, continuously differentiable, and globally
Lipschitz in x; uniformly in ¢; ¢.e., there exist a non-decreasing continuous function

M :R>9 — R>¢ and a constant L > 0 such that

Ofi
8$i

(t,z))| <L, Vt>0 (3.1.3)

it )] < M(Jz)), '

for all z; € R and i € NV. O

Assumption also guarantees uniqueness of the solutions z;(t) for all i €

N, for (3.1.1) and (3.1.2). By letting « := col(z1,...,zy) € RN™ and f(t,z) :=

col(fi(t,x1),..., fx(t,zn)) € RN the dynamics of the overall system, composed
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of (3.1.1) and (3.1.2)), is written as
&t =—kLx+ f(t,x) (3.1.4)
where L is the Laplacian matrix describing the network connection.

Assumption 3.1.2. (Connected network). Given a graph G, the coupling net-

work topology under consideration is connected. O

A direct consequence of the assumption is that the Laplacian matrix £ is
symmetric and has zero eigenvalue which is simple (see the results of the graph

theory in Chapter , and therefore there exists a nonsingular matrix W such that

1T 0 0
w=| " , Wl=[ln, Q, and WLW '=
RT A

where A = diag(A2(L), ..., An(L)). From now on, we will drop the Laplacian
matrix index of the eigenvalues for simplicity of notation, i.e., \; := A\;(£) for all
ieN.

Note that since the heterogeneities of f(¢,z), the collective dynamics
is no longer possible to decouple the synchronized trajectory dynamics and the
error dynamics between agents (See the transformed system in Section
2.2.2)). Therefore, one hardly can predict the collective behavior of , and

thus we need to think a new concept of the group behavior.

3.2 Averaged Dynamics

In this section, we introduce the concept of the averaged dynamics which is a
useful tool for understanding the collective behavior of the heterogeneous multi-
agent systems. In general, it is not easy to achieve asymptotic consensus and syn-
chronization between non-identical agents. Therefore, while most of the results of
consensus and synchronization problems have focused on the homogeneous multi-
agent systems, only a few papers [KSS11, WSATI [ZHL12, IMC14, [DDBL15|

considered heterogeneous cases. In particular, Kim et al. and Wieland et al.

A L)) &
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Figure 3.1: Trajectories of 2-agent systems with coupling strength & are de-
picted as solid curves, and the trajectory s(t) of the averaged
dynamics is given as the dashed curve.

[KSS11, WSATI] introduced the internal model into the consensus problem in or-

der to achieve asymptotic consensus. Instead of achieving asymptotic consensus,

bounded convergence of networks of heterogeneous multi-agent systems is consid-
ered in [ZHL12, [DDBLI5]. However, the bounded convergence condition cannot

give the information of the collective behavior of the heterogeneous multi-agent

systems. Therefore, it is important to know the synchronized trajectory of the

heterogeneous agent, as well as the bounded convergence. Then, how to find out

the group behavior in the case of non-identical individual systems? The following

example gives us the insight of the solution to this problem.
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Consider a group of 2 agents given by

i1 (t) = =3z1(t) + o(t) + k(22(t) — 21(2),  21(0) =0,
To(t) = xa(t) + sin(t) + k(z1(t) — z2(t)), x2(0) =0,

where

Here, k is the coupling strength. In many studies of the heterogeneous multi-agent
systems, the average of the states z(t) := (1/N) Zfil x;(t) has been considered
as a reference of the collective behavior. However, since the trajectory z(t) is
dependent on the coupling strength k, it cannot be the proper reference signal.
This observation can be seen in the Figure Figure shows the trajec-
tories of the uncoupled agents (i.e., k = 0). If we consider Z(t) as the reference
of the collective behavior, we may expect that the synchronized trajectory will
diverge, and therefore the trajectories of the agents will diverge, too. However,
as we can see in Figure the actual trajectories are bounded if k£ = 10.
Furthermore, by comparing Figures|[3.1(b)| [3.1(c)|, and [3.1(d)} it can be observed

that increasing k makes the trajectories x1(t) and z2(t) converge to a trajectory
s(t). It is interesting that s(¢) is not the average of the states but the trajectory
which is generated by the average of the vector fields of each agent, i.e.,

¢(t) + sin(t)
2 b

5(0) = 21O+ 22(0). (3.2.1)

§(t) = —s(t) + 5

Note that the system (3.2.1)) can be a reference system which is not affected by
the coupling strength k.

Motivated by this observation, the averaged dynamics (or, so-called ‘blended

dynamics’) of (3.1.1)) is defined as
1 & 1 .
$= > filtys) = NIJTVf(t, 1ns) =: f(t,s) (3.2.2)
i=1

with the averaged initial condition s(0) = Zfil 7;(0)/N. Tt is natural that f(t,s)
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is not the same as any of f;(t,s) so that s(¢) is different from any of x;(¢).

We assume stability of the averaged dynamics stated in the following way.

Assumption 3.2.1. (Stability of averaged dynamics). There exists a constant

p > 0 such that, for all s € R and ¢ > 0,

of 1 al}f,ft 1ns) 8f,
83( 5) = N Os N Z 83;2 P (3.2.3)

O

Note that this assumption does not require stability of individual systems,
and allows unstable agents if their instability is compensated by the stability of
other agents so that their sum is somehow stable in the sense of . A direct
consequence of Assumption is ultimate boundedness of the solution s(t) of

(13.2.2)) as seen in the following lemma.

Lemma 3.2.1. For a scalar system § = F(t,s) with C! function F satisfying
(0F)/(0s) < —p < 0 for all s and ¢t > 0,

I F(t
lim sup | (t)] < SWPtoso0 [F(E O)] (3.2.4)

t—o00 b

Proof. Since, by the mean-value theorem,

d|s| OF(t,s)

e sign(s) <F(t, 0) + s

-8
s=q

< |F(t,0)] — p|s(t)], almost everywhere,

with some ¢ € R, the comparison lemma [Kha(2] yields |s(t)| < w(t), Vt > 0,
where w(t) is the solution of w = —pw + |F(¢,0)| with w(0) = |s(0)]. This

concludes the claim. O

As a reference system of the collective behavior, there are some advantages of

the averaged dynamics:

A L) ¢
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e By constructing averaged dynamics, trading stability among heterogeneous

agents is clearly seen, and thus, it could be dealt with unstable agent in the
framework. Note that it is a unique feature of the averaged dynamics that
an unstable node dynamics is allowed, because there is no result that allows
unstable agent in the literature (to the author’s knowledge up to now). For
example, if fi(t,z1) = 2x1, fa(t,z2) = —2x9, and f3(t,z3) = —x3, then we

can easily see that the averaged dynamics
$=f(t,s)=(2-2-1)s=—s

is stable, and so, one immediately knows (from the result of Section [3.3))
that strong coupling will ensure (practical) synchronization. Even if the
averaged dynamics is not used, one may check the stability (or, contracting

property) of the overall system, but this is quite complicated and tedious

task (see [WS05], [PTS09| for more details).

Note that s(t) is the solution to the averaged dynamics (3.2.2), while Z(t) is
the averaged trajectory of individual solution z;(t) to individual dynamics
(3.1.1)) with diffusive input . They are the same at t = 0; i.e., s(0) =
Z(0), but they become different for ¢ > 0 in general when the agents are
different. We will claim in Section [3.3|that working with s(¢) as the reference
is more convenient than Z(t), because s(t) is not dependent on the value of
k while z(t) is. (However, since limsup,_, ., |s(t) — Z(t)| converges to zero as
k — 00, both will eventually result in the same conclusion with sufficiently

large k. The issue is the level of difficulty in the analysis.)

Use of s(t), that is the solution to the averaged dynamics, makes prediction
of the collective behavior much easier when the coupling is strong (since
just solving § = f(t,s) gives the answer). This is again because s(t) is not
dependent on k. (The average trajectory Z(¢) plays similar role, but it is

not simple to compute Z(t) before choosing k.)

Overall, since the contribution of the averaged dynamics is not just dealing

with the heterogeneous multi-agent, we will emphasize the contributions such as

A L)) &
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treatment of unstable agent, the quantitative analysis about the size of residual
error versus the size of the coupling gain & (in Section [3.3]), and the analysis of

the robustness from large number of agents (in Chapter [4)).

3.3 Analysis of Robustness by Strong Coupling

The following particular ultimate boundedness lemma, whose proof is found

in the Appendix will play a key role for the main result in this section.

Lemma 3.3.1. Let

T
pn<x,y>=—['$’] [p ] ['””']+e<t>\y|
lyl| la ] [yl

with z € Rl y € R™, p > 0, 6(t) > 0, and a is a constant. Then, there are a

class-K function r and a positive number ¢ such that

. 1
pulas) < —cllaf + W) i ol + 1o > (0 ()

for all x > 3a?/p. O

Now one of the two main ingredients of the robustness is presented in the
following theorem, which shows strong coupling among agents makes the trajec-
tories of all agents remain in an arbitrarily small neighborhood of the trajectory

of the averaged dynamics.

Theorem 3.3.2. Under Assumptions and there exists a class-
K function «x such that the solutions of the overall system, composed of (3.1.1))

and (3.1.2)), with arbitrary initial conditions, and the solution s(t) to the averaged
dynamics (3:2.2) with s(0) = 32N | 2;(0)/N satisfy

1 _
lim sup |2i(t) — s()] <~ <k>\2—L> , Vk>K, (3.3.1)
forallt=1,..., N, where
3L L
K=—4+—. 3.3.2
PA2 A2 ( )



34 Chap. 3. Robustness by Strong Coupling

In particular, the function 7y is defined on [0,p/3L?) and given by

o = (M) VR ViR (333

in which,
0, X =0,
_ 4 4
r(x) = ﬁ7 0<y< ;WpoL?’ (3.3.4)
(P*+8L2)x* 4p

_pP_
(p_3L2X)2 ) p2+20L2 < X < 3L2"

¢

Remark 3.3.1. The following remarks are intended to clarify the meaning of the

parameters and the significances in Theorem [3.3.2}

(a) Theorem asserts that for any given € > 0, there is a sufficiently large
k such that limsup, . |7i(t) — s(t)] < € for all i € N, and therefore the
robustness of the N individuals is achieved from Definition B.1.1]

(b) The ultimate bound in expressed by the function vy of , and the
value of K of may be conservative. However, the expressions
and yield a reasonable interpretation. For example, indicates
that the minimal coupling strength K increases as the Lipschitz constant
L increases while it decreases as the degree of stability p and the algebraic

connectivity Ao of the network get larger.

(c) Tt should be noted that the function vy and the value of K are affected by the
number N. The former is obvious due to the appearance of v/N in , but
the latter is indirect through the value of Ay. As was mentioned in Chapter
the second smallest eigenvalue Ay of the Laplacian matrix is called the
algebraic connectivity (or, density) of a graph G, which indicates how well
connected the graph is. It depends both on the topology of the graph and
the number N of the nodes. In Table , for the all-to-all network (with unit
weights), Az is the same as the number N, but for the ring network, increasing

N decreases Ay (because Ay = 2 (1 — cos(27/N))).

(d) Remark c) implies that, in order to maintain the same level of error while
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the number N increases, the coupling strength £ may need to be increased.
In fact, the ultimate error bound is given in and it can be seen that
v (1/(kA2 — L)) =0 < N/(k:)\g)) when £ is large enough (so that y is small
enough). Therefore, for the ring network where Ao = 2 (1 — cos(27/N)), we
have yxy = O < N3/ k), and for the same level of error, k should be increased
when N is increased. This phenomenon is observed in the simulations of

Chapter [ as well. On the other hand, for the all-to-all network, the error

bound is O (\/1//6) since Ay = N.

(e) In the particular case where k = 1 (e.g., [WS05, RBAQ7]), Theorem [3.3.2]
can also be used to deal with the robustness of networked system when the
coupling strength cannot be available such as biological systems, existence of

limitation in communication network, and so on. In this case, we have

t—o00

1 3L?
limsup |z;(t) — s(t)] < yn <)\2 — L) , Vg > s + L. (3.3.5)

Instead of increasing the coupling strength k, we can design the robust net-
work by increasing the algebraic connectivity Ao in . Therefore, it fol-
lows from Section that the robustness of the heterogeneous multi-agent
systems can be enhanced by adding and rewiring (or increasing randomness)

links to the underlying network structure.

O
Proof. By the coordinate transformation in (2.2.1])
14T
£ RT
where € = col(&, ..., En), the overall system (3.1.4) is transformed into
. 1 R
&= AN (t1n60 + QE) (3.3.6a)
£= —kAE+ RS (t, Inér + Qé) (3.3.6b)

because W€ = 156+ Q€. With e := & —s, equation (5.2.24a)) can be rewritten
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as

1 N1
é=1kf (t, Iye+ 1ys + Qg) - 1R S (8 1x) (3.3.72)

§=—kAE+ RS (t, Iye+1ns+ Qg) (3.3.7b)

Let V(e, €) := (1/2)e?+(1/2)|€]%. Then, the time derivative of V along (3.3.7)

becomes

V=t 157 (8 1ve + s + Q€)= 1R S(t e + 1ys)
+ 1Rt Lve + Lys) = 1 (2 Lvs) | — kETAE + ETRT (2, Lys)

+ [ETRTf (t, Iyve+ 1ys+ Qé) —TRTf(¢, 1Ns)}

which leads, by the mean-value theorem, to

e (%)) - e oL h) ST\ £
L e TRl BURLEE
cT pT B .
+ a(gajjf)‘w <1N€+Q5> + TRT f(t, 1ys)

with some z € RV, w € RV, and ¢ € R. Since

Ofn

cT pT .
M = ETRTdiag <§£(t7 w1)7 ceey %(t ’LUN)) )

ox ‘w
it is seen by (3.1.3)) that

O(ETRT f)

< L|R||§], Vt=>0
2| | <zlRIE, iz

and similarly that
'5(1% )

ox

< LVN, vt>o.

z
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Therefore, using (3.2.3) and the fact that ||Q|| = v/N and |R|| = 1/v/N,

v < —plel + V2l — mnlé + LRI (VEIel + 111E])

+[RTf(t, 1ns)|I€]
< —ple” + 2L[el|¢] — (kA2 — L)|E]* + |RT £ (¢, 1ns)|[€].

Lemma3.3.1]is employed with a := —L, k := kAo—L, and 0(t) := |RT f(t,1ns(t))],

and we obtain that
: - 1
V<=2V if 2V =e? + €2 > |RTf(t, 1ns)*r (K) (3.3.8)

where ¢ > 0 and the function r is given by (3.3.4)) (which can be seen by following
the proof of Lemma in the Appendix |A.1). Inequality (3.3.8) implies that

1
limsup 2V (t) < limsup |RT f(t, 1 s(t))|*r (/@) )
t—o0

t—o00

By (3.1.3) and Lemma we have that

lim sup|RY f(t, 1x5(t))| < | R||VNM <limsup |s(t)]>
t—ro0 t—o00

1 s L) < (M)

t—o00 p

Finally, since
- e
x—1N8:W715_1N8=1N€1—1N5+Q§:[1N7Q] [51 )

and the vector norm of the i-th row of [1x, Q] is VN by the construction of W,

we have

2 — s| < VNy/|e]2 + |€]2 = VNV2V.
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Therefore, for any ¢ € N,

1i£risgiplwi() ()|<M \ﬁ\/

if K = kAy — L > 3L%/p. This completes the proof with (3.3.2) and (3.3.3). O

The proof of Theorem enlightens the following. The quantity |RT f(¢, 1xs)]
has the meaning of ‘measure of heterogeneity’ in the sense that, if all agents are

identical; f;(t,s) = fo(t,s) for all s and i € N, then
RTf(t, lNS) = RTle()(t, 8) =0.

More specifically, if we denote the first column of R” by r; so that RT = [r{, R]

with a matrix R, then it follows from RT1y = 0 that r = —]:ZlN,l. Hence,
fi(t,s) fa(t,s) — fi(t,s)
RTf(t, 1NS) = [7"1, R} = R :
fN(ta*S) fN(t,S)—f1<t,S)

In particular, if RT f(¢,1xs) = 0, then it can be seen that

Jim (1) — ()] = 0,
Vi,j € N, with some k > 0. While this can be seen directly from , it also
follows from by appending R f(¢,1x&;) (which is 0) and utilizing the
Lipschitzness of f (Assumption . (Indeed, if £(t) — 0 then z;(t) — (1),
Vi, since £ = RTz = R[:UQ —21,...,2n5 —21)7.) The latter approach reveals that
convergence of & (t) to zero is in fact regardless of the behavior of &1 (¢). Under the
stability property of fj (Assumption, the state &1 (t) reaches a certain steady
state forgetting the effect of the initial condition of &;(0) and £(0), and this is in
contrast to the ‘average consensus’ of [SSB09L [OS07, WSATIl [KSS11) [ZHLII], in

which the agreed trajectory reflects the initial conditions of the networked agents.

Corollary 3.3.3. (Asymptotic convergence to s(t)). Under Assumptions (3.1.1}

1||
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3.1.2) and the trajectories of the individual systems (3.1.1) with (3.1.2])

and arbitrary initial conditions asymptotically converge to the solution s(t) of the
averaged dynamics (3.2.2]) with s(0) = Zf\il x;(0)/N, if all agents are identical
(fi(t,s) = fo(t,s) for all s and i € N) and k > K, that is,

lim |z;(t) —s(t)] =0, Vk>K,

t—o00

foralli=1,..., N, where

In particular, if we only care about the asymptotic consensus and synchro-
nization between individual systems in the case of homogeneous multi-agent sys-
tems, the averaged dynamics and the stability property (Assumption [3.2.1)) are

no longer needed.

Corollary 3.3.4. (Asymptotic consensus and synchronization). Under Assump-
tions and|3.1.2| the trajectories of the individual systems (3.1.1]) with (3.1.2)
and arbitrary initial conditions asymptotically converge to each other, if all agents

are identical and k > L/\g, that is,

L
lim |z;(t) — ()] =0, Vk>—,

t—o0 )\2

forallé,5=1,...,N. O

3.4 Illustrative Example

3.4.1 Effect of strong coupling

In this section, we illustrate, through simulation studies, that strong coupling
enhances the robustness among heterogeneous multi-agent systems. In computa-

tional neuroscience, one often uses the following simplified leaky integrate-and-fire

A Lt &
¥ el I o
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model [OBHQ9].
CmVi(t) = —gm Vi(t) + IF7(8) + L™(t)

where V; is the membrane potential of the i-th cell, ¢, and g,,, are the mem-
brane capacitance and conductance which can be perturbed by variations, I¢**
is an external input current flowing into each cell, and I'™ is the current due to
the interactions with other cells within the network. The external current [¢*
represents the collective effect of inputs coming from other areas, outside of the

studied network, and is modeled as
IEPH(t) = I (t) + Ami(t)

where I7""(t) is the mean value of the input, A measures the amplitude of
input fluctuation, 7;(¢) is the noise of unit intensity. The interaction current I
represents the effect of gap junctions connecting neuron ¢ and other neurons within
the network, which is usually modeled as a simple ohmic conductance between

their membranes,
‘ N
I () = vgap Y ij (Vy(t) = Vi(#))
j=1

where 744y is a strength parameter and «;; is the (4, j)-th entry of the adjacency
matrix of the given networkH This model fits to the system f con-
sidered in Section with V; = z; and 740p = k. In particular, if I () =
10sint + 10m; sin(w;t + 6;) where m;, w; are realizations of standard normal dis-
tribution N(0,1) and 6; is a realization of uniform distribution on [0, 27|, then it
is the same as the model in the following group of heterogeneous subsystems with

cm =1and gm, = -1, gm, = —0.75, gm; = —0.5, gm, = 0.5, gm; = 0.75:

2In this model, the membrane potential is known only in the subthreshold domain, as the

precise voltage trace of the spike is ignored.

A L)) &
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Figure 3.2: Simulation results with & = 2 and £ = 10. The blue and the
black curves represent the trajectories of 5-agent systems and
the trajectory s(t) of the averaged dynamics, respectively.

filt,z1) = —21 + 10sin(t) + 7.15 sin(—0.38t + 1.90),

folt, w2) = —0.75z5 + 10sin(t) + 3.72sin(0.80¢ + 1.85),

fa(t, x3) = —0.523 + 10sin(t) — 18.25sin(—0.94¢ + 1.63), (3.4.1)
fa(t,x4) = 0.524 + 10sin(t) — 1.42sin(—0.87t + 2.91),

Fs(t,w5) = 0.75z5 + 10sin(t) + 6.01sin(0.90¢ + 6.21).

Note that there are two unstable agents (i = 4,5) in the group (3.4.1). In this

case, the averaged dynamics of the subsystems is obtained as

1 1
§= s+ 10sin(t) + - {7.15sin(~0.38¢ + 1.90) + 3.725in(0.80¢ + 1.85)

— 18.25sin(—0.94¢ + 1.63) — 1.42 sin(—0.87¢ + 2.91) + 6.01 sin(0.90¢ + 6.21) }.

Although the group includes two unstable agents, the averaged dynamics is stable
in the sense of averaging effect. Therefore, we can predict the bounded collective
behavior when the coupling is strong. Here, we assume the network topology is
the undirected connected ring graph with unit weights.

The effect of strong coupling k is seen clearly by comparing Figure With
The simulation results show that by increasing the coupling strength, the
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Figure 3.3: (a)—(b): The solid and dashed curves represent the maximum er-
ror distance between x;(t) and s(t) (i.e., maxo<i<ioien |Ti(t) —
s(t)|) of 30-agent systems and the theoretical upper bound in
Theorem with respect to the coupling gain k. (c)—(d):
Tightness gain curves, E,(k, 30).

behaviors of all agents approach the trajectory of the averaged dynamics.

3.4.2 Tightness of upper bound

Our remaining task is to verify whether the proposed upper bound (3.3.1)) in
Theorem [3.3.2| can be a tight upper bound. We consider a group of heterogeneous

multi-agent systems with
fi(t, l‘z) = (—1 + 5z)xz +m; sin(wit + 01), 1€ {1, R ,30},

I

U
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where 6;,w; ~ N(0,1), 6; ~ uniform|0, 27], and m; ~ uniform|[1,10]. The tight-
ness of upper bound can be calculated by defining the tiginess gain as

Ey(k,N): = Theoretical upper bound with & and N

Maximum error bound with k£ and N
v (k)
maxg<¢<10, ieN |Zi(t) — ()]

Figures|3.3(a)|and [3.3(b)|illustrate the theoretical upper bound in (3.3.1)) and

the maximum error distance between x;(t) and s(¢) when the coupling gain k is

given. Even though the theoretical upper bound can be determined conservatively

when the coupling gain k is small, but for a large k, the theoretical upper bound

can be tight, as seen in Figures [3.3(c)| and |3.3(d)| . Furthermore, by comparing

Figure [3.3(c)| with [3.3(d), we can see that ring topology gives more tight bound

than all-to-all topology.

The effect of increasing the number of agents about the upper bound can be
seen in Figure[3.4] As mentioned in Remark[3.3.1)(d), in Figures[3.4(a)] and [3.4(b)]
the upper bound for the ring and the all-to-all topologies has O(v/N3) and O(1)
when £ is large enough and fixed. In Figures [3.4(c)[and [3.4(d)}, the upper bound

can hardly be “tightened” as the number of agents increases.
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Maximum error bound

Tightness gain

Figure 3.4: (a)—(b):
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The solid and dashed curves represent the maximum

error distance between z;(t) and s(t) (i.e., maxo<t<10,ien |Ti(t) —
s(t)|) with the coupling strength & = 100 and the theoretical
upper bound in Theorem with respect to the number of
agents N. (c)-(d): Tightness gain curves, E4(100, N).
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3.5 High-Order Heterogeneous Multi-Agent Systems

In previous sections of Chapter [3] the robustness of the heterogeneous multi-
agent systems composed of first-order dynamics has been considered. However,
many physical systems usually result in complex high-order dynamic models, e.g.,
pendulum equation, mass-spring system, oscillators, and so on.

In this section, we establish a mathematical framework for robust consensus
and synchronization of high-order heterogeneous multi-agent systems and inves-

tigating the interplay between robustness and strong coupling.

We consider a group of N dynamic objects represented by
il = fit,2") +u', ieN={1,2,...,N}, (3.5.1)

where z¢ = col(z?,...,z%) € R" is the state and u' € R" indicates interactions
with other objects through the network. Let f; : R™ — R be the j-th component
function of f%, so that fi(t,x%) = col(fi(t,z%),..., fi(t,x%)).

Assumption 3.5.1. (Individual system). The function f(¢, %) of the individual
system is uniformly bounded in ¢, continuously differentiable, and globally
Lipschitz in 2% uniformly in ¢; i.e., there exist a non-decreasing function 3(a) and
a constant L such that

. Y
FRCOIEF N oSl

<L Vz'eR", Vt>0,VieN, (3.52)

where df 7 (t,2%) is a n x n matrix whose (i, j)-

k
O, (t,a"). 0
J
By letting = := col(z!,...,z") and f(t,z) := col(f(t,2'),..., fN(t,zV)),
the inequalities (3.5.2)) can be written as
f(t. (In @ Ip)a)| < VNB(a),
] N (3.5.3)
= ‘ diag <f(t,x1), ce af(t,xN)) H < L.

ol dxN
We assume that the agent ¢ collects only the relative state information between

JL 2T II

Htw
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the i-th agent and its neighborhood by diffusive coupling input

u' =k Z aij(z? — ") (3.5.4)

where k represents the coupling strength and «; is the (i, j)-entry of the adjacency

matrix of the given network.

Let s(t) be the solution of the following averaged dynamics of (3.5.1))
1 & 1 i
= Z (t,s) 71 @I, ) f(t, Ay @ I,)s) =: f(t,s), (3.5.5)

with the averaged initial condition s(0) = SV L 7%(0)/N.

1=

Assumption 3.5.2. (Stability of averaged dynamics). There exist positive defi-
nite matrices P(t) and F(t) such that

0<cily < P(t) <coln, F(t)>cs3l, >0, Vt>0, (3.5.6)

which satisfies the matrix differential equation

—P(t) > P(t) { <Zb1§ ® In> %(t, (In®@1In)s)(Iy ® In)}

" {<le @ In ) gﬁ( t,(In ®In)3)(1N®In)}TP<t) (3.5.7)

+F(t), VseR"

where ¢1, co and c3 are positive constants. O

In fact, the Jacobian matrix of the averaged dynamics in (3.5.7) is a n x n

matrix whose (i, j)-entry is

1 T 8f _ 1 il afzk(tvxk) nxn

J
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and equivalently, the matrix differential equation (3.5.7) can be written as

7 T
0 0
—P(t) > P(t) f(t,s) + —f(t, s)| P(t)+ F(t), VseR™
ds s
Notice that if the Jacobian matrix of the averaged dynamics is Hurwitz and
constant, then there always exist positive definite matrices P(t) and F(t) satisfy-

ing Assumption [3.5.2] The following lemma is well-known mean-value theorem.

Lemma 3.5.1. (Mean-value theorem [Apo74]) Let S € R™ be an open and assume
that f: 5 — R™ is differentiable at each point of S. Let x and y be two points in
S such that the whole line segment [(x,y) := {tx + (1 —t)y : 0 <t < 1} remains
in S. Then for every vector a € R™, there is a point z € {(z,y) such that

#%f@>—f@»}=aT{af“)

O
From the stability condition of Assumption s(t) can be ultimately

bounded. The following lemma ensures the ultimate boundedness of the solu-

tion s(t) of the averaged dynamics (3.5.5)).

Lemma 3.5.2. Under Assumptions [3.5.1 and [3:5.2] the solution of the averaged
dynamics s(t) is globally ultimately bounded with ultimate bound (4ca/c3)3(0),
that is,

mMmm<@m> (3.5.8)

t—o00

O

Proof. We use V = s” P(t)s as a Lyapunov function candidate for the averaged
dynamics (3.5.5). The derivative of V' along the trajectory of the system is given
by

vV =sTP(t)f(t, s) + 5T P(t)s + fL(t,s)P(t)s
— sTP(t) (f(t F(t,0)) + sTP(t)s + (F(t,s) — f(£,0))" P(t)s
+ 25T P(t) f(t, )
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By Lemma there is a point z € [(0, s) such that
V =sTP(t) <g‘£ zs> +sTP(t)s + (gi

3 FoNT
=gT {P(t) <g£ ) + P(t) + (Z ) P(t)} s+ 2sTP(t)f(t,0).

Then, by Assumptions and we have

T
Zs) P(t)s 4+ 2sT P(t)f(t,0)

V < —sTF(t)s + 25T P(t)f(t,0)
< —cals|® + 2¢28(0)]s|
< —elsl®, Vls| = S25(0)
which show that the conditions of [Kha02, Theorem 4.18] are satisfied globally

with (4ca/c3)3(0). Thus, we conclude that the solution of the averaged dynamics
is globally ultimately bounded and the equation (3.5.8) is satisfied. O

The following theorem has the similar interpretation as Remark in The-
orem [o.0.2)

Theorem 3.5.3. Under Assumptions and there exists a class-
K function ¢* such that the solutions of (3.5.1)) with arbitrary initial conditions

and the solution s(t) to the averaged system (8.5.5) with s(0) = SN 2;(0)/N
satisfy

1 _
i () — <c* .0.
limsup |z;(t) — s(t)| < o <l<:)\2—L> , Vk>K, (3.5.9)

t—o00

forallt=1,..., N, where

_ 3L%*(2e2+1)2 L
K=""r "7 4+ = 5.1
e + " (3.5.10)

In particular, the function o* is defined on [0, 3L?(2co + 1)?/4c3) and given by

o*(x) = VN, /=2 (fﬁ(@) r(x) (3.5.11)

Cmin
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in which,
0, x =0,
8x 2¢.
r(X) = { Te3—L22at1)2x" 0<x< c§+L2(23é2+1)2’ (3.5.12)
{16c248L2(2e241)2 }x2 24 <y < PPet1)?
{403_L2(262+1)2x}2 " BTLPQer? X des
where cpax := max{ca, (1/2)}, cmin := min{cy, (1/2)}. O

Proof. The dynamics of the overall system, composed of (3.5.1) and (3.5.4)), is

written as
t=—-k(L®I)x+ f(t, ). (3.5.13)
By the coordinate transformation in ([2.2.1])

147
~iny ®1In

&1
— | =Wel,)r =
e~ [2] - e ne= [Fre]

where £ = col(&a, ..., &N), the overall system (3.5.13) is transformed into

€= <}V1% ® In) f (6 (v @ L)a + Qo 1))

| (3.5.14)
§=—k(A@ L)+ (BT 2 1) f (£ (v @ L)e + Q@ L)),

because * = (W ®@ I,,)¢ = [Iny @ I,,Q ® I,])¢. With e := & — s and (3.5.5)),
equation ([5.2.24b)) can be rewritten as

6 — <]171% ® In> f (t, (Iy@Le+ (In®1y)s + (Q® In)g)

- (;71% X In) f (tv (1N ® In)s) (3'5'15)

§= k(A L)+ (RT @ 1L,)f (t, (Iv®In)e+ (In ® In)s + (Q ® In)é) :

Let a Lyapunov function be
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The time derivative of V' along becomes

V =¢"P(t)e+ e P(t)e + e P(t)é + %fTE + %éTf

= {fT (t, (In® e+ (Iny @ In)s +(Q & In)é) — it (v @ L)e + (Iy ® I,)s)

T T 1 T g
+ (A )e+ (In®@1,)s) — f (t,(1N®In)s)}(N1N®In> P(t)e

+ el P(t)e 4+ T P(t) (;rlﬁ ® In> {f(t, (In®@ L)e+ (Iy ® I)s + (Q ® I,)€)

—ft,(In @ I)e+ (In @ 1p)s) + f(t,(In @ In)e + (I ® Iy)s) — f(t,(Iny @ In)s)}
—kETA@ L)+ (RT @ 1,) {f(t, (In®@L)e+ (Iy ® I,)s + (Q @ I,)€)
—flt,(Ay® In)s)} +EN(RT @ L) f(t,(In ® I,)s).

By Lemma |3.5.1] we obtain

r0f7(t, (Iy ® In)e)

) T
= 1 I,
V=e (Iy®I,) De

) (;flﬁ ® In>T P(t)e
‘ <1T ® In>T P(t)e + T P(t)e

1N®I

rOfT

+&MQe )T

(Iy®Ip)e

Q®I)£ k(A ® 1,)E

of(t, x) ‘
ox

+ el P(t) <1T >
+eT'P(t) <1T >
)

+E"(RY @ I,) == (t ] Iy ® I, )e+£T(RT®I)

(Q®I,)E
q

+&"(RT @ I,) f ( (Iy ® I,)s),

with some z € R”, w € RN™, and ¢ € RV". It is seen by (3.5.3), (3.5.6), and the

Al 2 of 8t
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fact that ||Q| = v/N and ||R|| = 1/v/N that

)

T
FQon) Y| (Lifen) P <aldd. w0

ox N
ST(RT®In)5f€(;;$)‘q(1N®In)e < L)é|lel, vt>o0, (35.16)
EN(RT @ 1) afgf) ‘q(@ ® I,)E| < LIE?, vt >o0.

Therefore, using (3.5.7)), and (3.5.16)), it follows that

V < —cslel* + 2caLlel|€] — kX2|€]* + Llel|] + LIE* + [(RT ® L,) f(t, (In ® I,)s)]| €]
= —cslel> + L(2c2 + 1)[el|é] — (kA2 — L)€ + | (RT ® L) f(t, (1n ® I))s)| €]

T
[l e ] e
|é| _L(2622+1) kf)\Q _ I

€]
With k1 ;== kXo — L and a = —L(2C22+1), the following lemma can be employed to

find the region for V < 0. By Lemma [3.3.1] and (3.5.6), it is seen that

+ ‘(RT@)In)f(t, (1n ®In)5)’ |§:|

V< —h(lel*+IE%) it le]” + €7 =

(RT & L) f(t, (Ix @ I)s)|*r <k:1>

max

which implies that

limsup V (t) < lim sup cpax |(RT®In)f(t, (Iy® 1) )‘ r < 1 > .

t—o00 t—o00 kl

By (3.5.3) and , we have that

(R" ® I,) VN B(limsup |s(¢)|)

t—o00

- (1250 (1)

limsup V() < ¢max
t—o00
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Finally, note that

- (@ L)s=W1®IL)— (Ixy®1I,)s
= (In ® In)é1 — (In @ In)s + (Q ® I)€

Then, by the fact that ||[1y, Q] ® L,|| < v/N and (3.5.6),

- %
|z — | < |z — (Iy ® I)s| < VNy/|e]2 + |2 < VN .

Cmin

Therefore, for any i € N,

limsup |z;(t) — s(t)] < VN, /225 (402,3(0)> r <kll> (3.5.17)

t—o00 Cmin C3

if ki =kXo— L > 3L2Qet 1)’ gy this, the class-IC function ¢* in (3.5.11)) and

4c3

the constant K ([3.5.10)) are found. [

In this section, it is worthwhile to mention that Assumption [3.5.2] is more
general assumption than Assumption [3.2.1] in Section [3:2] and Theorem [3.5.3]
ensures that the robust properties with the strong coupling can be also hold for

high-order heterogeneous multi-agent systems.



Chapter 4

Robustness by A Large Number of
Agents

In this chapter, we extend the result of Chapter [3] to the case where the het-
erogeneities of multi-agent systems are affected by the parametric variations in
the individual agents. This chapter is devoted to explain how a large number of
agents may be robust to the variations which is realized by the random variables.

Consideration of heterogeneous agents in this way may explain one of the
features of biological organs that they are meaningfully working well even though
they consist of nonideal, imperfect, and fragile building blocks [PLST07, [BST11]
PS07]. Indeed, the fact that any organ is composed of huge number of cells reduces
the chance of ending up with abnormal averaged dynamics, and the fact that they
are interconnected in a certain way (possibly with large coupling coefficients)
implies the operations of the individual cells are not too different from others,
and in this way, some malfunctioning cells can operate like normal ones within
the network. If the lesson is transferred to another domain such as sensor networks
[OSS05], it becomes clear that one can enhance accuracy not by equipping with
precision device but by employing many (cheap) sensors (which may include a
few of defective ones) and combining their internal filters, such as Kalman filters,
through the strong consensus network.

The analysis of the effect of large number of agents is very rare in the literature,
although there is only one paper [TSP10] in author’s knowledge that deals with the

similar problem. However, they dealt with identical node dynamics interconnected

3 ey 211
53 .-':lx_i ""|-.I'.I I| !
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with all-to-all network topology, by different analysis method. On the other hand,
when we deal with large number of agents, the use of the averaged dynamics is
very helpful. To see this, we note that the averaged dynamics is still affected
by the variations of individual agents. For example, suppose that there is only
one abnormal agent (i.e., having different vector field from others) in a group of
identical and normal agents. If N is not large, the averaged dynamics may be
affected heavily by the abnormal dynamics of the agent. Then, how to make the
averaged dynamics robust to the perturbations in the abnormal agents? This is
where the large number N comes into the picture. Indeed, the law of large number
plays a central role in the averaged dynamics, and therefore the robustness of the

averaged dyanmics can be obtained.

In this chapter, only the parametric variations are dealt with for quantitative
analysis, and the vector field f;(¢, z;) is supposed to be dependent on some param-
eters of random variables. With this setup, we additionally introduce the expected
averaged dynamics as a reference system which is not affected by the variation of
the agents, and show that amount of individual variation of each agent, that is
contributed to the averaged dynamics, gets smaller as the number of agents in-
creases, and thus, the averaged dynamics becomes close to the expected averaged
dynamics. Finally, combining the results of Chapter [3] and Chapter [, it is not
difficult to infer that strong coupling and a large number of agents imply robust-
ness of consensus and synchronization against heterogeneity (here, heterogeneity

also includes uncertainty and/or external disturbance in each agent).

4.1 Problem Formulation

In this section we are more specific on the system diversity and derive quantitative
robustness measure under a large number of agents. For this, we introduce ran-

dom variables to represent the heterogeneous group of N dynamic agentsﬂ under

'For a similar reason as discussed above in Section the class of systems considered in

this section is scalar dynamics.

2] &-t]] 8
i ] 1
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consideration as

d
i = filt, ) +ui = go(t,xi) + Y Aijgi(t,m:) + u; (4.1.1)
j=1

for i € N, where g;’s are C! “generating functions" for the individual agent
function f;, and A;;’s are random variables having the expectation E{A;;} = 0
(without loss of generality) and the variance V{A;;} = O'j2- (0j>0) forallie N
and j € D:={1,... ,d}ﬂ It is assumed that A;;’s are mutually independent for
all 4, but possibly dependent for j. The individual system is divided into
two parts: a deterministic model for heterogeneous multi-agent systems go(t, x;)
and a sum of d randomly determined functions Z?:1 A;jgj(t, ;) depending on
time and the state. In fact, this term cannot handle realistic noise (e.g., white
Gaussian noise), but can handle the sinusoidal signal with random phase (see
Section for more details).
The averaged dynamics of is then given by

N d
- 1
:f(t,s):NZf(t s) = go(t, s) Z (4.1.2)
i=1 j=1
where A := Zfil A;j/N. It should be noted from [YGO3] that
- - o?
E{A;} =0, V{A;}= Nj (4.1.3)

Now let us consider the expected averaged dynamics which will be used as a ref-

erence for comparison:
sp = E{f(t,sp)} = go(t,sp), sE(0) =s(0). (4.1.4)

For the given dynamical system, we now define the notion of robustness in

probability for multi-agent systems which has variations.

2It is noted that (#.1.1)) is not a stochastic differential equation. Once those random variables
are drawn (or, realized) when the system is created, it remains deterministic. In this sense, we

share the philosophy of ‘random differential equation’ in [T'S13].

.__;rxﬁ-! _'-.‘I_':I_ -l_-ll -__.:.I'!



56 Chap. 4. Robustness by A Large Number of Agents

Definition 4.1.1. (Robustness in probability). The N individuals (4.1.1)) is said

to achieve robust consensus and synchronization in probability if for any given

€ >0,

lim P <limsup |zi(t) — se(t)] < 6> =1.

N—oo t—o00

foralli e N. O

Since we do not impose any particular conditions (such as probability distri-
bution) on the random variables A;;, they are unbounded, and thus, Assumptions
and [3.2.T] cannot hold for all cases. Instead, we impose assumptions on the

generating functions.

Assumption 4.1.1. There exist non-decreasing continuous functions M; : R>q —

R>( and constants L; > 0 such that

%(t,mi)

<L; Vt> 4.1.5
8$i — = _07 ( )

05 (t,20)| < M (i), \

for all ; € R, and j € DU {0}. O

Assumption 4.1.2. There exists p > 0 such that

990

5 (18) = D, (4.1.6)

for all se Rand t > 0. O

4.2 Robustness of Averaged Dynamics

In this section, we develop the robustness of the averaged dynamics by a large
number of agents. To show this, we first claim that as the number of agents N
increases in the network, the averaged dynamics with variations approaches
the expected averaged dynamics without them. For example, if f;(¢,z;) =
a;x; + A;, where a; and A; are independent and identically distributed random

variables with the average @ and 0, respectively, then the averaged dynamics

A L)) &

L
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becomes

When N gets large, the effects of individual variations in a; and A; get weakened

in the sense that the averaged dynamics can be regarded as
Sg = asg

which we may regard as a ‘nominal’” averaged dynamics with the standard devia-
tions are in the order of (1/v/N).

4.2.1 Probabilistic Analysis of Robust Averaged Dynamics

The objective of this section is to develop simple, but efficient procedures for
probabilistic analysis of robust averaged dynamics. To develop, we recall a well-

known fact for probability.

Lemma 4.2.1. (Chebyshev’s inequality). Let X be a random variable with
E{X}=pand V{X} =02 (¢ > 0). Then, for any h > 0, it holds that

N

P(X—pul>h)<?

2’

>

and therefore,

0.2

1= 05 < P(X =l <h) < PX — | < h).

The weak law of large number follows immediately from Lemma [4.2.1 By
(4.1.3), for any given € > 0, we have

2

_ 0; )
P(|Ajl<e)>1- NEEL VjeD,
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and

lim P (]Aj|<e) =1, VjeD.

N—o0

It means that if the sample size increases, then the arithmetic average Aj tends
more and more closely to the expected value E{A;} = 0. We note that the
variations in the averaged dynamics can be smoothened by the weak law of large
number.

The following lemma is the generalization of the addition rule for probability.

Lemma 4.2.2. Let Aq,...,Aq be d arbitrary events. Then

d d
ZP(Ai)—dJrlSP(ﬂAi).

=1 =1

Proof. We will prove by induction. It is clearly true for d = 1. If it holds for
d=Fk —1, then

k—1
ZP(Ai)—k:nLl:ZP(Ai)—(k—l)JrlJrP(Ak)—l

<P<ﬂA>+PAk ) -1

r((04)n)
-r(fa)

in which, the second inequality follows from the fact that
P(A)+ P(B)—P(ANnB)<1
for any two events A and B. O

Now we compare two trajectories s(t) and sg(t) and claim that they tend to

be arbitrarily close with high probability when N is sufficiently large. For this,
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note first that

t
limsup |sg(t)] < limsup 90(t, 0)]
t—o00 t—o0 p
< Mo(0)
— p Y

59

which follows from Lemma for (4.1.4) under Assumptions and

Lemma 4.2.3. Under Assumptions and [4.1.2] the solutions of the averaged
dynamics (4 and the expected averaged dynamics (4.1.4)) satisfy that, for any

given € > 0,

lim P <hmsup\ (t)—se()| < e) =1
N—o0

t—o00

Proof. Let § := s — sg be the error between and - Then,

d
§=go(t,5+ sp) — go(t, sp) Z 9j(t,5+ sk)
=: f(t,é)
with §(0) = 0. With this, suppose that
A <L =4, VjeD.
= QdLj a

Then, it follows from Asummptions [£.1.1] and [£.1.2] that

of of d g
85( §) = g(tas) g 87

—p+ Z 1AjIL;
j=1

p
5

IN

IN

2

[,

(4.2.1)

¢

(4.2.2)

: 1_'_” [

1

I

1L
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Lemma [3:2.T now yields that

lim sup [3(t)] < I 70,
imsup |8 im su
t%oop - tﬁoop p/2
. ‘2?21 Ajg;(t,sE(t))
= lim sup .
t—o0 p/2

Therefore, if, in addition to (4.2.2),

Al < = Qj,
il < St o)) P

Vj €D, (4.2.3)
with any € > 0, then

lmsup ()| < =L 1RV (lmsup o 55(1)
t—00 p/2
- S5 [A]M; (Mo (0) /p) (4.2.4)
- p/2
<e.

Finally,
P (‘AJ| < qu and |A]‘ < Pjs V_] € D)

_ (d] {(|Aj| < ;) (14,1 < %)}

j=1

>3 P (181 6,) V(1851 < 95)) —d+1 by Lemma[IZ3

since one event implies the other and probability is not larger than 1, and Lemma

[42T] leads to
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In summary, we conclude that

Ed: (1 - 4d%§L§> (1 _ AdPa3 M;(Mo(0) /p)2> Caan

e2p2N

<P <limsup |s(t) — se(t)| < e> . (4.2.6)

t—o00

Note that this also implies (4.2.1)). O

4.2.2 Simulation Results

In this section we illustrate, through simulation studies, that a large number of
agents have robust averaged dynamics against the random variations which are
the realizations of the random variables.

As an example, consider a group of N agents with
filt,x;) = (=14 6;)x; + 10sint 4 10m} sin(0.1¢ 4 6}) + 10m? sin(10t + 62),

fori=1,2,..., N, where §;, m}, and m? are realizations of independent random
variables of standard normal distribution N(0, 1), and 6} and 6? are realizations
of independent random variables of uniform distribution on [0,27]. Since, from
trigonometric addition formulas, we can handle the following sinusoidal signal

with random phase such that

10m; sin(0.1¢ 4 6;}) = 10m; cos 6; sin 0.1t + 10m,} sin 6} cos 0.1,
10m; sin(10t + 6}) = 10m} cos 8} sin 10t + 10m} sin 6} cos 10t.

In order to represent the agent in the form of (4.1.1)), we take

Ap =4,
Ajo = 10m} cos 6},
Aig = 10m11 sin 011,

Ay = 10m? cos 62,

AiS = IOTI”LZ2 sin 022,
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with

Indeed, E{A;;} = 0 for all i and j since mg and 0{ are independent and
E{mf } = 0. Also, A;; are independent for ¢ while it is not for j. The averaged

dynamics is given by

N N
1 . 1 1. 1
= <—1 + N E 6i> s+ 10sint + N E 10m; sin(0.1t + 6;)

=1 i=1

1 & 1 &
+N;10m$sm(10t+6?), s( N;

and thus the expected averaged dynamics is given as

1
$p=—sp+ 10sint, sg(0) = *sz(o)

Assuming that these agents are interconnected by the ring network, and it
can be observed by Monte Carlo experiments that the solution s(¢) tends to sg(t)
as N increases. For example, Figure [£.1]is taken from six random samples of the
group of 5 agents, and shows the trajectories of s(¢) (solid) and sg(t) (dashed),
while Figure is for the case of 100 agents. It is seen that, as N increases, (the
solution of) the averaged dynamics from the random samples becomes closer to

(the solution of) the expected averaged dynamics, as expected.
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Figure 4.1: Plots of s(t) (solid) from 6 sample runs for N = 5. The solution

sg(t) of the expected averaged system is also drawn (dashed).
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Figure 4.2: Plots of s(¢) (solid) from 6 sample runs for N = 100. The solution
sg(t) is also drawn (dashed).
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4.3 Strong Coupling with A Large Number of Agents

Until now, we have seen the effect of a large number of agents in the averaged
dynamics. In this section, we combine two ingredients (i.e., strong coupling and a
large number of agents) in order to achieve robust consensus and synchronization
in probability. As mentioned in Remark (a) of Section strong coupling
makes the trajectories of individuals close to that of the averaged dynamics, i.e.,

for any € > 0, there is a sufficient large coupling gain k such that

limsup |z;(t) — s(t)| < =, VieN.

t—o00

N

Moreover, Lemma [£.2.3] ensures that the averaged dynamics can be robust if the

number of agents IV increases, that is to say, for the given e,

N—o0 t—00 2

lim P <limsup|s(t) —sp(t)| < 6> =1.

Therefore, we can easily infer from the triangular inequality that for any given

e >0,

lim P <limsup|xi(t) —sp(t)| < 6> =1, VieN.
N—o00

t—o00

We note that the robust consensus and synchronization in probability can be
achieved by Definition
The following theorem characterizes the effect of strong coupling and a large

number of agents and is the main result of this dissertation.

Theorem 4.3.1. Under Assumptions and there exists a class-
K function 3 such that the solutions of the overall system, composed of (4.1.1)

and (3.1.2)), satisfy that

t—o00

L
d .
> (1 _ i)N + Z (1 _ 4d20]2LJ2> <1 B 4d2‘7g2‘MJ(M0(0)/p)2> iy

e2p2N

1 _
P(limsup lzi(t) — sp(t)| <N <]<?)\2—N> +e€ Vk> Ky, Vie N)

(4.3.1)
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where sg(t) is the solution of (#1.4) with sp(0) = SN, 2;(0)/N, € is any positive

number, and

d 6£2 Ly
Ly :=Lo+ N L. d Ky:= =N 4= 4.3.2
N ho ;UJ o AN TN (432)

The function v} is defined on [0,p/6L%;) and given by

v (x) =My <2MN > VN\/rn(x (4.3.3)

in which,
d
My (a) = My(a) + NZaij(a), and
j=1
0, x =0,
rn(x) == IH% 0<x< % (4.3.4)

(p?+32£2,)x> Sp
G6L%x)2 ° pPrsoLs ~ X < 6£2 :

¢

A few factors are related to the upper bound of limsup,_, ., |z;(t) — sg(t)| and
the probability estimation in . The upper bound tends to increase as N
increases since Ly and My increase. (Also, A is affected.) The lower bound of
the probability (the right-hand side of (.3.1))) tends to decrease as the increment
of d, 0, Lj, M; and the decrement of p, which intuitively makes sense. It is
also true that, with e getting larger, the lower bound of the probability increases.
In any case, as k — oo, the upper error bound in tends to €, and the
probability of achieving this error bound tends to 1 as N — oo. The latter can
be seen from the right-hand side of , with

Therefore, it is asserted that, with a large number of agents, it is more likely to

A & 8!

=1
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have lim sup,_, o |2;(t) — sg(t)| less than or equal to the error bound for all i € NV,

and the error bound can be made small with strong coupling k.

Remark 4.3.1. As in Remark[3.3.1](d) in Section[3.3] let us look into the ultimate
error bound «y3; in more detail. For this, suppose that, without loss of generality,
the function M; in Assumption is taken as an affine function of |z;| (for
example, M;(|z;|) = sup;>q |g;(t,0)|+ Lj|z;| does the job). Then, with sufficiently
large k, one can show that v3 (1/(kA2 — Ly)) = O (\/W)

¢

Proof. In this proof we combine the analysis performed for Theorem [3.3.2] which
discusses the closeness between x;(t) and s(t), and the analysis about the closeness

between s(t) and sg(t). For this, let us first suppose that
|AZ]’ < NO’j, Vi € N, VjeD. (435)

Then, it follows from Assumption that

d
|fi(t, )| = |go(t, @i) + ZAijgj(ta xi)
j=1
d
< Mo(|zil) + Ny 03 Mj(|zi]) = M (|aal),
j=1
and that
of dg 9y
i N 0 . Y95 .
‘a’tl (t’ xl) oz, (t> xz) + JZ; Azy 0z, (tu 551)
d
< LO—G—NZO‘]'LJ' =Ly,
j=1

so that Assumption holds with M and L replaced with My and Ly, re-
spectively. Moreover, if (#.2.2)) holds as well, then [(9f/ds)| < —p/2 (not —p!)
as seen in Lemma [£:2.3] In this case, Theorem [3.3.2] guarantees that

limsup |z;(¢) — s(t)| < vn

1 _
msu (kA2_£N>,v > Ky, Vie N
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in which, v, Ky, and ry are given by (4.3.3), [@.3:2), and (£3.4), respec-

tively (which are obtained simply by replacing p in Theorem with p/2).
Now, if (4.2.3) holds additionally with some ¢ > 0, then we have seen that
limsup;_, . |s(t) — sg(t)] < e in (4.2.4). Thus, combining these two by trian-

gular inequality, we obtain that

. * 1
limsup |z;(t) — se(t)| <N <k>\2—['N> e

t—o00

for all k > Ky and i € NV.

To see (4.3.1)), it is left to compute the probability that all (4.2.2)), (4.2.3),
and (4.3.5) hold. For (4.3.5)), it is seen that

P(;Aijy < No;,¥i € N',Vj € D)

HP (|Aij| < Noj,Vj € D) by independency of A;j for 4

N d
>TI (D P(Ayl<Noj)—d+1| by Lemmaf23]
=1 \j=1
N d
21_[1 z; (1 N —d+1 by Lemma [.2.]
1= J=
d N

Finally, we have that

P ((([E33) holds) () < and hold))
> P m ) holds) + P (( and hold) — 1

2 10.2

]=1

which concludes (4.3.1]). O
qet)etm

— 1
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4.3.1 Simulation Results

Here, the simulations are performed the same as in Section In order to see
the effect of a large number of agent, the simulation results of two sample runs
with N =5 and N = 100 are depicted in Figure[£.3] In each case, the coupling
gains of £ =5 and k = 500 are used, respectively.

The effect of strong coupling k is seen rather clearly by comparing Figure
4.3l (a) with (b), and (c) with (d), respectively. On the other hand, by comparing
(a) with (c), and (b) with (d), it is seen that, when N is larger, the solutions
of each agents (solid blue) tend closer to the dashed black curve, which is the

solution of the expected averaged dynamics
| N
$p=—sp+10sint, sp(0) = > 2i(0).
i=1

This is because the averaged dynamics, given by
1< 1 &
§ = <—1 + 5 Z;@) s+10sint + Z; 10m; sin(0.1¢ + 6})
1= 1=

N
1
+ > " 10m7 sin(10t + 67),
=1

gets close to the expected averaged dynamics with large N. In the sample run for

N =5, it was

§ = —0.437s + 10sint + 0.445sin 0.1t + 6.005 cos 0.1t 4 6.588 sin 10t
— 5.523 cos 10t,

and

$=—1.034s + 10sint + 0.608 sin 0.1¢ — 0.833 cos 0.1t — 0.671 sin 10t
+ 0.08 cos 10t

for N = 100.

It is also observed that increasing N (under the same k) results in more

A 2t} &
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Figure 4.3: Trajectories of N-agent systems with coupling strength k are de-
picted as blue solid curves, and the trajectory sg(t) of the ex-
pected averaged system is given as the black dashed curve.

deviation by comparing (a) and (¢); (b) and (d), as discussed in Remark |3.3.1{(d).

Finally, it is stressed that there were 2 unstable agents out of 5 when N = 5, and

12 out of 100 when N = 100, in the sample run. By repeating the sample runs,

we observe that the error |z;(t) — x;(t)| is small for all 7,5 € N when k is large,

and the deviation of x;(t) from sg(t) is small with high probability when both N

and k are large. Fig. [£.3]is a typical one of them.

A & 1—l| S1ET!



Chapter 5

Optimal Distributed Kalman-Bucy
Filter in Sensor Network

In the first part of the dissertation, the robustness of consensus and synchro-
nization in the heterogeneous multi-agent systems has been addressed. As men-
tioned in Section [I.1.3] the phenomena of the robustness in networked systems
appear in various areas. In engineering, distributed sensor network is one of the
major application area of the robust consensus and synchronization, particularly
in surveillance and monitoring of an environment, tracking of target, and so on
[ASSC02,, ICHZ02, [CMKBO02, [DWO05l, [EGHK99L [FOSPP06, IGDW94, [OSS05]. A
fundamental problem in distributed sensor network is to achieve estimation of
target by using distributed algorithms.

In [GDW94, RDWS93|, the decentralized filtering problem involving the lo-
cal Kalman filters is solved with the information topology which is all-to-all net-
work, and thus it is not scalableﬂ since the complexity of the communication is
O(N?). In order to deal with scalable sensor network, the authors of [OS07]
proposed Kalman-Consensus filtering algorithm in which each node only com-
municates messages with its neighbors on a network. Furthermore, in accordance
with the local measurement and error covariance matrices, some novel distributed

Kalman filtering methods are provided to further improve the local estimation

In the context of interconnected dynamical systems, scalability is the property that analysis
and design complexity grows slowly as compared to system size, i.e., number of subsystems. In
practice, if there are a large number of things (V) that affect scaling, then resource requirements

(for example, algorithmic time-complexity) must grow less than N2 as N increases.

71 .-':l'\-\.—= -'%;: - 1: !
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performance for each node by applying the internal model average consensus es-
timator [BFL1IL [Geol3].

This chapter addresses a design and analysis of distributed Kalman filter
(Kalman-Bucy filter for continuous-time system) in the sensor network. In or-
der to recover the optimality of the centralized Kalman-Bucy filter, we intro-
duce the averaged distributed Kalman-Bucy filter which is the average of all dis-
tributed Kalman-Bucy filters’ dynamics. The underlying philosophy for designing
distributed Kalman-Bucy filter is similar to the robustness of the consensus and

synchronization problem.

5.1 Reviews of Distributed Kalman-Bucy Based Filter-
ing for Sensor Network
In this section, we briefly review the previously proposed Kalman-based filters

in sensor network. To formulate the distributed sensor network, we consider a

continuous-time linear systenﬂ

& = Az + Bw, (5.1.1)
H1 U1 Z1
z=Hzx+v=| ' |z+ | |=|": (5.1.2)
HN UN ZN
where x = col(z!,...,2") € R" is the state, z € R? is the measurement output,

w € R™ is the input (process) noise, and v € RP is the measurement noise. The
submatrix H; € RPi*™ is a partition of H such that Zf\;l pi = p, and v;, z; € RP:,
The noise signals {w, vy, -+ ,vx} are independent Gaussian signals of zero mean
with

E{wt)w" (1)} = Qd(t — 1), E{vi(t)o{ (1)} = Rid(t — )

foralli e N :={1,...,N}, where §(t—7) = 1if t = 7 and §(¢t —7) = 0 otherwise.

The forthcoming discussion is based on the following assumption.

?We consider a time-invariant linear system here for simplicity.
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Assumption 5.1.1. The matrix R; is positive definite (R; > 0) for all i € N,
and @ is positive semi-definite (@ > 0). The pair (A, By/Q) is controllable, and
the pair (A, H) is observable. O

Our assumption on the dynamical system to be estimated is that it is observ-
able only in a centralized sense, that is, the state of the dynamical system may
not be observable to individual agents but is observable when the measurements

from the agents are fused (i.e., (A, H;) is not necessarily observable).

5.1.1 Centralized Kalman-Bucy Filter

We first review the centralized Kalman-Bucy filter (CKBF) [BJ68]. The CKBF
of the plant ((5.1.1)) can be written as

&= Ai+ PHTR (2 — Hi) (5.1.3a)
P=AP+ PAT + BQBY - PH'R'HP (5.1.3b)

with P(0) = Py > 0, where £ € R" is the estimated state vector of z and
R = diag(Ry,...,RnN).

It follows from optimal control theory that the CKBF is optimal in cases
where i) the model perfectly matches the real system, ii) the entering noise is
white and Gaussian, and iii) the covariances of the noise are exactly known.
We note that the error covariance matrix P(t) is the solution of the differential
Riccati equation , and converges to steady state (finite) covariance if the
pair (A, H) is observable. Moreover, the steady state error covariance matrix P*
is the solution of the algebraic Riccati equation of , and thus it gives the

optimal gain. The following lemma is well-known result in optimal control theory.
Lemma 5.1.1. Under Assumption it follows that

(a) [LXP07, Theorem 3.2| the origin of the system & = (A— P*H'R™'H)x
with the unique positive definite solution P* > 0 to the algebraic Riccati
equation of ([5.1.3b)) is exponentially stable.

(b) [BJ68, Theorem 3.1] the origin of the system & = (A— P(t)H'R™'H)
with the solution P(t) of ([5.1.3b)) is exponentially stable.
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Centralized Kalman-Bucy filter

!
O{)
w| 2 =Ax + Bw / :
ﬁ
/UN

Figure 5.1: Centralized Kalman-Bucy filter.

Plant — Ad+ K(z — H?)

@
K =PHTR™! N
P=AP+ PAT + BQBT - PHTR™'HP

(c) |BJ68, Thorem 5.1] Py > 0 ensures that the solution P(t) of ([5.1.3b)) satisfies
P(t) >0 for all t > 0.

(d) JAMTI, Theorem 5.3 P(t) — P* as t — 0.

¢

A centralized filter requires communicating the entire measurement vectors
to a central node, and the implementation is depicted in Figure Although
CKBEF is theoretically optimal, the CKBF is impractical in large-scale dynamical

systems because it has some following disadvantages:

e CKBF requires long-distance communication since the sensors span a large

geographical area, e.g., surveillance and monitoring of an environment.
e A centralized scheme results in large latency.

e The centralized network cannot be robust under the malicious attack to the

center node, and it will leave severe consequences in the network.

In [HRL88, RDW9I], the authors focused on reducing the computational com-
plexity of centralized Kalman filtering by parallelizing computations. However,
they require all-to-all communication topology and assume that each subsystem

has full knowledge of the whole dynamics.

5.1.2 Kalman-Consensus Filter

In the sensor network, the most fundamental problem was how to develop a

distributed algorithm based on some traditional Kalman filtering schemes. A
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Kalman-Consensus filter

.1;71 = Ai’l +K1(211 — Hli’l) +")/P1 Z (.’fj —.fl)
JEN

l'“>

Ky =P HTR', >0
ot N Py = AP, + P, AT + BQBT — PP HIR'H, P,
an

&)

. /o
A (T — S = CE—
zi = Hiz +v; ® A
\O ZN TN

fi'N = A:i'N —+ KN(ZN — HN.fSN) +’yPN Z (@j — @N)
JENN

5

Ky =PyHERY, ~7>0
Py = APy + PyAT + BQBT — PxHL Ry Hy Py

Figure 5.2: Kalman-Consensus filter.

distributed Kalman filter has been proposed by Olfati-Saber in [OS07], which has

attracted a lot of attention in the literature.

The distributed Kalman-Bucy filter of [OS07| consists of N nodes, and each

node ¢ has the dynamics

;= Ay + PH RN (2 — Hia) +yP Y (8 — &), 7 >0 (5.1.4a)

JEN;
P, = AP, + P,AT + BQB" — PHI'R;'H;P, (5.1.4b)
with
P(0) =Py >0, (0)=2(0), VieN (5.1.4c)
where #; = col(#},...,27) € R™ is the i-th estimated state vector of z and

the set N is the neighboring nodes of the node 7. This is a “distributed” filter,
called ‘Kalman-Consensus filter (KCF)’, because each node i receives the partial
measurement z; only, and communicates the estimates ; with its neighborhood
under the communication network. The implementation of KCF can be seen in
Figure 5.2

The KCF estimates the state of plant in two steps: i) in the first step, local
Kalman filtering is performed on each sensor node to track the observable state of

the target, and ii) in the second step, each sensor node fuses the estimates of all

A L)) &

L
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its neighbors locally to get an improved estimate by using consensus algorithm.

Unfortunately, this idea has a few drawbacks as follows.

e Unless (A, H;) is observable for all ¢ € N, some component of the error
covariance matrix P;(t) may diverge that can be shown in Example [5.1.1}
Then, this will cause some overflow error in a digital computer and make

its implementation hard in practice.

e By the above observation, it is clear that each node maintains different error
covariances even if the estimate Z;(t) converges to x(t), and the optimal
estimation property of the Kalman-Bucy filter is lost, and therefore the

matrix P;(t) does not have the meaning of error covariance anymore.

e The condition (5.1.4c)), #;(0) = z(0) for all nodes, is unrealistic for estima-
tion problem. In fact, unless it satisfies the initial conditions, a simulation

shows the estimate error indeed diverges (see Example [5.1.2)).

Since the boundedness of P;(t) is guaranteed under the assumption that

(A, H;) is observable, we can observe the divergence property of KCF.

Example 5.1.1. With A = 0942 and H = B=Q = R = Py = Iy (H; is the first
row of H), the solution to the Riccati equation (5.1.4b)) for i =1 is

1 0
0 t+1

P =

The same phenomenon occurs also for the discrete-time version (Algorithm 3
of [OS07]). Consider A = 2[4 and H = B =Q = R = Py = I4 (H; is the i-th
row of H) under the cyclic graph (so that the node 2 has its neighbors 1 and 3).
Then, it can be seen that Algorithm 3 of [OS07] results in Sa(k) = diag(1,1,1,0),
and so, Py(k) is diagonal and p; ;(k) (i = 1,2,3) converges to 2 ++/5 while py 4(k)
diverges as 1,5,21,85, - - -, where p; ;(k) is the (i,j) component of P (k). O
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Figure 5.3: Simulation results of KCF with divergent P(t).

Example 5.1.2. Consider the plant with process noise as

(01 0 o] [o]
. 00 0 O 1
T = T+ w, w~ N(0,1),
0 0 0 1 0
00 -1 0 1
=: Az + Bw

and the initial condition z(0) = col(0,1,0,1). The group of N sensors can par-

tially observe the states of the target with measurement noise; that is,
zi = Hijz +v;, v;~N(0,1)

where

;

[1000], 1<i<N/4,
0100, N/4+1<i<N/2
[0010], N/2+1<i<3N/4,

[0001], 3N/4+1<i<N.

The plant is not observable by individual sensors, but is observable by all the
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Distributed optimal Kalman-Bucy filter

ﬁ;l :Ai‘l +K1(21 7H121)+’7 Z (i‘J 7.@1)
JENT

K, =NPHIR', ~v>0

— Py =AP + P A" + BQB" — NPUH] Ry 'H\Pi + k Y (P; — Py)

%/ JEN]
/7 .’f’ll P1
[ ]
[ ]

i} & = Ax + Bw Network

zi = Hijx + v; \C.) o Ti}v TPN

in = Adn + Kn(en — Hyén) +v Y (85 — i)
JENN

Plant

Ky =NPyHLRY, >0

Py = APy + Py AT + BQBT ~ NPxHERy\HyPy +k Y (P — Fy)
JENN

Figure 5.4: Optimal distributed Kalman-Bucy filter.

sensors. Now, the KCF [OS07] is given by with the initial conditions
#;(0) are randomly determined and P;(0) = Py > 0 for all i € N. We assume
that the sensors (N = 12) are interconnected by the ring topology network and
Q =R; =1 for all i € N. In Figure since (A, H;) is not observable, it is
seen that some components of the error covariance matrices P;(t) actually diverge.
In Figure it is also observed that the estimation error indeed diverges. ¢

5.2 Design of Optimal Distributed Kalman-Bucy Filter

In this section, we present a modified solution which overcomes all the above
drawbacks of the KCF. The proposed optimal distributed Kalman-Bucy filter (O-
DKBEF) is given by

N
i’i = Az; + NPzHZTRZ_I(Zz — Hl.fl) + ’YZ Oéij(.f:‘j — .ﬁl) (5.2.1&)
j=1
) N
Py = AP, + PA" + BQB" - NPHIR7'H;Pi+ kY _aij(Pj— P;)  (5.2.1b)
j=1

where z; € R" is the i-th state, v > 0 and k > 0 represent the coupling strengths,
and «;; is the (i, j)-entry of the adjacency matrix of the given network.

Here, the initial conditions 2;(0) and P;(0) > 0 can be anything and all differ-
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ent. It is noted that the modifications from (5.1.4)) are as follows: i) the number
of the agents, N, appears in the gains in (5.2.1a)) and (5.2.1b)), ii) the diffusive
coupling gain matrix is changed by I, in (5.2.1a)), and iii) more importantly, the

error covariance matrix is communicated in (5.2.1b|).

Remark 5.2.1. As seen in Figure the communication of error covariance
causes more information exchanged between nodes. The amount of information
exchanged between two nodes is 2(n+ (n+1)n/2) = n?+3n. For a cyclic network
of N nodes, it becomes (n? +3n)N. On the other hand, if each node is dispersed
in location and all the information is gathered by a center to use the CKBF, the
information delivered to the center is p/N, and the estimated information delivered
to each node is nN. Therefore, in terms of the amount of exchanged information,
distributed filtering has no benefits over the centralized one. However, in wireless
sensor network for example, each node has limited power so that they can only

communicate with their neighbors. O

Our approach is to view as a group of “heterogeneous” agents for i € N.
(It is heterogeneous because HZT R; 'H; is not the same among the agents.) To
analyze the behavior of heterogeneous agents, we employ the notion of averaged
dynamics proposed in Section The way to compute the averaged dynam-
ics of is to compute the “average of vector fields” of all agents after re-
placing the state of each agent (#; and P; in our case) by a common state (say,
xzs and S). Then, the dynamics about the common state is the averaged dy-
namics with its initial condition is also an average of the initial conditions of
all agents. (See Section for more details.) In our case, by the fact that
(1/N) Zf\il NHIR;'H; = HTR~'H, the averaged dynamics is obtained as

N
i = Aw,+ SH'R'H(x — z,) + 8 Y _ H R v,
=1

= Azy+ SHT'R™ (2 — Hux,), (5.2.2a)

N
S=AS+SAT + BQBT - § (Z HiTRilHi> S
i=1

= AS + SAT + BQBT — SHTR™'HS (5.2.2b)

A L) ¢
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with the averaged initial conditions (i.e., z5(0) = (1/N) 2N, #;(0) and S(0) =
(1/N) Zf\;l P;(0)). According to Section with sufficiently large coupling gains
(v and k in our case), the behavior of multi-agent system becomes close to
the solution of the averaged dynamics . And, fortunately, we note that the
averaged dynamics is nothing but the CKBF. However, a few technical assump-
tions in Chapter [3are not satisfied for our case, and so, we present an independent

analysis in this chapter.

Remark 5.2.2. The averaged dynamics is a conceptual one, and thus, it is natural
that the averaged dynamics ([5.2.2)) is not the same as any of (5.2.1)) even when
#;(t) = &;(t) and P;(t) = Pj(t) for all 4,5 € N and ¢t > 0. O

Remark 5.2.3. (Optimal recovery problem). The above averaged O-DKBF
is the same as the CKBF for the plant with a sensing
model z = Hz + v. It follows from Lemma[5.1.1)c) that there exists the positive
definite solution S* > 0 to the algebraic Riccati equation of , and the
error covariance matrix S(t) of is bounded even when the plant system is
neutrally stable or unstable. Thus, P;(t) — S(t) as t — oo for all i € N ensures
that P;(t) — S* as t — oo for all i € N and all P;(t), i € N, are bounded even
when (A, H;) is not observable which cannot be guaranteed in KCF . In
addition, if Z;(t) — x4(t) as t — oo, then we can expect that the proposed filter
(5.2.1) can recover the optimality of the centralized Kalman-Bucy filter in the
sense that the distributed filter estimate #;(¢) and the error covariance matrix

P;(t) converge to z5(t) and S(t) of the averaged O-DKBF, respectively. O

Remark 5.2.4. An internal model requirement is necessary and sufficient for
asymptotically synchronized behavior of heterogeneous agents [WSATI]. It means
that without global information of the matrix H” R~'H | it can hardly be obtained
that P;(t) — S(t) as t — oo for all i € N. In [BFL1I], in order to estimate the
constant value of H' R~ H and achieve optimal filtering by distributed scheme,
the number of node N and the structure of the network (all the eigenvalues of
the Laplacian matrix) are assumed to be known to all filters in advance. In this
section, instead of assuming that all filters know the structure of the network

in advance, we will show that all P;(t) approximately converge to S(t) and the

2] -] 8} 3

'Iu
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strong coupling makes the trajectories P;(t) of arbitrarily close to S(t). O

5.2.1 Robustness of Heterogeneous Agents with Locally Lipschitz

Nonlinearity

In order to consider the differential Riccati equation as a group of hetero-
geneous multi-agent systems, we need to reformulate the problem for the agent
having locally Lipschitz nonlinearity, because Assumption [3.5.1]is not satisfied for
the quadratic matrix equation in (5.2.1b)).

We recall a group of N dynamic objects (3.5.1) with coupling input (3.5.4)
represented by

N
.fi = fz‘(t, :IIZ) + k Z Oéij(l’j — :IZZ'), 1 € N, (523)
7j=1
where f; : [0,00) x R" — R" is a nonlinear vector valued function, and z; € R" is

the state.

Assumption 5.2.1. (Locally Lipschitz nonlinearity). The function f;(¢,z;) of
the individual system is bounded with respect to x;, uniformly in ¢, con-
tinuously differentiable and the Jacobian matrix [0f;/0x;] is bounded on a com-
pact convex set 2 C R™, uniformly in ¢; i.e., there exist a non-decreasing function

M : R>g — R and constant L > 0 such that, Va € Q, Vt >0, Vi € N,

afi
&xi

|fi(t,a)| < M(|a]), H (t,a)H < L. (5.2.4)

¢

By letting = := col(z1,...,xy) and f(t,z) := col(fi(t,z1),..., fn(t,zN)),
the inequality (5.2.4]) leads to

0
£t (I © L)a)| < VM (lal), Haﬁa,b)H <L (5.2.5)
forallt >0, a € Q, and b € QY ¢ R™ where QV is the N-th Cartesian power

of the set Q.

2] -] 8} 3
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Let s(t) be the solution of the following averaged dynamics of the agents

(.2-3)

N
Z NOL)f(t (Ix @ I,)s)

Z\H

(5.2.6)
=: f(t,s).
with the averaged initial condition s(0) = Zf;l z;(0)/N.

Assumption 5.2.2. The origin s = 0 of the averaged dynamics (5.2.6) is a
globally exponentially stable equilibrium point. O

At a consequence of Assumption there is a continuously differentiable

function W : [0,00) x R™ — R that satisfies the inequalities

c1ls? < Wilt, s) < cals|? (5.2.7a)

ow, oW
aTl 1f( s) < —csls)? (5.2.7b)
’ < cals| (5.2.7¢)

for some positive constants c1, c2, c3, and ¢4. In fact, Assumption [5.2.2] is more
restrictive than Assumption [3.5.2in the sense that the origin s = 0 is an equilib-
rium point for , but it is not necessary in . However, it can be seen
from [Kha02, Theorem 4.15| that Assumptionimplies Assumption [5.2.2] but
not vice versa when the origin s = 0 is an equilibrium point for .

The following theorem shows the robustness of consensus and synchronization
against heterogeneity of multi-agent systems and will play a key role to show the

ultimate boundedness of z;(t).

Theorem 5.2.1. Take r > 0 such that B, C 2. Under Assumptions 312
and there exists a class-KC function o and for every initial state x;(0), satisfy-

ing |2;(0)| < \/¢/(Ne)r, Vi € N, where ¢ := min{c;,1/2} and ¢ := max{c, 1/2},
there is 7" > 0 such that the solutions of (5.2.3)) satisfy

|:1ci(7f)!§0<k)\1L), WS T, k> K, VieN
—
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where o(x) := M(0)y/Necw(x)/c and

_ 3L%(cq + 1)% + desL 1 c*r? L
K = Aow | ——5—= — 7.
ax { 4deg Ao P\ Ne2M?2 (0) + Ao

In particular, the class-XC function w is given by

0, x=20
_ 4x 4c
w(x) = c3—3a2x’ 0<x< c§+2%a2
(c2+8a2)x? 4c c
(C§f3a2x)2’ c§+2%a2 <X < ?w%
where a := —L(cy + 1) /2. O

Remark 5.2.5. (Semi-global ultimate boundedness). In Theorem for any
a priori given (arbitrarily large) compact convex set (2 of the state space, we can
find a threshold K of the coupling gain k such that the solutions x;(t) of
can be ultimately bounded with initial condition, |z;(0)| < \/c/(Ne)r, Vi € N.
Note that r can be arbitrarily large as long as B, C €. Therefore, for all initial
conditions in some arbitrarily large but compact subset, the solutions of
are semi-globally ultimately bounded. O

Proof. The dynamics of the stacked system of ([5.2.3)) is written as
t=—-k(L&I,)x+ f(t, ). (5.2.8)

By the coordinate transformation in (2.2.1))

1L eI,
¢= g~1 —(WeL)r= |V 7" (5.2.9)
3 R I,
where € = col(&, ..., ¢ ~), the overall system (5.2.8)) is transformed into
: ]. T ~
b= (yhon) (0o na+@Qong)
(5.2.10)

E= kA L)E+ (BT L)f (1 (In ® )& + Q@ L)E)
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because z = (W1 ® )¢ = [Iy ® I, Q ® I,,)¢€. Let a Lyapunov function be
1y~
V(E) = Wilt, &) + 5E7E,
and from (5.2.7a), the Lyapunov function satisfies the following inequality
céP? < V() <l (5.2.11)

where ¢ = min{c;, 1/2} and ¢ = max{cs,1/2}. The time derivative of V along

(5.2.10)) becomes

i %va ( Tol ) [f (t, (x L& +(Q® 1)E) — £ (1. (Iy © L)&1)

— kT (A® L) €+ (BT @ 1) |£(t (Ly ® L6 + (Q® 1))
- f(t7 (lN ® In)gl):| + gT(RT ® In) [f(tv (1N ® In)gl) - f(tv 0)]

+&T(RT @ 1) f(¢,0).

By the mean-value theorem in Lemma |3.5.1] we obtain

. OW, oW, oW, of
=+ S e+ G0 (ko n) Lu@ene
R A ® 1L)E+ E (R 0 1)L (1 w) Qo 1)E

oz

OF (¢ (1y ® L)a)(Ly ® L)1 + &7 (BT @ L) £(£,0)

5T pT gy
+¢ (R ®I”)8x

in which, z € R™ and w € R™ are some points on the line segment connecting
(AN @)+ (Q®I,)E and (1x ®1,)€1, and ¢ € R™ is a point on the line segment
connecting &; and 0. Since x = (1y ® I,){1 + (@ ® In)f~ and & = (1% ® In,)x/N,

we have

1 1
z, wel {a: <N1N1§ ®In) x} and ¢ €1 { (Nlﬁ ®In> x,o}

where l{z,y} == {0z + (1 — )y : 0 < § < 1}. By the construction of [{z,y} and



5.2. Design of Optimal Distributed Kalman-Bucy Filter 85
the convex property of €, it can be easily obtained that
e VieN = zw (Iy®IL,)geQV,

and it is seen by ((5.2.5)) that

Jozce2] <

Therefore, using (5.2.7) and the fact that ||Q|| = v/N and ||R|| = 1/v/N, it follows
that

0 -
—kMlé? + |RT @ L|| Hai(t, Iy ® Inq)H 11y ® Ll |&1]/€]

af of
o] <o |3

H<L (t,lN(X)]nq)HEL.

®In

oW,
V < —03|§1‘2 H !

of ~
.9 10® ] 14

+||RT

o (w10 1P + (7 o 1)7(0.0) €

< —cslér]® + Liea + 1)|&][€] — (kA2 — L)IE> + M(0)[¢]

:_[|§1|]T[ c3 c4+1)] [|§1|
€] [-H ka— L] | €]

With p =¢3, a = —L(ca +1)/2, Kk := kA2 — L and 0(t) := M(0), Lemma
can be employed to find the region for V < 0. By Lemma [3.3.1] it is seen that

M(0)[€]-

V < —h|¢)?, if |€]2 > M2(0)w(1/k) (5.2.12)

for all
3L%cs+1)2 L

k —
7 T e "

=: k.
Let Qév be a transformed compact convex set such that

QY ={£eRW &t = (W), vV}

From the properties of QV, it can be easily shown that Qé\f is a compact convex
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set. Moreover, since |W & I,,|| = 1/v/N, it follows that
zeBY ={zeR":|z|<r} = ¢=Wel,)reBY

where r1 := r/v/N. The fact that B, C Q ensures that BY c QN and BN c Qév
From the left inequality ([5.2.11f), we have

E€Ly(c)={¢eR™ V() <c} = [¢<

Taking ¢ := cr? ensures that the level set Ly (c) is in the interior of B,{Y ; that is
Ly(c) C BY. From the right inequality of (5.2.11)), it follows that

€l < = V() <eE)<c & £€Ly(o).

Thus, taking ry := /c/¢ ensures that BY C Ly(c). Note that BY is the set of
initial conditions of £ and it can be arbitrarily enlarged by increasing r. Now we
will find the ultimate bound on . From the left inequality of ((5.2.11f), we have

€] < p(k) = V() <cp’(k) =t e(k) & €€ Ly(e(k)

where p(k) := M(0)y/w (1/k). Consequently, from the left inequality of (5.2.11),

we have

€€ Ly(ek) & V(E) <e(k) =l </

C

Therefore, taking b(k) := /€(k)/c ensures that
By C Ly (e(k)) € B

To obtain Bé\(fk) C BJY, we must have \/e(k)/c < y/c/¢. Thus, if we choose k > 0
such that

-1
cc L

k> dow™ | 55— — =k

><2“’ <02M2(0)>) T
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then we can see that the relationship between sets is obtained as
By C Lv(e(k)) C By C Bfy C Ly(c) C B} C Q.

Moreover, from (5.2.12)), if & > K = max{ky, k2}, then all trajectories starting
in Ly (c) enter Ly (e(k)) within a finite time 7. The ultimate bound on & can be

=00 ()

with every initial state £(0) satisfying |£(0)| < v/¢/(N¢)r. It follows from (5.2.9))

that
\xi(0)|§q/N—7" VieN = [£0 )\<1/N£ér.

taken as

Finally, since
r=W1'eL)= [y, Q®IL,
and by the fact that |1y ® I,,, Q® I,|| < VN, we have
;| < |z < VN[¢].

Therefore, for any i € N, there exists T' > 0 (dependent on x;(0), Vi € N') such

that
(b)) < M(O)\/NC (1> VST, (5.2.13)
h —
if k> K and |7;(0)] < \/c/(Né)r, Vi € N. O

5.2.2 Stability Analysis

With proper vectorization, the coupled differential Riccati equation (5.2.1bf) can

be considered as a heterogeneous multi-agent systems in ([5.2.3). The vectoriza-
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tions of ([5.2.1bf) and ([5.2.2b)) are obtained as

N
V(B) = gi(v(P)) + k) aij (v(Py) = v(P)) (5.2.14a)
j=1
v(S) = g(v(9)) (5.2.14b)
where

gi(v(P)) = (I, ® A+ A® I,)v(P;) + v(BQBY) — N(I, ® P,H} R; " H;)v(P),
g(v(8)) == (I, ® A+ A® I,)v(S) + v(BQB") — (I, ® SH' R H)v(S).

Since for any n x n matrix X, |v(X)] is the same as the Frobenius norm of X,
it always holds that | X|| < ||X||p = |v(X)|. From the fact that ||, ® X|| =
| X ® L,|| = || X|| for arbitrary matrix X, we have

19:(v(X))| < A(X)| + [v (BQB") | + NH|v(X)[”
=: M([v(X)|) (5.2.15)

where A := |[|[[, @ A+ AR L,||, H := max;epr {HHlTRZ_leH} Defining derivatives
of matrices with respect to matrices is accomplished by vectorizing the matrices, so
dF(A)/dA is considered as dv(F'(A))/dv(A). Therefore, from the simple product
(Theorem 9 in [MN85)]), it follows that, for all v(X) € Q" C R™ where Q" is the

n-th Cartesian power of the set 2,

where Q := max,(x)eqn{|v(X)[}. Note that L increases as the compact convex set
Q" enlarges. Now, by letting z;(t) := v(P;(t)) —v(S*) and s(t) := v(S(t)) —v(S*),

Jg;

(V(X))H < A+ 2N|X| | BT R
(5.2.16)

<A+2NQH =: L
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Vi € N, the transformed system can be seen as

N
i = gi(zi +v(S) + kY iy (w5 — )
=1
N J
=: fZ(CCZ) + kZaij (a:j — xz) (5.2.17&)
j=1
$=g(s+v(S) = f(s) (5.2.17b)

with respect to the bound function ME| and the constant L in (5.2.16)). We note
that the origin s = 0 is an equilibrium point for (5.2.17b)). By using the result
of Theorem [5.2.1] we can show the ultimate boundedness of the error covariance

matrix.

Lemma 5.2.2. Take r > 0 such that B" := {z € R" : |z| < r} C Q". Under
Assumptions[5.1.1]and B:1.2] there exists a class-K function o and for every initial
state P;(0) satisfying || P;(0) — S*|| < v/c/(nNeé)r and P;(0) > 0, Vi € N, there is
T1 > 0 such that the solutions of the coupled differential Riccati equation
satisfy

HPi(t)_S*HSU< >,VtZT1, Vk>K, Yie N

1
kXo — L
where ¢, ¢ K, and o are the same as defined in Theorem %

Remark 5.2.6. It follows from the initial condition bound, Wh that the
initial condition of P;(t) seems like it should be located near S*. However, the
initial condition P;(0) can be any positive definite matrix by increasing the radius
r of the ball. As a result, in order to contain the ball B}, the compact convex
set 2" may need to be enlarged, and thus the bound L of the Jacobian matrix
increases as well. Even though the minimal coupling strength K increases as the
constant L increases, a sufficiently large k ensures that all P;(¢) approximately

converge to the solution S* for all initial conditions. O

Proof. In order to use the result of Theorem [5.2.1] we only need to show that

the origin s = 0 is a globally exponentially stable equilibrium point of the system

3The bound function M* can be obtained from (5.2.15)), i.¢., for a matirx X, |f;(v(X))| <
M(v(X) +v(S)]) = M([v(X)])
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(5.2.17b)). We recall here the well-known result in [AMTI] as follows.

Consider the equations

—AT  HTRH
BQBT A

X
Y

=N (5.2.18)

Y Y

with initial conditions X (0) = I and Y (0) = S(0) =: Sp. Since Sy = Zf\; P;(0)/N,
we have Sy > 0. Assumption and Sp > 0 ensure that the solution S(t) of

the averaged differential Riccati equation satisfies S(t) > 0 for all ¢ > 0

(Theorem 5.1 in [BJG68|). Then, the solution of has the property that

X~1(t) exists and that S(t) = Y (¢) X ~1(¢).

The matrix H is the so-called ‘Hamiltonian matrix’, and it has no imaginary
eigenvalue, given Assumption It follows that if v is an eigenvalue of H, then
so is —y [LS95]. Thus, there exists a real © such that ©7'HO = diag(-I,T)
where I' is a block diagonal matrix containing the 1 x 1 blocks [y;] with ~; < 0,
or 2 x 2 blocks

[% Mﬂ\mh%<ﬁ
—Hi Vi
Then, define new matrices X () and Y () by

X
Y

X _ g
Y

It follows that

X| |[-To X
v o T||Yv |’
and therefore,
X | [et oo X(t)
Y (t) 0 € || Y(0)
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From the coordinate transformation, we have

I =X(0) =61, X(0) + 612Y(0) (5.2.19a)
So = Y (0) = 031X (0) + 022V (0). (5.2.19b)

We multiply (5.2.19a) by Sp, and subtract this from (5.2.19bf), then we have
Y(O) = DX(O) where D := —(@22 — 50@12)_1(921 — 50@11), and G)ij is the
(i,7)-block of ©. Now, using S(t) = Y (t)X ~1(t), we obtain

S(t) = (@21 + @22€FtD€Ft) (@11 + @meFtDeFt)fl ‘

It follows from e'* — 0 as t — oo, that

Jlim S(t) = 0,07 = 5*.
Note that the solution S(t) converges to S* at an exponential rate equal to twice
the smallest real part of any eigenvalue of —I' and is independent of the initial
condition Sy as long as Sy > 0. In addition, the exponential convergence of the
solution S(t) can be also seen from [CWW94].

Now, we restrict our concern to the convex set of the positive definite matrix
which is the interior of the positive semidefinite cone. Then, in this convex set,
S(t) is invariant (i.e., So > 0 implies S(¢) > 0 for all ¢ > 0), and therefore it is seen
that the origin s = v(S) —v(S*) = 0 is a globally exponentially stable equilibrium
point of with respect to the convex set of the positive definite matrix.

Therefore, the assumptions of Theorem [5.2.1] are hold, and for any initial state

|P;(0) — S*|| < +\/c¢/(nNe)r, Vi e N, it follows that, V¢t > Ty, Vi € N,

1Pi(t) = 57| < [v(Bi(t) = v(S™)] = |2i(?)]

. 1
= \kxn—-1)"

Lemma [5.2.2| guarantees that there exist a class-IC function ¢ and 17 > 0 such
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that for any €/2 > 0,
1 € _
Pt)— S| <o|l——) <= t>T, Yk> K, Vi .
1RO -5 <o (g ) S5 WETL >R VieN

Moreover, it follows from the exponential convergence in Lemma that there
exists To > 0 such that

1S(t) — 8% < &, wt> D

€
57
Thus, combining these two results by triangular inequality with 7' := max{T1, T»},

for any € > 0, there is a sufficiently large k such that
IP(t) — S@l <e, W>T, Vie N

Now, let Z; = Z; — x5 be the error of i-th filter with respect to zs and &, =
xs — = be the estimation error of the averaged O-DKBF. From the fact that
&j — & = Tj — T; and thus, by letting e; := col(Z;, &), the error dynamics of

(5.2.1a)) and (5.2.2a) can be written as

N
¢ = Gi(t)e + Z aij(ej — e;) (5.2.20)
j=1
where
Gty = | A7 NP(t)HIR;'H; —NP,(t)H R;'H; + S(t)H'R™'H

0 A—-SHHT'R'H
By letting e := col(eq, ..., en), the group dynamics (5.2.20) can be written asﬁ
é=Ge—v(L®Iy)e (5.2.21)

where G := diag (G1,...,Gn). It follows from the definitions of #; and Z, that
the i-th estimation error, é; := Z; — x, can be converged to zero (without noise),

if Z;(t) = 0 and Z5(t) — 0 as t — oo.

“We dropped the time index of the time-varying matrices for simplicity of notation.
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Now, we are ready to apply this result to the main theorem of this chapter
with the fact that by the exponential stability result of Lemma [5.1.1(b), there
exist positive matrices ®(t) and ¥(t) such that

0<ml, <O(t) <nalp, 0<mnzl, <W(t), Vt>D0,
which satisfies the differential matrix equality,

—d(t) = (t) (A— SOHTRH) + (A— SOH"R™H)" ®(t) + U(t), Yt >0,
(5.2.22)

where 71, 12 and 73 are positive constants.

The following theorem shows that with strong coupling, the estimates of the

O-DKBF (j5.2.1)) asymptotically converge to the state of the plant without noise.

Theorem 5.2.3. (Stability analysis). Consider a plant system with sens-
ing model and the O-DKBF ([5.2.1]). Suppose that every initial state P;(0)
of satisfies the assumptions of Lemma Under Assumptions
and the origin €; = 0, Vi € N of the estimation error dynamics (with-
out noise) & = &; — x, Vi € N, is globally asymptotically stable if the coupling
strengths satisfy that

k > max {K <5—1 <16771;3Mq)>—1} (5.2.23)

where G := max;>o{[|G(8)[|}, € > (G/n3) (212 + 1/X2), & (1/k) := o (1/ (kX2 — L)),
and K, H, and o are the same as defined in Theorem and Lemma

Remark 5.2.7. As long as the scale and the structure of the network are fixed,
the thresholds of the coupling strengths in (5.2.23)) are fixed, too. Thus, with
and k sufficiently large, it can be obtained that all Z;(t) — x(t) as t — co. O
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Proof. By the coordinate transformation in ([2.2.1]

%17]\} & IZTL

&1
= =(Wa e =
‘ L] (W fan)e RT ® Iy,

where £ = col(&a, ..., &N), the group dynamics ([5.2.21)) is transformed into

&=, ®A—-SH'R'H)¢ +

(5.2.24a)

g: (A ® Iz)€ + (RT @ I2,)G(1n @ Ion)é1 + (RT @ I5,)G(Q ® I2)€
(5.2.24b)

where A := Ef\;l(Pz ~ S)HI'R;'H;. Now, we use
- 1 -
V(€8 =& (L@ ®)& + 3¢ (A1 @ Ton)S
as a Lyapunov function. By calculating V, It is seen by (5.2.22) that

V= (b b+ (he 86+ (b o 0 + € (A © )

Lo ng

= [ (L@ 0)é + 26 (1 © @)

-A A
] S
0 0
+2¢67(1, ® ®) (;1% ® Izn> G(Q® Irn)E
— €T + ET(ATIRY © 1) G(1n @ Ion)é1 + EL(ATIRT @ 15,)G(Q @ Iy )E.

The time 77 and the class-XC function & can be found in Lemma and also
from the exponential convergent property in Lemma there exists Ty > 0
such that

IS(t) — 8% < — B _ vt>T.
16N H
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Hence, it follows with & > K that

1Bi(t) = SO < [|1Ps(t) = S™[[ + |5 = S@)]
(5.2.25)

_(1 3
< — — Vt>T= T, 15},
_a<k> + 16N?72H7 = max{ 1 2}

By Young’s inequality and ([5.2.25)), we have

N
V< =&l (Lo )& + 49> |2 — S|I1H Ry Hil|4 )
=1

2 - ~ ~ _ ~
+ Gl N[ QlElg] = vIE + GUATHIIRT LNl €]

+GIATHIIRT Qe

313 1 G 2
< -4 — —_
< { 1 AN Ho (k) 5 <2772—|— >}|§1\

_{V_G_f(;<2n2+ >}yg|2 vt > T.
A2 2

Choosing

2 2
B -1
k>max{ K,(57! _m__ ,
16ms N H
and € > (G/n3) (2n2 + 1/X2) ensure that V(£;,€) is negative definite. Hence, for
a fixed T' > 0, there exist 51 > 0 and p; > 0 such that

£(0)] < BIEDe™MED), v >T >0, (5.2.26)
It means that for each €; > 0, there is d1(e1) > 0 such that
1E(T)] < 01(e1) = [E(t)| <e, VE=>T>0. (5.2.27)

Let us consider the transformed system (5.2.24) as € = A(t)¢. Lemma and
Lemma ensure that P;(t) and S(t) are bounded for all i € N, ¢ > 0, and it

follows that there exists ¢ > 0 such that ||A(t)|| < ¢, V¢ > 0. Gronwall-Bellman
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inequality to the function |£(¢)| results in
€(1)] < [€(0) €. (5.2.28)

From the inequalities (5.2.26)) and ([5.2.28)), we obtain that

1E0)] < d1(er)e™T = |&(T)| < di(er), Vt>T >0 (5.2.29)

Thus, by (5.2.29)) and (5.2.27), the equilibrium point £ = 0 is stable. Since for
any initial condition, |¢(T)| is bounded by |£(0)|eST it follows from that
&(t) — 0 as t — oo. Therefore, we conclude that the origin of is globally
asymptotically stable. Since e = [1y ® I, Q® I,,]€, due to the fact that () — 0

as t — oo implies that e;(t) — 0, Vi € N as t — oco. Finally, ; — 0, Vi € N and

Zs — 0 as t — oo ensure that ;(t) — z(t), Vi € N as t — oo. O

5.2.3 Flexible Sensor Network

Until now, we proposed the O-DKBF due to achieve optimality of the
CKBF (5.1.3). However, the proposed O-DKBF is not a completely distributed
one because the information of the number of nodes N is required. In Theorem
[£.2.3] it also be seen that the thresholds, which v and k should be larger than, are
dependent of the number of nodes as well. In this circumstance, it is difficult to
deal with the expansion and reduction of the nodes. However, the thresholds can
be simply large enough, and so, if one knows the maximum number of nodes, one
can compute v and k that work with any number of nodes below the maximum.
So, we then present another type of flexible distributed Kalman-Bucy filter (F-
DKBEF) in this section; that is,

N
i’i = Az; + PZPIZTRZ_I(ZZ — Hli'l) + v Z Oéij(ii'j — i’l) (5.2.30&)
j=1

N
Py = AP, + PA" + BQB" — PH] R7\H;P, + kY _ oij(P; — P).  (5.2.30b)
j=1

2] -] 8} 3

'Iu
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Note that the proposed filter ([5.2.30)) is no more dependent of the number of node
N. The averaged distributed Kalman-Bucy filter of ([5.2.30]) can be obtained as
. 1 T p—1
Ty = Axs + NSH R (z — Hzy) (5.2.31a)

S =AS+ SAT + BQBT - %SHTR”HS (5.2.31b)

with the initial conditions z4(0) = S_~ ; #;(0)/N and S(0) = S>N | P;(0)/N.

Remark 5.2.8. (Suboptimality problem). Since the averaged F-DKBF ([5.2.31))
is scaled from R to NR (or R; to NR; for all i € N), the error covariance

matrix S(t) of (5.2.31b)) does not converge to that of the CKBF ([5.1.3). Instead,

it converges to the error covariance of with the noise covariance matrix
NR, i.e., S(t) - S* as t — oo where S* > 0 is the solution to the algebraic
Riccati equation of (5.2.31b). Therefore, even if P;(t) — S(t) and 2;(t) — z,(t)
as t — oo for all 1 € NV, the proposed F-DKBF (/5.2.30|) cannot achieve optimality
but suboptimality. O

As was formulated in Section [5.2.2] a similar approach is used in this section.

It follows from the vectorizations of (5.2.30b|) and ([5.2.31b|) that
. N
v(B) = hi(v(P) + kY ai; (v(P)) — V() (5.2.32a)
j=1
v(S) = h(v(S)) (5.2.32b)
where

hi(v(P)) i= (In® A+ A® I,)v(P;) + v(BQBT) — (I, ® P,H! R, H;)v(P),

h(v(S)) = (I, ® A+ A® I,)v(S) + v(BQBT) — (In ® ;SHTleI) v(9).

By letting z;(t) := v(P;(t)) — v(S*) and s(t) := v(S(t)) — v(S*), Vi € N, the
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transformed system ([5.2.32)) can be rewritten as

N
T; = hl(ﬁl =+ V(S*)) + kZaij (l‘j — CCZ)
j=1
N
=: fl(llﬁl) +k Z Qi (ZL'j — l‘z) (5.2.33&)
j=1
§=h(s+v(S*)) =: f(s) (5.2.33b)

with respect to the bound function M and the constant L (which are obtained
from (5.2.15)) and (5.2.16))) such that

i) < AN(X) + (™) + v (BQBT) | + H[v(X) + v(S")]”
= M([v(X))),

ofi
Ov(F:)

where Q = max,(x)eon {|v(X)|}. Now, by letting #; = #;—x, and ¢; := col(Z;, L),

(V(X))H < A+2||X|||Hf R H;|| < A+2QH

=L, W(X)eQ"cR"

the error dynamics of can be written as

N
é; = Fie; + ’}/Z ozij(ej - 61') (5234)
j=1
where
h | A PHIR'H;, -PWHIR'H;+ LSHTR'H
v 0 A—LSHTR'H
By letting e := col(eq,...,en), the group dynamics can be written as
é¢=Fe—~(L®Iy)e (5.2.35)

where F' := diag (F1,..., Fy).

Suboptimal state estimation with the F-DKBF (5.2.30) is shown in the fol-

A Lt &
¥ el I o
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lowing corollary.

Corollary 5.2.4. Consider a plant system ([5.1.1) with sensing model (/5.1.2))

and the F-DKBF ([5.2.30). Suppose that every initial state P;(0) of (5.2.30b))
satisfies the assumptions of Lemma [5.2.2 Under Assumptions [5.1.1] and 3.1.2]

the origin é; = 0, Vi € N of the estimation error dynamics (without noise)

¢ = & —x, Vi € N, is globally asymptotically stable if the coupling strengths
satisfy that

L P
Y Ao 9 72 Ao
-1
k>max{ K,(5! B
16772H

where F':= max;>o{||F(t)||}, and K, H, and & are the same as defined in Theo-
rems and O

(5.2.36)

The proof of Corollary 1 directly follows from Lemma and Theorem [5.2.3
with R and R; replaced with NR and N R;, respectively.

Remark 5.2.9. (Design of flexible network). In (5.2.36), the thresholds of the
coupling gains v and k are dependent on Ao. As mentioned in Section [2.2] it
depends both on the topology of the graph and the number N of the nodes.
For example, for the path graph with unit weights, increasing N decreases Ao
(because Ay = 2(1 — cos(m/N)) in Table 2.1). It means that v and k& may need
to be increased when N is increased. In order to deal with the expansion and
reduction of scale, we consider the maximum number of nodes. If the number
of nodes is bounded above by N*, then we can consider the worst scenario of
the network (path topology with N* nodes). Under the assumption that the rest
parameters are bounded with respect to the worst network and the upper bounds
are known, the thresholds can be computed with respect to the worst network.
Hence, v and k can work with any numbers of nodes below N* and any topology

which is connected. O
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5.3 Simulation Results

In this section, we recall the same sensor network model in Example Thus,

we reconsider the plant system with process noise as

0 0
0 O
T+ w, w~ N(0,1),

1

0

0
0
0
0

0
1
0
1

o o O =
)

-1

and the initial condition z(0) = x. The group of N sensors can partially observe

the states of the target with measurement noise; that is,
2 = Hix +v;, v; ~N(0,1)
where

[1000], 1<i<N/4,
[0100], N/4+1<i<N/2
[0010], N/2+1<i<3N/4,

[0001), 3N/4+1<i<N.

Note that the plant is controllable and not observable by individual sensors, but
observable by all the sensors. The initial condition of the target is given by zg =
col(0,1,0,1), and that of the distributed Kalman-Bucy filter #;(0) are randomly
determinedﬂ Moreover, the initial conditions of the coupled differential Riccati
equation are any positive definite matrices; that is P;(0) > 0, Vi € N. Noise
covariance matrix are the identity matrices, that is, @, R; = 1 for all € N in

this case.

°In Example [5.1.2} it is observed that the KCF in [OS07] cannot deal with the randomly

determined initial values
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v(P(t)) — v(S7)

Time(s)
(a) k=3 (b) k=50

Figure 5.5: Trajectories of 4-sensor errors between vectorized error covariance
matrices P;(t) of O-DKBF and the vectorized solution S* to the
algebraic Riccati equation of CKBF. v(P;(t)) —v(S™*) are depicted

as solid curves.

5.3.1 Optimal Recovery

We assume that the sensors (N = 12) are interconnected by the ring topology
network. In order to evaluate the performance of the proposed algorithms, we
compare the estimation error of the state for the following three kinds of Kalman-
Bucy filters: i) CKBF, ii) O-DKBF, and iii) F-DKBF.

The effect of strong coupling k is seen rather clearly by comparing Figure
[5.5(a)| with [5.5(b)| and Figure [5.6(a)| with [5.6(b)| respectively. It is observed that
the strong coupling k& makes the entries of the error covariance matrix P;(t) of
O-DKBF in close to the solution S* of the algebraic Riccati equation of
CKBF and the level of estimation error of O-DKBF become lower. Thus, it can be

seen from the simulation that O-DKBF can achieve the optimality of the CKBF
when £ — oco. In Figure |5.6] it is also observed that F-DKBF yields a larger
estimation error than O-DKBF because the error covariance matrix of F-DKBF

cannot approximately converge to that of CKBF even when k& — oc.

5.3.2 Various Network Topologies

In this section, we simulate the case of various network topologies including ex-

pansion and reduction of scale. Here, we assume that the maximum number of

A& gk
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0.6 " " i 0.6 " " i
i O-DKBF O-DKBF
., 05 I ---CKBF ., 05¢ ---CKBF
° i ---F-DKBF S ---F-DKBF
- -
5| A J
=1 =
S S
+~ +
:
g =
72} 72}
= =

Time(s)

(b) v =10, k = 50

Figure 5.6: A comparison of filter 3’s absolute estimation error of the first
state, |z1(t)—21(t)|, between three different Kalman-Bucy filters.
Estimation error of CKBF is depicted as black thick dashed curve.
O-DKBF and F-DKBF are given as the blue thin solid curve and
the red thin dashed curve, respectively.

nodes is N* = 12. As mentioned in Remark the worst network with respect
to N* is a path topology with 12 nodes. In this case, the algebraic connectivity
of the graph is Ag = 2(1 — cos(mw/12)), and thus the thresholds of v and k can be
determined with respect to Ay and N*. To see the effect of flexible sensor network,
we compare 4 cases of different communication networks with F-DKBF: i) path
topology with N = 12, ii) path topology with N = 4, iii) all-to-all topology with
N =12, and iv) all-to-all topology with N = 4. We note that path and all-to-all
topologies are extreme cases of connected network.

It is observed from Figure (a) that even though we consider the worst
network topology, the proposed F-DKBF can estimate the states of the plant
with v = 10 and k£ = 50. The result of expansion and reduction of scale is seen
by comparing Figure[5.7|(a) with (b), and (c) with (d), respectively. Furthermore,
by comparing (a) with (c), and (b) with (d), it is seen that the F-DKBF is robust

against various network topologies which are connected.
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15 15
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-
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a1
N
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Trajectories
Trajectories

Trajectories
Trajectories

0 2 4 6 8 10
Time(s)
(c) all-to-all, N =12 (d) all-to-all, N =4

Figure 5.7: Trajectories ;(t) of N-sensor network with F-DKBF which have
coupling strength v = 10 and k& = 50 are depicted as solid curves,
and the trajectory z(t) of plant system is given as the black
dashed curve.
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Chapter 6

Conclusions

6.1 Summary and Discussion

We started this dissertation with the observation that the consensus and syn-
chronization are everywhere and the robustness is a very significant property in
consensus and synchronization problems. In view of this, the objectives of this
dissertation was to contribute to an improved analysis theoretic understanding of
robustness underlying consensus and synchronization.

The problems of consensus and synchronization are dealt with the diffusive
couplings between agents which is the phenomena occurring consecutively in na-
ture. In order to effectively handle the diffusive coupling, some definitions and
results of algebraic graph theory are presented in Chapter 2 By the proposed
transformation, we can see that the solvability of the consensus and synchroniza-
tion problems result in the stabilizability problem of certain (N — 1) subsystems.

Throughout this dissertation, we have considered the robustness of multi-
agent systems, which has inherent heterogeneities from the nature. Averaged
dynamics is the most important notion to deal with heterogeneous multi-agent
systems. For this reason, the averaged dynamics constituted the main theme in
this dissertation. In Chapter [3| the group behavior of the heterogeneous multi-
agent systems can be represented by the averaged dynamics under strong coupling
condition. Moreover, the averaging effect in the averaged dynamics ensures that
a large number of agent enhances the robustness of the group behavior against

randomly determined variations, in Chapter[d] As stated in Chapter[5] distributed
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sensor network is the one of the most important application area to use the concept
of the averaged dynamics. By using this, we recovered the optimality of the
centralized Kalman-Bucy filter in distributed sense.

In Chapter [3, we found out that strong coupling is the one of two main in-
gredients in robustness of diffusively connected multi-agent systems against het-
erogeneities. In particular, all trajectories of the agents converge (approximately)
to that of averaged dynamics, and thus the error are ultimately bounded by the
class-XC function of coupling gain k. Another ingredient in robustness against
the heterogeneities from the random variations was a large number of agents. In
Chapter [4 we focused on the robustness of the averaged dynamics, and therefore
we presented the notion of expected averaged dynamics. Finally, we showed that
strong coupling and a large number of agents both enhance robustness of the
networked group behavior.

A framework for achieving optimal filtering of distributed sensor network has
been proposed in Chapter [5| when the sensors can obtain the partial state (not
observable) of the plant and exchange the estimations through the network. In
order to achieve optimal estimation, we presented the design and analysis of the
distributed Kalman-Bucy filter and proved that strong coupling enforces the tra-
jectories of each error covariance matrix tend to that of the centralized Kalman-
Bucy filter by considering the averaged distributed Kalman-Bucy filter. Flexible
sensor network was implemented by completely distributed Kalman-Bucy filter
which can achieve the suboptimality.

Throughout this dissertation, we considered a general nonautonomous multi-
agent system model which has Lipschitz nonlinearity. In Chapters [3| and [4] the
function f;(¢,x;) of the individual system is globally Lipschitz in x;, and locally
Lipschitz nonlinearity was dealt with in Chapter [5| Therefore, LTI and LTV with

bounded system matrix are the special cases of this system.

6.2 Further Issues
Some further issues regarding the topics of this dissertation are listed as follows.

i) One of the main assumptions of this dissertation is that the communication

2] &-t]] 8
i ] 1

L



6.2. Further Issues 107

ii)

iii)

iv)

network is constrained to be fixed, undirected, and unweighted. Researches
on the general network model are further studies, including time-varying, di-
rected, and weighted graph model [Kim12, WSAT1I], and so on. In particu-
lar, if we consider the concept of uniformly connectedness [Mor05] of a time-
varying graph, then we can deal with the situation when the agents leave
and join the group. In this case, the averaged dynamics cannot represent the
group behavior any more, since the collective behavior is determined by the
network structure, e.g., leader-follow topology, weighted averaged consensus,

and so on.

The other main assumption is the stability of the averaged dynamics. In
order to show that the trajectories of all agents converge approximately to
that of averaged dynamics, the global stability condition, (e.g, contraction
property, or negative definiteness of the Jacobian matrix, etc), was required
in this dissertation. However, some oscillator model, including Van der Pol
oscillator, cannot satisfy this global stability assumption. In [WS05], semi-
contraction property has been proposed, and thus the authors proved that
two coupled identical Van der Pol oscillators are synchronized under strong
coupling. It may be very interesting to carry this idea over to stability of the
averaged dynamics. Another extension of the assumption in averaged dy-
namics may concern the incremental properties such as incremental stability

[Ang02], incremental dissipativity [LHZ14], and so on.

In Chapter we considered the deterministic system which cannot guarantee
the stochastic variations, e.g., white Gaussian noise. It means that once the
random variables are drawn (or, realized) when the system is created, it
remains deterministic. Thus, it is natural to expand the system dynamics

and consider stochastic differential equation.

Throughout this dissertation, state diffusive coupling is considered. How-
ever, it might be interesting to ask what are the distinctive features of dif-
ferent coupling mechanisms and how do these features affect the results pre-
sented in this dissertation. Usually, it is difficult to achieve the consensus
and synchronization via output diffusive coupling [SSB09, [KSS11), Wiel0)].
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They presented diffusive couplings extended by dynamic compensators in or-
der to overcome various limitations inherent to static diffusive couplings, and
thereby allowing for increased system and topological complexity of the net-

work.

In Chapter , the proposed distributed Kalman-Bucy filter causes more com-
munication bandwidth than Kalman-Consensus filter in [OS07], because it
needs the diffusive coupling of the error covariance matrix. From the vector-
ization of the error covariance matrix, the additional amount of information
exchanged between two nodes is 2n2. In fact, for a symmetric matrix the
vectorized vector contains more information than is strictly necessary. In
this case, half-vectorization is sometimes more useful than the vectorization.
Since the error covariance matrix is symmetric, the additional amount of in-

formation is n(n + 1) by half-vectorization.



APPENDIX

A.1 Ultimate boundedness lemma in Section [3.3.

T
e
lyl] la &

with 2 € R, y € R™, p > 0, 6(t) > 0, and a is a constant. Then, there are a

Claim: Let

]

+0(t)|y|
Yl

class-KC function r and a positive number ¢ such that
pr(,y) < —c(lz + |yl?) i 2 + [y* > 6*(t)r(1/k)

for all x > 3a?/p.
Proof. With k > 3a?/p, note that

2
a
pulesy) + Gl + =y

2
P a
= =plal® = 2alzlly| - Klyl” + 0O |yl + Slal* + ;!yl2

2 2
D 2a ) ( 3a> 9
=2 |2+ = S (Pl +0(t
2(!\ p\y! » ly[” + 6(t)]y]

= —LX? = 3()|yl? + 0(0)ly| = ~o(x) (25’;))( - |y|2) +60(0)ly]

< = 0(8)[Yil? + 0(8) Y|

where X = |z| + (2a/p)|yl|, 6(k) := k — 3a%/p, and Y, = [\/p/26(r)X, |y|]*.
The last inequality holds because |Yy| > |y|. Therefore, it follows that if |Y,| >

109 A 21l &l
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0(t)/6(k), then pg(x,y) < —c(|z|* + |y|?) with ¢ := min{p/2,a?/p}. Now, it is

seen that

2a 2 8a?
a2 + Iyl = (X _ pry\) Fil? <2x 4 S gy

< max { 202, L 1} (X2 ) = n(va P

With 1(x)/6%(k) being monotonically decreasing to zero as x — oo for k > 3a?/p,

define a class-K function r : [0, p/3a?) — [0,00) as follows:

0 =0
r(x) = ) =0 =9 2 0<x< 2,
UICTo Y < p—3a?x’ X = p2r20a?
a2(1/x)° 3a2 (p?+8a?) x> 4p
(p—3a?x)?’  p?+20a? <X< 3a2

in which, if a = 0, the number p/3a? is considered as oco.

Therefore, if |x|2 + |y|> > 02(t)r(1/k), then

b L e L PO (1)L 0 ) _ (00
Wbtz s (el o) > 200 (1) 2 28 20 = (55

which completes the proof. O
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