189 research outputs found
The Fault Diagnosis and Prediction System of Marine Diesel Engines Using a Statistical Analysis Method
Recently acceleration of ship automation makes ship's crew decreased and ship's schedule fast. That results in making harbour time short and lack of ship's maintenance time. Therefore prediction maintenance using fault diagnosis system is more important to prevent accidents by shortage of maintenance. While monitoring points for ship machineries were about 600 in 1980's ship, but now over 10,000 points. So almost all systems of ship can be monitored by central control and monitoring system. With this background and circumstance, various kinds of study for fault diagnosis of machineries are carried out.
Almost ship monitoring systems are event driven alarm system which warn only when the signal is over or under set point. These kinds of system cannot warn while signal is growing to abnormal state until the signal is over or under the set point and cannot play a role for preventive maintenance system. And fault diagnosis is started by expert engineer after warning from the monitoring system. There is few study which automatically diagnose the fault from ship's monitored signal. The bigger control and monitoring system is, the more important fault diagnosis and predictive maintenance is to reduce damage brought forth by system fault.
This paper proposes fault diagnosis and prediction system which is able to diagnose and forecast the fault from present operating condition by analyzing monitored signals with present ship monitoring system without additional sensors. For this all kinds of ship's engine room monitored data are classified with combustion subsystem, heat exchange subsystem and electric motor and pump subsystem by analyzing ship's operation data. To extract dynamic characteristics of these subsystems, log book data of container ship of H shipping company are used. Even though almost all machineries installed on the ship including main propulsion diesel engine and various auxiliary machineries have non linear characteristics and produce different output data dependent on the operating environment, if those machineries are operating under normal condition state, correlation coefficient(CC) between monitored data of related machine each other will be high. From analyzing this data having high CC, correlation level of interactive data can be understood. Knowledge base of abnormal detection can be built by referring level of CC(Fault Detection CC, FDCC) to detect abnormal data among monitored data from monitoring system and knowledge base of diagnosis built by referring CC among interactive data for related machine each other to diagnose fault part. Fault place can be ascertained by investigating specific data of fault part with decision making tree like answer tree. And fault prediction can be made by regression analysis of monitored data.
To verifying capability of fault detection, diagnosis and prediction, Fault Management System(FMS) is developed by C++. Simulation experiment by FMS is carried out with population data set made by log book data of 2 months duration from a large full container ship of H shipping company. For fault detecting and diagnosing experiment from population data set, three kinds of random number are generated by computer. One is generated on the base of average and covariance of population data set, other on the base of parts of population data and the other on the base of fault detection range(FDR). In the simulation experiment FMS is ascertained to detect abnormal data from monitored data set including generated random number by abnormal detection module with abnormal detection knowledge base and diagnose the fault by abnormal diagnosis module with abnormal diagnosis knowledge base and also forecast predictive fault by fault prediction module.
If the FMS is developed to include maintenance manual and ship's inventory database inside near future, the system will be able to recommend how to maintain the diagnosed fault and necessary spare parts.Abstract โ
จ
Nomenclature Ⅻ์ 1 ์ฅ ์ ๋ก 1
1.1 ์ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1
1.2 ์ข
๋์ ์ฐ๊ตฌ 3
1.3 ์ฐ๊ตฌ ๋ชฉ์ ๋ฐ ๋ด์ฉ 5
์ 2 ์ฅ ์ ๋ฐ์ฉ ๋์ ค๊ธฐ๊ด์ ๊ณํต๋ถ๋ฅ ๋ฐ ๊ฐ์๋ฐ์ดํฐ ํน์ฑ 8
2.1 ์ ๋ฐ์ฉ ๋์ ค๊ธฐ๊ด์ ๊ณํต๋ถ๋ฅ 8
2.2 ์ ๋ฐ์ฉ ๋์ ค๊ธฐ๊ด ๊ณํต๋ณ ๊ฐ์๋ฐ์ดํฐ ํน์ฑ๋ถ์ 11
2.2.1 ์์ด์ ๋ฐ์ดํฐ์ ํน์ฑ 12
2.2.2 ์ค์ ์ดํญ๋ฐ์ดํฐ์ ํน์ฑ 13
2.3 ์์ด์ ๋ฐ์ดํฐ์ ์ค์ ์ดํญ๋ฐ์ดํฐ์ ๋น๊ต๋ถ์ 30
์ 3 ์ฅ ์ด์๊ฐ์ง ๋ฐ ์ด์์ง๋จ๋ชจ๋ ์ค๊ณ 36
3.1 ์ด์๊ฐ์ง๋ชจ๋๊ณผ ์ด์์ง๋จ๋ชจ๋์ ๊ตฌ์กฐ 36
3.2 ์ ๋ฌธ๊ฐ์ ์ํ ์ด์๊ฐ์ง์ ์ด์์ง๋จ 38
3.3 ํต๊ณ์ ๋ถ์๊ธฐ๋ฒ์ ์ด์ฉํ ์ด์๊ฐ์ง๋ชจ๋๊ณผ ์ด์์ง๋จ๋ชจ๋39
3.3.1 ํต๊ณ์ ๋ถ์๊ธฐ๋ฒ 39
3.3.2 ํต๊ณ์ ๋ถ์๊ธฐ๋ฒ์ ์ํ ์ด์๊ฐ์ง์ ์ด์์ง๋จ 41
3.4 ํต๊ณ์ ๋ถ์๊ธฐ๋ฐ ์ด์๊ฐ์ง์ง์๋ฒ ์ด์ค์ ์ด์์ง๋จ์ง์๋ฒ ์ด์ค 64
3.5 ์ ๋ฌธ๊ฐ์ง์๊ธฐ๋ฐ ์ด์์ง๋จ์ง์๋ฒ ์ด์ค 67
3.6 ๊ณ ์ฅ์ง๋จ ์๊ณ ๋ฆฌ์ฆ 69
์ 4 ์ฅ ์ด์๊ฐ์ง ๋ฐ ์ด์์ง๋จ ์๋ฎฌ๋ ์ด์
72
4.1 ํต๊ณ์ ๋ถ์๊ธฐ๋ฐ ์ด์๊ฐ์ง ๋ฐ ์ด์์ง๋จ์ ์ํ ์คํ 72
4.2 ์คํ๊ฒฐ๊ณผ ๊ณ ์ฐฐ 84
4.3 ์คํ์์คํ
๊ตฌ์ถ 88
์ 5 ์ฅ ์์ฌ๊ฒฐ์ ๋ชจ๋์ ์ค๊ณ 94
5.1 ์ฐ์๊ณํต์ ์์ฌ๊ฒฐ์ ๋ชจ๋ 95
5.2 ์ด๊ตํ๊ธฐ๊ณํต์ ์์ฌ๊ฒฐ์ ๋ชจ๋ 99
5.3 ์ ๋๊ธฐ ๋ฐ ํํ๊ณํต์ ์์ฌ๊ฒฐ์ ๋ชจ๋ 101
์ 6 ์ฅ ํต๊ณ์ ๋ถ์๊ธฐ๋ฒ์ ์ํ ๊ณ ์ฅ์์ธก๋ชจ๋ 103
6.1 ํต๊ณ์ ๋ถ์๊ธฐ๋ฐ ๊ณ ์ฅ์์ธก๋ชจ๋์ ๊ตฌ์กฐ 104
6.2 ์ค์ ์ดํญ๋ฐ์ดํฐ์ SRA 105
6.3 SRAMD๋ฅผ ์ด์ฉํ ๊ณ ์ฅ์์ธก ์คํ 112
์ 7 ์ฅ ๊ฒฐ ๋ก 117
์ฐธ๊ณ ๋ฌธํ 11
The Long-lived Volatility of Korean Stock Market and Its Relation to Macroeconomic Conditions
This study aims to understand the long-run movement of volatility in Korean stock market by decomposing stock volatility into the long-lived and the short-lived components. In addition, I analyze how the low-frequency movement of stock market volatility iโ
. ์ ๋ก
ใโ
ก. ์ ํ์ฐ๊ตฌ
ใโ
ข. ์ฃผ์์์ฅ์ ์ง์์ ๋ณ๋์ฑ๊ณผ ๊ฑฐ์๊ฒฝ์ ์ ๊ด๋ จ์ฑ์ ๋ํ ๋
ผ์
ใโ
ฃ. ์ฐ๊ตฌ๋ฐฉ๋ฒ๊ณผ ๊ธฐ์ด์๋ฃ ๋ถ์
ใโ
ค. ์ฃผ์์์ฅ์ ์ง์์ ๋ณ๋์ฑ ์ถ์ถ๊ณผ ์ฃผ์ ํน์ง ๋ถ์
ใโ
ฅ. ์ฃผ์์์ฅ์ ์ง์์ ๋ณ๋์ฑ๊ณผ ๊ฑฐ์๊ฒฝ์ ์ ๊ด๋ จ์ฑ ๋ถ์
ใโ
ฆ. ๊ฒฐ ๋ก
ใ์ฐธ
Asset Prices and Consumption Dynamics in Korea
This paper examines consumption dynamics in relation to asset prices in Korea. Empirical analysis based on the error correction model shows that personal consumption is affected by changes in asset prices but the consumption converges to the long-run leveโ
. ์ ๋ก
โ
ก. ์๋น์ ์ฅ๊ธฐ๊ท ํ ๋ฐ ๋ํ์ ์กฐ์ ๊ณผ์ ์ ๊ดํ ์ผ๋ฐ์ ๋
ผ์
ใ1. ์๋น-๋ถ์ ์ฅ๊ธฐ๊ท ํ์ ๊ดํ ๋
ผ์
ใ2. ๋ถ์๋ชจํ์ ๊ดํ ๋
ผ์
โ
ข. ์ค์ฆ๋ถ์
ใ1. ์์ฐ๊ฐ๊ฒฉ์ ๋ณ๋์ด ๋ฏผ๊ฐ ์๋น์ ๋ฏธ์น๋ ํจ๊ณผ ๋ถ์
ใ2. ์์ฐ์ ๋ณ๋์ด ๋ฏผ๊ฐ์๋น์ ๋ฏธ์น๋ ํจ
์๋ฃ์ ๋ณต์ง์ ํตํฉ ํฌ์ฐ๋ณ์์ ๋ธ๋ฃจ์ค์ , ๊ทธ ์๋ก์ด ๊ฐ์น
๋ณ์์ฐ์
์ ์๊ธฐ๊ฐ ๋ฅ์ณค๋ค๋ ์ ํธ๊ฐ ์ฌ๊ธฐ์ ๊ธฐ์์ ๋ค๋ ค์ค๊ณ ์๋ค. ์ค์๋ณ์๋ค์ ๋์ฐ์จ์ 10%
๋ฅผ ์๋๊ณ , ์ข
ํฉ๋ณ์๋ค์ ๋ง์ฑ์ ์์ ํ๋์ด๊ณ ์๋ค. ํ์๋ฅผ ์๋์ผ๋ก ์ธ์ํ๋ ์์์ ํ์์๋ถํฐ
๋ํ ์ข
ํฉ๋ณ์์ ํนํ ์ ๋ต๊น์ง ๋ณ์๋ค์ ์์กด์ ์ํด์ ๋ชธ๋ถ๋ฆผ์ ์น๊ณ ์๋ค. ๋ํ ๋ง์ ๋ณ์๋ค์ด
๋ค์ํ ์์ต์ฌ์
์ ํผ์น๊ธฐ๋ ํ๊ณ , ๋ณ์ ํ๋์ฐจ์ด์ฆ ํ๋์ ๋ณ์ ์ง์ฃผํ์ฌ๋ฅผ ๊ฟ๊พธ๊ณ ์๋ค.
๋ณ์์ฐ์
์ 1์ฐจ ์๊ธฐ๋ ์์ฝ๋ถ์
์ด ์ค์๋๋ 2000๋
์ด์๋ค. ๋น์ ๋ง์ ๊ฐ์ธ ์์๋ค์ด ๋ฌธ์ ๋ซ์
๋ค. ๋ณ์์ฐ์
์ IMF ์ฌํ๊ฐ ๋ชฐ๋ ค ์จ๋ค๋ ์์ฐ์ฑ ์์์ 2์ฐจ ์๊ธฐ๋ ์ฌํด๋ถํฐ ์์๋๋ค.
2~3๋
์์ผ๋ก ๋๊ท๋ชจ M&A๊ฐ ๋ถ๊ฐํผํ๊ณ ๋ํ ์ข
ํฉ๋ณ์๋ค๋ ๊ตฌ์กฐ์กฐ์ ์ ๋์
โ ๊น๋ณด๋ SBNC(์๋ฃ๊ธฐ๊ด ๋ง์ผํ
ํ๊ฐํ์ฌ) ๋ํ โ ๋งค๋
์ฆ๊ฐํด ๊ฐ๋ ๋์ฐ์จ์ด 2003๋
์ดํ ๊ฐ์์ธ๋ฅผ ๋ณด์ด๊ณ ์๊ธฐ๋ ํ์ง๋ง 2000๋
7.4%, 2001๋
8.9%์ ๋ฌํ๊ณ 2002๋
์ 9.5%๋ก ๋งค๋
์ฆ๊ฐ์ธ๋ฅผ ๋ณด์๋ค. ์ด๋ ์์ฝ๋ถ์
์ ์ฑ
์ผ๋ก ์ธํด ๋ณ์์ ์ธ
๋ ํ์๊ฐ ๊ฐ์ํ์ฌ ์ค์๋ณ์์ ๋์ฐ์จ์ด ์ฆ๊ฐํ์๊ธฐ ๋๋ฌธ์ผ๋ก ๋ถ์๋๋ค. 2003๋
์๋ 8.3%,
2004๋
์๋ 7.4%๋ก ๊ฐ์์ธ๋ฅผ ๋ณด์ด๊ณ ์์ผ๋ ์ค์๋ณ์ ์ค 100๋ณ์ ๋ฏธ๋ง์ ๋์ฐ์จ์ด ๊ฐ์ํ๋ ๋์ 100~299๋ณ์์ ๋์ฐ์จ์ ์ฆ๊ฐํ์๋ค. ์ด์ฒ๋ผ ํ์ฌ ๋ณ์์
์ ๋ช๋ช ๋ํ๋ณ์๋ค์ ์ ์ธํ ์คใ
์ํ ๋ณ์๋ค๋ผ๋ฆฌ ์์กด์ ์ํ ํฌ์์ ๋ฒ์ด๊ณ ์๋ ์ํฉ์ด๋ค
Inhibition of tumor cell proliferation of lymphokine-activated killer(LAK) cell culture supernatant
๋ณด๊ฑดํ๊ณผ/์์ฌ[ํ๊ธ]
Lymphokine-activated killer(LAK)์ธํฌ๋ ๋ค์ํ ์ข
๋ฅ์ ์์ธํฌ๋ฅผ ํ๊ดดํ ์ ์์ผ๋ฉฐ ์
์์ ์์ฉ๋์ด ์์ ์
์ ๋ฉด์ญ์น๋ฃ๋ฒ(adoptive immunotherapy)์ ๋ํ ์ฐ๊ตฌ๊ฐ ํ์ฑํ ๋
์๋ค. ๊ทธ๋ฌ๋ LAK์ธํฌ ๋ฐฐ์์์ฒญ์ก์ ํ์ฑ์ ๊ดํ ์ฐ๊ตฌ๊ฐ ๋ถ์กฑํ์ฌ ํ์คํ ๊ฒฐ๋ก ์ ๋ด๋ฆฌ์ง
๋ชปํ๊ณ ์๋ค.
๋ณธ ์ฐ๊ตฌ๋ LAK์ธํฌ ๋ฐฐ์ ์์ฒญ์ก์ ์ธํฌ๋
์ฑ์จ ํ์ธํ๊ณ LAK์ธํฌ ์ ๋ ๋ฐฐ์๊ณผ ์ฆ์๋ฐฐ์
์์ ์ป์ด์ง ๋ฐฐ์ ์์ฒญ์ก์ ์ธํฌ๋
์ฑ ํ์ธ ๋ฐ LAK ์ธํฌ์ LAK์ธํฌ ๋ฐฐ์ ์์ฒญ์ก์ ํ์ฑ์
๋น๊ตํ์ฌ ๋ ํ์ฑ ๊ฐ์ ์ฐ๊ด์ฑ์ ๋ฐํ๊ณ ์, ์ฌ๋์ ์ ์์ธํฌ์ธ ์ฌ์ ์์ธํฌ์ ์ข
์์ธํฌ์ฃผ
(HeLa์ธํฌ, MCF-7 ์ธํฌ)๋ฅผ ์ด์ฉํ์ฌ ์ธํฌ๋
์ฑ์ ์ธก์ ํ์๋ค.
LAK์ธํฌ ๋ฐฐ์ ์์ฒญ์ก์ ์ข
์์ธํฌ์ ์์ฒญ์ก์ ๋
ธ์ถํ ํ 4์ผ๊น์ง ์ธํฌ๋
์ฑ์ด ๊ณ์ ์ฆ๊ฐ
ํ์๊ณ ๊ทธ ์ดํ์๋ ๋ณํ๊ฐ ์์์ผ๋ฉฐ ์ ์์ธํฌ์ ๋ํด์๋ ์ํฅ์ ๋ฏธ์น์ง ์์๋ค. LAK์ธ
ํฌ์ ์ธํฌ๋
์ฑ์ 4์ผ ์ ๋ ๋ฐฐ์ํ ๊ฒฝ์ฐ ๋ณด๋ค ์ฆ์๋ฐฐ์(10์ผ๊ณผ 13์ผ) ํ์ ๊ฐ์ฅ ๋์๋ค.
๊ทธ๋ฌ๋ LAK ์ธํฌ ๋ฐฐ์ ์์ฒญ์ก์ ์ธํฌ๋
์ฑ์ 4์ผ๊ฐ ์ ๋ํ ์์ฒญ์ก์ด ๊ฐ์ฅ ๋์์ผ๋ฉฐ ์ฆ์๋ฐฐ
์์์ ์ป์ด์ง ์์ฒญ์ก์ ์ ํ๋์๋ค. ๊ทธ๋ฌ๋ฏ๋ก LAK์ธํฌ์ ๋ฐฐ์์์ฒญ์ก ๊ฐ์ ์ธํฌ๋
์ฑ์ ์
๋ก ๋ค๋ฅด๊ฒ ๋ํ๋ฌ๋ค.
์๊ธฐ์ ๊ฒฐ๊ณผ๋ก LAK์ธํฌ ๋ฐฐ์ ์์ฒญ์ก์ ์ธํฌ๋
์ฑ์ ์ ๋๋ LAK์ธํฌ์์ ์ ๋๋ ๊ฒ์ด ์
๋๋ผ ์ ๊ตฌ์ธํฌ๊ฐ LAK์ธํฌ๋ก ๋ถํ๋๋ ๊ณผ์ ์์ ์์ฐ๋๋ ๊ฒ์ผ๋ก ํ๋จ๋๋ค.
[์๋ฌธ]
It is well known that lymphokine-activated killer(LAK) cell can destory various
types of tumor cells and the fact has been applied to the adoptive immunotherapy of
cancers. The antitumor activity of LAK cells has been clarified but the effect of
the supernatant of LAK cell culture has no clear conclusion yet.
Human fibroblasta from normal cell origin and human tumor cell lines(HeLa cell,
MCF-7 cell) were employed to measure and confirm the cytotoxicity of LAK cells and
its culture supernatant.
The cytotoxicity was measured through induction culture and expansion culture to
find out the relationship between the two activites by comparing the activity of
LAK cells and its culture supernatant.
The cytotoxicity of LAK cell culture supernatant has been increased continuously
upto 4 days after exposing LAK cell culture supernatant to tumor cells and since
then it appeared as a plateau but there was no effect upon the normal cells.
In terms of cytotoxicity the effect of LAK cells were the highest after 10 day-
and 13 day- expansion culture compared to 4 day-induction culture. However,
cytotoxicity of culture supernatant showed the highest in the 4 day-induced
supernatant but the cytotoxicity of the culture supernatant was declined.
Apparently the cytotoxicity between LAK cells and culture supernatant was very
different.
From the results of the above, cytotoxicity of LAK cell culture supernatant was
not considered to be originated from induced LAK cells. Possibly it may be
originating from the process of LAK cell differentiation.restrictio
Study on risk assessment to formaldehyde in an electric company's workers
์ฐ์
ํ๊ฒฝ๋ณด๊ฑดํ๊ณผ ํ๊ฒฝ๋ณด๊ฑด์ ๊ณต/์์ฌ์ต๊ทผ ๊ตญ๋ด์์๋ ๋ฏธ๋์ ์ ๊ธฐํํฉ๋ฌผ์ง์ ์ํ ์ ์์ฐ์
์ฒด์ ์งํ(๋ฐฑํ๋ณ ๋ฑ) ๋ฐ์ ์ฌ๋ถ์ ๊ดํ ์ด์๋ก ์ข
์ฌ์์ ๊ทผ๋ฌดํ๊ฒฝ์ ๋ํ ๊ด์ฌ์ด ๋ง์์ง๊ณ ์๋ค. ํนํ ์๋ก์ด ๊ณต์ ๊ณผ ๋ค์ํ ์ ๊ท ํํ๋ฌผ์ง์ ๋์
์ ๋ฐ๋ฅธ ์ํด์ฑ์ด ํฐ ๋ฌผ์ง์ ๋ฏธ๋ ์ฌ์ฉ ๋๋ ๋ถ์ฐ๋ฌผ ๋ฐ ๋ถ์๋ฌผ์ ๋ํ ๊ด๋ฆฌ์ ์ค์์ฑ์ด ์ปค์ง๊ณ , ์ด์ ๋ฐ๋ฅธ ํ๊ฒฝ๊ณผ ๊ฑด๊ฐ์ ๋ฏธ์น๋ ์ํฅ์ ๋ํ ์กฐ์ฌ, ์ฐ๊ตฌ, ๊ฐ์ ์ด ์๊ตฌ๋๊ณ ์๋ค. ๋ํ ์ข
์ฌ์์ ๊ฑด๊ฐ์ ๋ํ ์๊ตฌ ํฅ์, ์ฌํ์ ์ธ์ ์ฆ๋, ์ฌํ์ ๋น์ฉ์ ์ง์ถ ์ฌ๋ ฅ ํ๋๋ก ์ด์ ๋ํ ์ข
ํฉ์ ยท์ฒด๊ณ์ ์ธ ๊ด๋ฆฌ๊ฐ ํ์ํ๋ค. ์ด์ ๋ณธ ์ฐ๊ตฌ๋ ํ ์ ์ํ์ฌ ์ข
์ฌ์๋ค์ ์์
โค์ฌ๋ฌด ํ๊ฒฝ์ ๋ํด์ ์๊ฑด๋ฌผ์ฆํ๊ตฐ(Sick Building Syndrome, SBS)์ ๋ํ์ ์ธ ์ค๋ด๊ณต๊ธฐ์ง ์ธก์ ํญ๋ชฉ์ด๊ณ , ๊ฐ์ข
์ ๊ธฐํํฉ๋ฌผ์ง ์คํฉ์ฒด์ ๊ธฐ์ด ์๋ฃ๋ก ๋ง์ด ์ฌ์ฉ๋์ด ๋ถ์ฐ๋ฌผ๊ณผ ๋ถ์๋ฌผ๋ก ๋
ธ์ถ์ ๊ฐ๋ฅ์ฑ์ด ์๊ณ , ์ํด์ฑ์ ํฌ์ง๋ง ๋ฒค์ ๋งํผ ์๋ ค์ง์ง๋ ์์ ํผ์๋ฐํ๋๋ฅผ ๋์์ผ๋ก ์ ์ ํ์๋ค. ์์
ํํ๋ณ๋ก ๋์๊ตฐ์ ๋๋์ด ํด๋น ์ข
์ฌ์๋ค์ ๊ทผ๋ฌดํ๊ฒฝ๊ณผ ์ธ์๋๋ฅผ ์ค๋ฌธ์กฐ์ฌํ๊ณ , ์ธก์ โค๋ถ์ํ์ฌ ํธํก๋
ธ์ถ๋ ์ฐ์ ํ๊ณ , ํ๊ฒฝ์ธ์๋์ ์ํด์ฑ๋ ๊ฐ์ ์๊ด์ฑ ํ์
ํ์ฌ, ์ฌ์
์ฅ์ ์ ๊ธฐํํฉ๋ฌผ์ง ๊ด๋ฆฌ๋ฐฉ์์ ๋์ถํ๊ณ ๋ค์๊ณผ ๊ฐ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์๋ค. ์ฒซ์งธ, ์ข
์ฌ์๋ค์ ์ค๋ฌธ์ ํตํ ํ๊ฒฝ์ธ์์กฐ์ฌ ๊ฒฐ๊ณผ, ์์
โค์ฌ๋ฌด ํ๊ฒฝ๋ณ๋ก ์ง์ ์ ์ธ ์ ๊ธฐํํฉ๋ฌผ์ง์ ๋
ธ์ถ๋ก ์ธํ ์๊ทน ๊ฒฝํ์ ๋ํด์ ์ ๊ธฐํํฉ๋ฌผ์ง์ ์ทจ๊ธ, ์์
๊ฐ๋, ๊ต๋๊ทผ๋ฌด, ์ค๋ ๊ทผ๋ฌด๊ธฐ๊ฐ์ ๋ฐ๋ฅธ ๋
ธ์ถ ์๊ทน, ๋ถํธํจ๊ณผ ๊ฑด๊ฐ์์ ํผํด ๊ฒฝํ๊ณผ ๊ทผ๋ฌดํ๊ฒฝ์ ์ค์ผ์ ๋ ์ฌ๋ถ์ ๋ฐ๋ผ์, ์ผ๋ฐํํฉ ์กฐ์ฌ(Part-B) ํญ๋ชฉ์ ์ฑ๋ณ, ์ฐ๋ น์ ๋ฐ๋ผ์ ํต๊ณ์ ์ผ๋ก ์ ์ํ ์ฐจ์ด๊ฐ ์๋ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ๊ฐ์ ์ ์ธ ํผ์๋ฐํ๋ ๋
ธ์ถ๋ก ์ธํ ์๊ทน ๊ฒฝํ์์๋ ๋์ฒด๋ก ์ ์ฌํ ๊ฒฝํฅ์ ๋ณด์์ง๋ง, ์ผ๋ถ ํญ๋ชฉ์ ํต๊ณ์ ์ผ๋ก ์ ์ํ ์ฐจ์ด๊ฐ ์๋ ๊ฒ์ผ๋ก ๋ํ๋๋ ๋ฑ ์๋์ ์ธ ๊ฐ๋๋ ์์๋ค. ์ด๋ ์ง์ ์ ์ธ ์ ๊ธฐํํฉ๋ฌผ์ง ์ฌ์ฉ ๋๋น ๊ฐ์ ์ (๋ฐ์ ๋ถ์ฐ๋ฌผ ๋๋ ๋ถ์๋ฌผ ํํ)์ผ๋ก ๋
ธ์ถ๋๋ ํผ์๋ฐํ๋์ ํน์ฑ์ด ์ข
์ฌ์์ ์ฌ๋ฆฌ์ ๋ฐ์๋ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค. ๋์งธ, ์ข
์ฌ์์ ์์
โค์ฌ๋ฌด ํ๊ฒฝ๋ณ๋ก ํผ์๋ฐํ๋์ ๋
ธ์ถ๋ ์กฐ์ฌ์ ์ํด์ฑํ๊ฐ ๊ฒฐ๊ณผ, ๋
ธ์ถ๋์ด ๊ฐ์ฅ ํด ๊ฒ์ผ๋ก ์์ํ๋ ์ ๊ธฐํํฉ๋ฌผ์ง ์ฌ์ฉ์ด ๋ง์ ๊ณต์ A๊ตฐ์ ์ํด๋(ํ๋ฅ )๋ 5.25E-06 (3.50ยฑ0.68ใ/ใฅ), ์ฌ์ฉ๋์ด ์ ์ ๊ณต์ B๊ตฐ์ 4.28E-06 (3.44ยฑ1.39)์ธ ๋ฐ๋ฉด, ๊ฐ์ฅ ๋ฎ์ ๊ฒ์ผ๋ก ์์ํ๋ ์ฌ๋ฌด๊ตฐ์ 1.20E-05 (14.43ยฑ8.24)์ผ๋ก ๋ํ๋ฌ๋ค. ์ด๋ ์์
ํ๊ฒฝ์์๋ ํฌ๋ฆ์๋ฐํ๋๊ฐ ์ ๊ธฐํํฉ๋ฌผ์ง์ ๋ชฉ์ ๋ฌผ๋ก ์ง์ ์ฌ์ฉ๋์ง๋ ์์ผ๋, ๊ฐ์ ์ ์ธ ๋ฐ์ ๋ถ์ฐ๋ฌผ ๋๋ ๋ถ์๋ฌผ๋ก์ ๋ฐฐ์ถ ๊ฐ๋ฅ์ฑ๊ณผ ์ ํ์์ฐ ํ๊ฒฝ์ ์ํฅ์ ๊ณ ๋ คํ์ฌ ์ฒ ์ ํ ํ๊ธฐโค๋ฐฐ๊ธฐ ๊ด๋ฆฌ๊ฐ ๋๋๋ฐ ๋ฐํด์, ์ฌ๋ฌดํ๊ฒฝ์์๋ ์ผ์์ ์ธ ํ๊ธฐ ๊ด๋ฆฌ๋ง ํ๋๋ฐ ๊ธฐ์ธํ๋ค๊ณ ํ๋จ๋๋ค. ์ฆ ํ๊ฒฝ(Area)๋ณ ์๊ฐ๋น ํ๊ธฐํ์์ ์ฐจ์ด์ ๋ฐฐ๊ธฐ ๋ฐ ์ ๊ฑฐ์์ค(Chemical Filter ๋ฑ)์ ์ค์น ์ฌ๋ถ๊ฐ ์ค์ํ๋ค. ์
์งธ, ์ข
์ฌ์๋ค์ ํ๊ฒฝ์ธ์๋์ ์ํด๋ ๊ฐ์๋ ์๊ด์ฑ์ด ์์๋ค. ์ข
์ฌ์๋ค์๊ฒ๋ ์ง์ ์ ์ผ๋ก ์ ๊ธฐํํฉ๋ฌผ์ง์ ์ทจ๊ธ(์ฌ์ฉ) ์ฌ๋ถ๊ฐ ๊ฐ์ข
์๊ทน๊ณผ ํ๊ฒฝ์ธ์์ ๋ง์ ์ํฅ์ ๋ฏธ์น๊ณ ์์์ผ๋, ๊ฐ์ ์ ์ธ ๋น์๋๋์ธ ํผ์๋ฐํ๋์ ์ํ ๋
ธ์ถ๊ณผ ์ํด์ฑ์ ๋ํด์ ์ธ์ง๊ฐ ์ถฉ๋ถํ์ง ์์๋ค. ๋ฐ๋ผ์ ํฅํ ์ํด์ฑ์ด ํฐ ๋ฏธ๋์ ๋ฌผ์ง์ ์ทจ๊ธ๊ณผ ๊ฒ์ถ ์ฌ๋ถ์ ๋ฐ๋ฅธ ๋๋๊ด๋ฆฌ ๋ณด๋ค๋ ์ด๋์ ์ธ ๋
ธ์ถ๋ ๊ด๋ฆฌ์ ์ํด์ฑ์ ํ๊ฐโค๊ด๋ฆฌโค์ํต์ผ๋ก ์ ํ์ด ํ์ํ๋ค. ์ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์ข
ํฉํด ๋ณด๋ฉด, ๊ธ๋ฒ ์กฐ์ฌ๋์ ํ์ฌ์ ๊ฒฝ์ฐ์๋ ํผ์๋ฐํ๋์ ์ํ ์ํด๋๋ ์ธ๊ธฐ์์ค์ธ 1.07E-05 (9.13ยฑ3.70ใ/ใฅ) ๋๋น ์์
ํ๊ฒฝ์ ์คํ๋ ค ๋ฎ์ 50% ์์ค์ธ 5.25E-06์ด๋ฏ๋ก ์ง์์ ์ธ ํ์์ ์ง์ ๊ทน๋จ์น(ํํ
) ๊ด๋ฆฌ์ฐจ์์์ ๊ตญ์๋ฐฐ๊ธฐ ๊ฐํ๋ฅผ, ์ฌ๋ฌดํ๊ฒฝ์ 110% ์์ค์ธ 1.20E-05์ด๋ฏ๋ก ํ์ฌ๋ณด๋ค ์ ๊ทน์ ์ธ ํ๊ธฐโค๋ฐฐ๊ธฐ ๊ด๋ฆฌ๊ฐ ํ์ํ๋ค. ๋ณธ ์ฐ๊ตฌ ๊ฒฐ๊ณผ๋ ์ข
์ฌ์๋ค์ ์ค๋ฌธ๊ณผ ์์
โค์ฌ๋ฌด ํ๊ฒฝ ์ธก์ ์ ํตํ ์ธ์๋์ ์ ๋์ ์ธ ์ํด์ฑํ๊ฐ๋ ๋ฐ์ํ์์ผ๋, ์กฐ์ฌ ๋์, ์ธก์ ํ์ ๋ฐ ๊ธฐ๊ฐ์ ์ถฉ๋ถํ ํ๋ํ ํ์ ์ฐ๊ตฌ๋ฅผ ํตํ์ฌ ๊ฐ๊ด์ฑ๊ณผ ๋ํ์ฑ์ ํ๋ณด๊ฐ ํ์ํ๋ค.ope
๋ฑ๊ฐ์ฌ์์ ์ด์ฉํ ์ก๊ฐํ ๋ ธ์ฌํด์์ฉ ๋ ธ๋ฌ SP3๋ฒ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์์ํต๊ณตํ๊ณผ,2007.Docto
์ธต๊ฐ์ฝ์ ๋ฐ์์ ์ ํ ์ด์ ๋์ฑ ์ด์ด์จ์ ๋์ฑ ๋ฌผ์ง์ ํฉ์ฑ
Thesis (master`s)--์์ธ๋ํ๊ต ๋ํ์ :ํํ๊ณผ ๋ฌด๊ธฐํํ์ ๊ณต,1996.Maste
- โฆ