128 research outputs found

    Dimensionality-Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2019. 2. ์ดํƒœ์šฐ.์œ ๊ธฐ/๋ฌด๊ธฐ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์žฌ๋ฃŒ๋Š” ์ด์˜จ ์ด๋™์— ์˜ํ•ด ์œ ๋ฐœ๋˜๋Š” ํŠน์ˆ˜ํ•œ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค ์„ฑ์งˆ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ธ๊ณต ์‹œ๋ƒ…์Šค์˜ ํ™œ์„ฑ ๋ฌผ์งˆ๋กœ์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์žฌ๋ฃŒ์ด๋‹ค. ์ด์ „์— ๋ณด๊ณ ๋œ 3์ฐจ์› ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์ธ๊ณต ์‹œ๋ƒ…์Šค ์†Œ์ž๊ฐ€ ์ƒ๋ฌผํ•™์  ์‹œ๋ƒ…์Šค์˜ ์‹œ๋ƒ…์Šค ๊ฐ€์†Œ์„ฑ์„ ์„ฑ๊ณต์ ์œผ๋กœ ๋ชจ์‚ฌํ•˜์˜€์ง€๋งŒ, ์†Œ์ž์˜ ๋ฉ”๋ชจ๋ฆฌ ์œ ์ง€์‹œ๊ฐ„๊ณผ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋Š” ์•„์ง ๋” ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œ์ด๋‹ค. ์—ฌ๊ธฐ์„œ ์šฐ๋ฆฌ๋Š” 2์ฐจ์›๊ณผ ์ค€ 2์ฐจ์› ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์žฌ๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, 2๋‹จ์ž ์ธ๊ณต์‹œ๋ƒ…์Šค๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋Š”๋ฐ, 2์ฐจ์›๊ณผ ์ค€ 2์ฐจ์› ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์žฌ๋ฃŒ๋Š” ๋ฉ”ํ‹ธ์•”๋ชจ๋Š„ ๋ธŒ๋กœ๋งˆ์ด๋“œ ๊ตฌ์กฐ์—์„œ ์ฃผ๊ธฐ์ ์ธ ์ ˆ์—ฐ์ฒด์ธ ํŽœ์—ํ‹ธ์•”๋ชจ๋Š„ ์ธต์ด ์„ž์—ฌ์žˆ๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ–๊ณ  ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ฐจ์›์— ๋”ฐ๋ผ์„œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ๋ฐ•๋ง‰์˜ ๊ด‘ํ•™์  ํŠน์„ฑ๊ณผ ํ˜•์ƒ์„ ํ™•์ธํ•˜์—ฌ ๋น„๊ต๋ฅผ ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐ•๋ง‰์œผ๋กœ ๋งŒ๋“ค์–ด๋‚ธ ์†Œ์ž์˜ ์‹œ๋ƒ…์Šค ํŠน์„ฑ (๋‹จ๊ธฐ๊ฐ€์†Œ์„ฑ, ์žฅ๊ธฐ๊ฐ€์†Œ์„ฑ) ๋„ ๋ถ„์„ํ•˜์—ฌ ๋น„๊ต๋ฅผ ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ค€ 2์ฐจ์› ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์ธ๊ณต ์‹œ๋ƒ…์Šค ์†Œ์ž์˜ ์ž‘๋™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ 3์ฐจ์› ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์ธ๊ณต ์‹œ๋ƒ…์Šค ์†Œ์ž์™€ ๋น„๊ตํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋Š”๋ฐ, ์ด์˜จ ์ด๋™์„ ์œ„ํ•œ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€์˜ ํฌ๊ธฐ๋ฅผ ๋น„๊ตํ•จ์œผ๋กœ์จ ๋ฉ”๋ชจ๋ฆฌ ์œ ์ง€์‹œ๊ฐ„์ด ์ฆ์ง„๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์ค€ 2์ฐจ์› ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์ธ๊ณต ์‹œ๋ƒ…์Šค ์†Œ์ž๊ฐ€ ์†Œ๋ชจํ•˜๋Š” ์—๋„ˆ์ง€ (18 fJ/์‹œ๋ƒ…์Šค ์‚ฌ๊ฑด) ๊ฐ€ ์ƒ๋ฌผํ•™์  ์‹œ๋ƒ…์Šค๊ฐ€ ์†Œ๋ชจํ•˜๋Š” ์—๋„ˆ์ง€์˜ ํฌ๊ธฐ(1-10 fJ/์‹œ๋ƒ…์Šค ์‚ฌ๊ฑด)์™€ ๊ทผ์ ‘ํ•œ ์ˆ˜์ค€์ด์—ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๊ฐ€ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ์ธ๊ณต ์‹œ๋ƒ…์Šค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ €์—๋„ˆ์ง€ ๋‰ด๋กœ๋ชจํ”ฝ ์ผ๋ ‰ํŠธ๋กœ๋‹‰์Šค๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ๊ฒƒ์ด๋‹ค.Organic-inorganic halide perovskites (OHPs) have unique hysteresis behavior caused by ion migration, so they may have applications as the active material of artificial synapses for neuromorphic electronics, which mimic structures and functions of biological neurons and synapses. Here we demonstrate artificial synapses with two-dimensional (2D) and Quasi-2D perovskite that have a layer of bulky organic cation (phenethylammonium (PEA)) to form structures of (PEA)2MAn-1PbnBr3n+1. The OHP films have morphological properties that depend on the structure dimensionality, and OHP artificial synapses show synaptic responses such as short-term plasticity, paired-pulse facilitation, and long-term plasticity. We also analyzed the operation mechanism of OHP artificial synapses and Quasi-2D (n = 3, 4, 5) OHP artificial synapses showed much longer retention time compared with 2D and 3D OHP counterparts. The calculated energy consumption of 2D OHP artificial synapse (~0.7 fJ/synaptic event) was comparable to that of the biological synapse (1-10 fJ/synaptic event). These OHP artificial synapses may enable development of neuromorphic electronics based on OHP artificial synapses.Chapter 1. Introduction Chapter 2. Experimental 2.1 Perovskite solution preparation 2.2 Device fabrication 2.3 Measurements Chapter 3. Results and Discussion 3.1 Structure of halide perovskite artificial synapses and perovskites 3.2 Optical analysis of perovskite films 3.3 Spike-dependent plasticity in artificial synapses 3.4 Long-term plasticity (LTP) in artificial synapses 3.5 Ion migration in artificial synapses 3.6 Energy efficiency of artificial synapses Chapter 4. Conclusions Bibliography Abstract in KoreanMaste

    ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ์œ ๋„์ฒด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์œ ๊ธฐ ์‹ ์†Œ์žฌ์˜ ๊ด‘์ „์ž ์‘์šฉ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2023. 8. ๊ถŒ๋ฏผ์ƒ.์œ ๊ธฐ ์žฌ๋ฃŒ๋Š” ๊ทธ๋“ค์ด ๊ฐ€์ง€๋Š” ฯ€ ๊ณต์•ก ๊ตฌ์กฐ๊ฐ€ ๊ทธ ๋ถ„์ž ๊ตฌ์กฐ ์„ค๊ณ„์— ๋”ฐ๋ผ์„œ ์ „ ์˜์—ญ์˜ ๊ฐ€์‹œ๊ด‘์„  ํ˜•๊ด‘์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ pi ์˜ค๋น„ํƒˆ์„ ๊ณต์œ ํ•˜์—ฌ ์ „์ž ์ „๋‹ฌ ์ธก๋ฉด์—์„œ๋„ ํ™œ์šฉ ๊ฐ€์น˜๋ฅผ ์ธ์ •๋ฐ›์•„ ์™”๋‹ค. ๋˜ํ•œ ๋‹ค๋ฅธ ๋ฌผ์งˆ๋“ค์ด ๊ฐ€์ง€์ง€ ๋ชปํ•˜๋Š” ์ƒ์ฒด์ ํ•ฉ์„ฑ ๋ฐ ๋‹ค๊ธฐ๋Šฅ์„ฑ์œผ๋กœ ์ƒ๋ช…๊ณผํ•™ ๋ถ„์•ผ์—์„œ๋ถ€ํ„ฐ ์ „์ž ์†Œ์ž ๋ถ„์•ผ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ฐจ์„ธ๋Œ€ ๋ฌผ์งˆ๋กœ์„œ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ๊ตฌ์กฐ๋Š” ์ด๋Ÿฌํ•œ ์œ ๊ธฐ๋ฌผ์˜ ์žฅ์ ์„ ํ›Œ๋ฅญํžˆ ํ™œ์šฉํ•œ ๋…์ฐฝ์ ์ธ ๋ถ„์ž ๊ตฌ์กฐ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์‚ฌ์ด์˜ค์Šคํ‹ธ๋ฒค์€ ์ฃผ๋กœ ๋น„์ ‘ํ•ฉ ๊ณ ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๊ฐ„๋‹จํ•˜๊ณ  ๋‹ค์–‘ํ•œ ๋ถ„์ž ์„ค๊ณ„๋ฅผ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ถ„์ž ์„ค๊ณ„์˜ ๋ฐฉํ–ฅ์„ฑ์— ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ์Œ“์Œ ๊ตฌ์กฐ ์–‘์ƒ์„ ๊ฐ€์ง„๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์•ž์„  ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์—์„œ ํ˜•๊ด‘์ฒด, ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ (OLED), ์œ ๊ธฐํŠธ๋žœ์ง€์Šคํ„ฐ, ์œ ๊ธฐํƒœ์–‘์ „์ง€ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ ํ›Œ๋ฅญํ•œ ์„ฑ๋Šฅ์„ ๊ฐ€์ง„๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•ด์™”๋‹ค. ์ด๋ฒˆ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ๊ตฌ์กฐ์˜ ์žฅ์ ์„ ์ด์šฉํ•˜์—ฌ ์ˆ˜์šฉ์„ฑ ํ˜•๊ด‘์ฒด์™€ ์ „์ž ์ „๋‹ฌ ๋ฌผ์งˆ๋กœ์„œ ๋ชฉ์ ์— ๋งž๊ฒŒ ๋ถ„์ž๋ฅผ ํ•ฉ์„ฑ ๋ฐ ์‘์šฉํ•˜๊ณ  ๊ทธ๋“ค์˜ ํŠน์„ฑ ๋ฐ ์„ฑ๋Šฅ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ฃผ์ œ๋กœ ์ˆ˜์šฉ์•ก ์ƒ์—์„œ ๊ตฝ์€ ๋ชจ์–‘์˜ ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ๊ฒŒ์ŠคํŠธ ๋ถ„์ž์™€ ํ์ปค๋น—[8]์œ ๋ฆด (CB[8]) ํ˜ธ์ŠคํŠธ ๋ถ„์ž๋ฅผ ์ด์šฉํ•ด ๋งŒ๋“ค์–ด์ง„ ์ดˆ๋ถ„์ž ์œ ๊ธฐ ๊ตฌ์กฐ์ฒด (SOF)๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ดˆ๋ถ„์ž ์œ ๊ธฐ ๊ตฌ์กฐ์ฒด๋Š” ์ƒ๋ช…๊ณผํ•™ ๋ถ„์•ผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์‘์šฉ์— ๋Œ€ํ•œ ์ž ์žฌ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์œ ๊ธฐ๋ฌผ์ด ๋‹ค๋ฅธ ์žฌ๋ฃŒ์— ๋น„ํ•ด ๊ฐ€์ง€๋Š” ๋…๋ณด์ ์ธ ์ƒ์ฒด์ ํ•ฉ์„ฑ๊ณผ ์ดˆ๋ถ„์ž ํ™”ํ•™ ๋ถ„์•ผ๋กœ์„œ ๊ฐ„๋‹จํ•œ ํ•ฉ์„ฑ, ์—ฌ๋Ÿฌ ๊ฐ€์ง€์˜ ํฌ๊ธฐ, ๋ชจ์–‘, ์ฐจ์›์„ ์‰ฝ๊ฒŒ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค๊ธฐ๋Šฅ์„ฑ ์ž ์žฌ๋ ฅ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ํ•˜์ง€๋งŒ ๊ทน์†Œ์ˆ˜์˜ ์ดˆ๋ถ„์ž ์œ ๊ธฐ ๊ตฌ์กฐ์ฒด๋งŒ์ด ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜์šฉ์•ก ์ƒ์—์„œ ๋น›์„ ๋ฐœ์‚ฐํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ ๊ทธ๋งˆ์ €๋„ ํŠน์ • ๋†๋„ ์ด์ƒ์—์„œ๋Š” ์‘์ง‘ํ•˜์—ฌ 2์ฐจ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜๊ฒŒ ๋œ๋‹ค. ์ด ๋ง์€ ๊ณง ์—ฌ์ „ํžˆ ์ƒ์ฒด ์„ผ์„œ๋‚˜ ์ƒ์ฒด ์ด๋ฏธ์ง€ํ™” ๋“ฑ ๋น›์ด ํ•„์š”ํ•œ ์ƒ์ฒด ๋ถ„์•ผ ์—ฐ๊ตฌ๊ฐ€ ๋ถ€์กฑํ•œ ์‹ค์ •์ž„์„ ์˜๋ฏธํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๋‚˜๋Š” ๊ตฝ์€ ๋ชจ์–‘์˜ ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ๊ฒŒ์ŠคํŠธ ๋ถ„์ž๋ฅผ ๊ตฌ์กฐ์ฒด์˜ ์ฐจ์›๊ณผ ์†Œ์ˆ˜์„ฑ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ํ‘œ๋ฉด ์—๋„ˆ์ง€๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ณ ํ˜•๊ด‘์„ฑ 0์ฐจ์› ๋‚˜๋…ธ๋ง์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํ˜ธ์ŠคํŠธ-๊ฒŒ์ŠคํŠธ ๋ณตํ•ฉ์ฒด๋Š” ์„ฑ๊ณต์ ์œผ๋กœ ์—ฌ์„ฏ ๊ฐœ์˜ ๊ฒŒ์ŠคํŠธ ๋ถ„์ž๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์œก๊ฐ ๊ณ ๋ฆฌ๋ฅผ ํ˜•์„ฑํ•˜์˜€๊ณ  ์กฐ๋ฆฝ๋˜์ง€ ์•Š์€ ๋‹จ์ผ์ฒด (ฮฆF = 2 %)์— ๋น„ํ•ด ๋น„์•ฝ์ ์œผ๋กœ ๊ฐ•ํ™”๋œ ํ˜•๊ด‘(ฮฆF = 68 %)์„ ์„ ๋ณด์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ์ด๋Ÿฌํ•œ ๊ตฝ์€ ๋ชจ์–‘์˜ ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค์€ AIEE ๋ถ„์ž์˜ ๋ณดํŽธ์ ์ธ ํŠน์„ฑ์„ ๋”ฐ๋ฅด์ง€ ์•Š์•˜๋Š” ๋ฐ, ๊ฒŒ์ŠคํŠธ ๋ถ„์ž๊ฐ€ ์‘์ง‘์ƒ์ด ๋˜์—ˆ์„ ๋•Œ AIEE ๋ถ„์ž์˜ ๊ฑฐ๋™์„ ๋ณด์ด์ง€ ์•Š๊ณ  ์‹ฌ์ง€์–ด ๋‹จ์ผ์ฒด์—์„œ ๋ณด๋‹ค ํ˜•๊ด‘์ด ์ค„์–ด๋“œ๋Š” ๊ฒƒ (ฮฆF = 1 %)์„ ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์˜ค์ง CB[8]์ด ์ฒจ๊ฐ€๋  ๋•Œ๋งŒ AIEE ๊ฑฐ๋™์„ ๋ณด์˜€๋‹ค. ๋‚˜์˜ ์˜ˆ์ƒ๋Œ€๋กœ ๋‹ค๋ฅธ ์ดˆ๋ถ„์ž ์œ ๊ธฐ ๊ตฌ์กฐ์ฒด๋“ค๊ณผ ๋‹ฌ๋ฆฌ ์ด๋ฒˆ 0์ฐจ์› ์œ ๊ธฐ๊ตฌ์กฐ์ฒด๋Š” ์šฉ์•ก์ด ํฌํ™”๋  ๋•Œ๊นŒ์ง€ ์‘์ง‘๋˜์ง€ ์•Š๊ณ  ๊ท ์ผ๋ถ„์‚ฐ์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. (Chapter 2) ๋‹ค์Œ์œผ๋กœ ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ๊ธฐ๋ฐ˜์˜ nํ˜• ๋ฐ˜๋„์ฒด ๋ถ„์ž๋ฅผ ํ˜ผํ•ฉ ํ• ๋ผ์ด๋“œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€์— ์ „์ž ์ „๋‹ฌ ๋ฌผ์งˆ๋กœ์„œ ์ ์šฉํ•˜์˜€๋‹ค. ์ด ๋ฌผ์งˆ์€ ์œ ๊ธฐํƒœ์–‘์ „์ง€์—์„œ ํšจ๊ณผ์ ์ธ ์ „์ž ๋ฐ›๊ฐœ ๋ฌผ์งˆ๋กœ ์ž‘์šฉํ•จ์œผ๋กœ์จ ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ์œ ๋„์ฒด๊ฐ€ nํ˜• ๋ฐ˜๋„์ฒด๋กœ ์ˆ˜์ง ๋ฐฉํ–ฅ์˜ ์ „์ž ์ „๋‹ฌ์„ ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ตœ๊ทผ ํ˜ผํ•ฉ ํ• ๋ผ์ด๋“œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€๋Š” ํƒœ์–‘์ „์ง€์—์„œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ์˜ ๋ฐด๋“œ๊ฐญ์„ ์กฐ์ •ํ•˜์—ฌ ํšจ์œจ์„ ์ฆ์ง„์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด ๊ณต๋ฒ•์€ inverted ๊ตฌ์กฐ (p-i-n)์˜ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€๊ฐ€ ์•ˆ์ •์„ฑ๊ณผ ๋‚ฎ์€ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค๋ฅผ ๊ฐ€์ง์—๋„ ์ƒ๋Œ€์ ์œผ๋กœ conventional ๊ตฌ์กฐ (n-i-p)์˜ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€๋ณด๋‹ค ๋‚ฎ์€ ์ „๋ ฅ ๋ณ€ํ™˜ ํšจ์œจ์„ ๋ณด์™„ํ•จ์œผ๋กœ์จ ์ƒ์šฉํ™”์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ์˜ ํ• ๋ผ์ด๋“œ๊ฐ€ ํ˜ผํ•ฉ๋  ๋•Œ ์ปจ๋•์…˜ ๋ฐด๋“œ์˜ ์ƒ์Šน์ด ๋™๋ฐ˜๋˜๋Š”๋ฐ ์ด๋กœ ์ธํ•ด ์ƒˆ๋กœ์šด ์ „์ž ์ „๋‹ฌ ๋ฌผ์งˆ์ด ์š”๊ตฌ๋œ๋‹ค. ๋‚˜๋Š” ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ๊ธฐ๋ฐ˜์˜ nํ˜• ๋ฐ˜๋„์ฒด๋ฅผ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ์™€ ๊ธฐ์กด ์ „์ž ์ „๋‹ฌ ๋ฌผ์งˆ ์‚ฌ์ด์— ์ ์šฉํ•จ์œผ๋กœ์จ ์—๋„ˆ์ง€ ๋ ˆ๋ฒจ์„ ์—ฐ์†์ ์ด๊ฒŒ ์กฐ์ •ํ•˜์˜€๋‹ค. ์ƒˆ๋กœ ๋„์ž…ํ•œ ์ „์ž ์ „๋‹ฌ ๋ฌผ์งˆ์€ 1.68 x 10-4 cm2V-1s-1์˜ ์ „์ž ์ด๋™๋„๋ฅผ ๊ฐ€์ง€๋ฉฐ LUMO์™€ HOMO๋Š” ๊ฐ๊ฐ -3.67 eV์™€ -5.79 eV ์ด๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ƒˆ๋กœ์šด ์‚ฌ์ด์•„๋…ธ์Šคํ‹ธ๋ฒค ๊ธฐ๋ฐ˜์˜ ์ „์ž ์ „๋‹ฌ ๋ฌผ์งˆ์„ ๋„์ž…ํ•œ ํ˜ผํ•ฉ ํ• ๋ผ์ด๋“œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ํƒœ์–‘์ „์ง€๋Š” 20.5 % ์ด์ƒ์˜ ์ „๋ ฅ ๋ณ€ํ™˜ ํšจ์œจ์„ ๋ณด์˜€์œผ๋ฉฐ ์ด๋Š” ๊ธฐ์กด์˜ ํƒœ์–‘์ „์ง€๋ณด๋‹ค 1 %๊ฐ€ ๋„˜๋Š” ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋ณด์ธ ๊ฒƒ์ด๋‹ค. (Chapter 3)Organic material with ฯ€-conjugation has been recognized for its ability to emit entire range of visible light fluorescence depending on its structure and transfer electrons through the interaction of ฯ€ orbitals. Moreover, organic material exhibits biocompatibility and versatility such as flexibility and transparency, which are not commonly found in inorganic materials, making it a widely studied next-generation material in various fields ranging from bio-applications to electronic devices. Among them, cyanostilbene structure is a novel backbone that effectively apply the advantages of organic molecules. Cyanostilbene allows for simple and diverse molecular design through unfused-ring based structures, resulting in various stacking arrangements depending on the intention of application. This original structure reported aggregation-induced enhanced emission (AIEE) phenomenon by J-type stacking for the first time which suggested the breakthrough for limit of organic fluorescent application due to concentration quenching effect and showed that it has a great potential for n-type semiconductor because of strong electron withdrawing cyano group. Also, some derivatives exhibit distinctively different behaviors depending on stacking type or orientation even with very similar or identical structures. As a result, cyanostilbene has demonstrated excellent performances and functionalities in fluorescent materials, organic light emitting diodes (OLEDs), organic field effect transistors (OFETs), organic photovoltaics (OPVs) and other fields in numerous previous studies. The aim of the study described in this thesis is to research optoelectronic applications of cyanostilbene derivatives by applying and analyzing designed molecules especially for fluorescent and electron transporting materials as a breakthrough in their own fields. First, I have materialized supramolecular organic framework (SOF) made of bent-shaped cyanostilbene guest molecule and cucurbit[8]uril (CB[8]) as a host molecule in aqueous solution. SOFs have great potential for diverse applications such as life science because biocompatible property of organic molecule is unrivaled and supramolecular chemistry gives SOFs numerous advantages like simple synthesis, easy materialization of various size, shape and dimension which lead to versatile potentials. However, only a few SOFs had been reported which effectively emitted the light in aqueous solution but aggregated each other above the specific concentration, meaning that research for biosensor or bio-imaging in vivo is still lacking. Herein, I designed highly fluorescent zero-dimensional (0D) nano-ring SOF by inducing bent-shaped cyanostilbene guest to reduce dimension and surface energy owing to hydrophobicity. This host-guest complex successfully formed macrocyclic hexamer ring and showed significantly enhanced fluorescence (ฮฆF = 68%) compared to non-assembled monomer (ฮฆF = 2%). Interestingly, this bent-shaped cyanostilbene does not follow general feature of AIEE molecules. It does not behave like AIEE molecule even quenching fluorescence (ฮฆF = 1%) when it becomes condensed state, but only shows AIEE when CB[8] is added. Unlike other SOFs, as I expected, this 0D SOF could be dispersed uniformly without bundling phenomenon in water until the solution is saturated. (Chapter 2) Second, Cyanostilbene-based n-type semiconducting molecule have been applied to mixed-halide perovskite solar cell as an electron transporting material (ETM). This material had showed that cyanostilbene derivatives could performed effectively in OPVs which means this n-type semiconductor carries electron on vertical direction. Recently, mixed-halide perovskite solar cell has been received attention because it is the effective way to manipulate bandgap of perovskite to maximize the efficiency of both single junction and multi-junction solar cells. This fabrication has suggested that inverted (p-i-n) perovskite solar cell could reach commercialization by complementing relatively lower efficiency than conventional (n-i-p) perovskite solar cell with several other advantages such as stability and low hysteresis. However, when halide of perovskite is mixed, upshifted conduction band edge is accompanied. Therefore, new ETM would be needed instead of the formal ETM or between perovskite and the formal ETM. Herein, I have introduced the cyanostilbene-based n-type semiconductor between perovskite and the formal ETM which has appropriate potential to align cascade energy level. The orthogonal electron mobility of this new ETM was 1.68 x 10-4 cm2 Vโˆ’1 sโˆ’1ยฌ and its LUMO and HOMO were -3.67 eV and -5.79 eV respectively. As a result, the inverted mixed-halide perovskite solar cell introducing new cyanostilbene-based ETM performed over 20.5 % of power conversion efficiency (PCE) which is more than 1 % improvement compared to the counterpart cell (19 %) without new ETM. (Chapter 3)Abstracts i List of Tables vii List of Schemes viii List of Figures ix Chapter 1. Introduction 1 1.1. Photophysics in organic materials 1 1.2. Aggregation-induced enhanced emission (AIEE) 5 1.3. Photophysics of organic molecules in aggregate-state 6 1.4. Perovskite solar cell 9 1.5. Purpose of Research 17 1.6. Bibliography 20 Chapter 2. Highly Fluorescent Supramolecular Nanoring Composed of Bent-Shaped Cyanostilbene Derivatives and Cucurbit[8]urils 25 2.1. Introduction 25 2.2. Results and Discussion 28 2.3. Experimental Section 47 2.4. Conclusion 51 2.5. Bibliography 54 Chapter 3. Reducing Charge Recombination of Mixed-halide Perovskite Solar Cell by using n-type Cyanostilbene Derivative Semi-conductor for Improving Performance 57 3.1. Introduction 57 3.2. Results and Discussion 61 3.3. Experimental Section 86 3.4. Conclusion 103 3.5. Bibliography 105 Abstract in Korean 109 List of Publications 112 List of Presentations 113๋ฐ•

    ๊ณต๊ณต๊ณต์‚ฌ์˜ ํด๋ ˆ์ž„ ์‹คํƒœ๋ถ„์„๊ณผ ๊ฐœ์„ ๋ฐฉ์•ˆ(Analysis of the realities of claim in public works and its policy recommendations: Enhancing the institutional capability for claim management)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๋Œ€ํ˜•๊ณต๊ณต๊ฑด์„ค์‚ฌ์—…์˜ ํšจ์œจ์  ์ถ”์ง„๋ฐฉ์•ˆ ์—ฐ๊ตฌ

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ฑด์„ค์‚ฐ์—… ๊ตฌ์กฐ๋ณ€ํ™” ๋ฐ ์ „๋ง(Structural change and prospects in construction industry)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ฑด์„คํ™˜๊ฒฝ๋ณ€ํ™”์™€ ๊ฑด์„ค์‚ฐ์—…์ •์ฑ…

    Get PDF
    ๋…ธํŠธ : ์ด ์ฑ…์€ ๊ตญํ† ๊ฐœ๋ฐœ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Œ์„ ๋ฐํž™๋‹ˆ๋‹ค

    ๋Œ€ํ˜•๊ณต๊ณต๊ณต์‚ฌ ์ž…์ฐฐ๋ฐฉ๋ฒ• ์„ ์ •๊ธฐ์ค€ ๊ฐœ๋ฐœ ์—ฐ๊ตฌ(A Study on development of delivery method selection critieria for public construction project)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ฑด์„ค์‚ฐ์—… ๋ฐœ์ „์„ ์œ„ํ•œ ๊ฑด์„ค๋ณด์ฆ ์—ญํ• ๊ฐ•ํ™” ๋ฐฉ์•ˆ(Strategies to strengthen the role of the construction surety to develop the construction economy)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    Dual Production Tubing Design Considering Flow Stability and Production Rate

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2013. 2. ์ตœ์ข…๊ทผ.์ „ํ†ต์ ์œผ๋กœ ์„์œ ์ƒ์‚ฐ์€ ํ•˜๋‚˜์˜ ๋‚ด๊ฒฝ๋งŒ์œผ๋กœ ์ด๋ค„์ง„ ๋‹จ์ผํŠœ๋น™์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ตœ๊ทผ์—๋Š” ์ƒ์‚ฐ๋Ÿ‰ ์ฆ๋Œ€๋ฅผ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๋‹ค๋ฅธ ๋‘ ๋‚ด๊ฒฝ์˜ 2๋‹จ ํŠœ๋น™์„ ์ด์šฉํ•œ ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์–‘ํ•œ 2๋‹จ ํŠœ๋น™์กฐํ•ฉ์„ ๊ณ ๋ คํ•˜์˜€์œผ๋ฉฐ ๊ทธ ์ค‘ ๊ฐ ๋ชฉ์ ์— ๋ถ€ํ•ฉํ•˜๋Š” ์กฐํ•ฉ๋“ค์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ธฐ์กด์—ฐ๊ตฌ์—์„œ ๊ณ ๋ คํ•œ ์ƒ์‚ฐ๋Ÿ‰๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์œ ๋™ ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์œ ๋™ ์•ˆ์ •์„ฑ์€ tubing pressure traverse, ์•ก์ฒด๋ถ€ํ”ผ๋น„, ์œ ๋™ํŒจํ„ด, ์šด์˜์กฐ๊ฑด์˜ ์•ˆ์ •์„ฑ์„ ํ†ตํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. Tubing pressure traverse๋ฅผ ํ†ตํ•ด ๋งˆ์ฐฐ์••๋ ฅ์†์‹ค์ด ์ „์ฒด์••๋ ฅ์†์‹ค ์ฐจ์ด์˜ ์ฃผ์š” ์›์ธ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์•ก์ฒด๋ถ€ํ”ผ๋น„์˜ ๊ฒฝ์šฐ ํŠœ๋น™ ํ•˜๋‹จ์—์„œ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋‹จ์ผํŠœ๋น™๋ณด๋‹ค 2๋‹จ ํŠœ๋น™์—์„œ ์ž‘์€ ๊ฐ’์„ ๋ณด์˜€๋‹ค. ์œ ๋™ํŒจํ„ด์€ ๋Œ€๋ถ€๋ถ„ slug flow๋ฅผ ๋ณด์˜€์œผ๋ฉฐ ์ผ๋ถ€ ํŠœ๋น™์กฐํ•ฉ์—์„œ๋งŒ ํŠœ๋น™ํ•˜๋‹จ์—์„œ annular flow๊ฐ€ ๋ฐœ์ƒํ–ˆ๋‹ค. ์šด์˜์กฐ๊ฑด์˜ ์•ˆ์ •์„ฑ์€ tubing performance relationship์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์–‘์ผ ๋•Œ ํ™•๋ณด๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ์ด๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๊ฒฝ์šฐ๋งŒ์„ ๊ณ ๋ คํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ถ„์„ํ•œ ๊ฐ€์ƒ์œ ์ „์˜ ๊ฒฝ์šฐ ์ˆœํ˜„์žฌ๊ฐ€์น˜๊ฐ€ ๊ฐ€์žฅ ๋†’์€ 2๋‹จ ํŠœ๋น™์€ ํ•˜๋‹จ์ด 4.5 in. ๋‚ด๊ฒฝ์— ๊ธธ์ด๊ฐ€ 2000 ft์ด๋ฉฐ ์ƒ๋‹จ์€ 5.5 in. ๋‚ด๊ฒฝ์— ๊ธธ์ด๊ฐ€ 8000 ft์ธ ์กฐํ•ฉ์ด๋‹ค. ๋˜ํ•œ 2๋‹จ ํŠœ๋น™์„ ํ†ตํ•ด ๋‚ฎ์€ ๋งˆ์ฐฐ์••๋ ฅ์†์‹ค์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. 2๋‹จ ํŠœ๋น™๊ฐ„์˜ ๋งˆ์ฐฐ์••๋ ฅ์†์‹ค ์ฐจ์ด๋Š” ํฌ์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹จ์ผํŠœ๋น™๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ์กฐํ•ฉ์ด ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํŠœ๋น™ํ•˜๋‹จ์—์„  liquid loading ํ˜„์ƒ์˜ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•ด ์ž‘์€ ์•ก์ฒด๋ถ€ํ”ผ๋น„๋ฅผ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ๋ฐ, ์ด๋Š” 2๋‹จ ํŠœ๋น™ํ•˜๋‹จ์—์„œ ์ž‘์€ ๋‚ด๊ฒฝ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐ€๋Šฅํ–ˆ๋‹ค. ์ด์ฒ˜๋Ÿผ ์ƒ์‚ฐ์šด์˜์˜ ์ „๋ฐ˜์  ๋ถ„์„๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ๋ชฉ์ ์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ํŠœ๋น™ ๋””์ž์ธ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ–ˆ๋‹ค.์ดˆ ๋ก โ…ฐ List of Tables โ…ณ List of Figures โ…ด 1. ์„œ ๋ก  1 2. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 7 2.1 IPR 7 2.2 TPR 14 2.3 ๋…ธ๋‹ฌ๋ถ„์„ 19 3. ํŠœ๋น™์กฐํ•ฉ์— ๋”ฐ๋ฅธ ์ƒ์‚ฐ๋Ÿ‰๊ณผ ์ˆœํ˜„์žฌ๊ฐ€์น˜ 21 4. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 23 4.1 IPR, TPR ๋„์ถœ 23 4.2 ์šด์˜์กฐ๊ฑด 27 4.3 Tubing pressure traverse analysis 29 4.4 ์•ก์ฒด๋ถ€ํ”ผ๋น„ 44 4.5 ์œ ๋™ํŒจํ„ด 47 4.6 ํŠœ๋น™๊ธธ์ด ๋ณ€ํ™” 49 5. ๊ฒฐ ๋ก  54 ์ฐธ๊ณ ๋ฌธํ—Œ 56 ABSTRACT 58Maste

    Design and Analysis of Multimodal Interfaces for Virtual CAD Operations

    No full text
    Maste
    • โ€ฆ
    corecore