7 research outputs found

    ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ๊ณ ๋ถ„์ž ๊ตฌ์กฐ๋ฌผ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘์„ ํ†ตํ•œ ์ –์Œ ํŠน์„ฑ ์กฐ์ ˆ ๋ฐ ์—ฐ๋ฃŒ์ „์ง€ ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2015. 2. ์ตœ๋งŒ์ˆ˜.๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž์™ธ์„  ๊ฒฝํ™” ๊ณ ๋ถ„์ž์˜ ๋ถ€๋ถ„๊ฒฝํ™” ํ˜„์ƒ ๋ฐ ํŠน์ • ๊ด‘ํ•™ ํ•„๋ฆ„์„ ์ด์šฉํ•ด ๋น›์˜ ๋ฐฉํ–ฅ์„ฑ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ์ž์™ธ์„  ๊ฒฝํ™” ๊ณ ๋ถ„์ž๋กœ ๊ตฌ์„ฑ๋œ ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ํ˜น์€ ๋น„๋Œ€์นญ ๊ตฌ์กฐ๋ฌผ์„ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กญ๊ณ  ์šฉ์ดํ•œ ๊ณต์ •์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ์—ด ๊ฐ์‘์„ฑ ๊ณ ๋ถ„์ž๋ฅผ ์ž์—ฐ๋ชจ์‚ฌ ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ๊ตฌ์กฐ๋ฌผ์— ์ ์šฉํ•˜์—ฌ, ๋งˆ์ดํฌ๋กœ ์œ ์ฒด ์‹œ์Šคํ…œ์—์„œ์˜ ์ผ๋ฐฉํ–ฅ์„ฑ ์•ก์ฒด ํ๋ฆ„ ์กฐ์ ˆ์„ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ์ˆ˜์†Œ์—ฐ๋ฃŒ์ „์ง€ (๊ณ ๋ถ„์ž ์ „ํ•ด์งˆ๋ง‰ ์—ฐ๋ฃŒ์ „์ง€) ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋จผ์ €, ์ž์—ฐ๊ณ„ ์ƒ๋ฌผ์ฒด ํ‘œ๋ฉด์— ์กด์žฌํ•˜๋Š” ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ๊ตฌ์กฐ๋ฌผ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กญ๊ณ  ์šฉ์ดํ•œ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜์˜€๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ, ์ž์™ธ์„  ๊ฒฝํ™” ๊ณ ๋ถ„์ž์˜ ๋ถ€๋ถ„๊ฒฝํ™” ํ˜„์ƒ์„ ์ด์šฉํ•˜์—ฌ ๋งˆ์ดํฌ๋กœ ๊ณ ๋ถ„์ž ๋ง‰์„ ์ œ์ž‘ํ•˜์—ฌ, ์ด๋ฅผ ์ ์ธต์‹œ์ผœ๊ฐ€๋ฉฐ ๊ฐ ์ธต์˜ ํŒจํ„ด์˜ ์น˜์ˆ˜์™€ ์ธต์˜ ๊ฐœ์ˆ˜๋ฅผ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฉ€ํ‹ฐํ”Œ๋ ‰์Šค ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋งˆ์ดํฌ๋กœ ๊ณ ๋ถ„์ž ๋ง‰์€ ์‚ฐ์†Œ ํˆฌ๊ณผ ํšจ๊ณผ ๋ฐ ๋น„์ –์Œ ํŠน์„ฑ์„ ์ด์šฉํ•˜์—ฌ ์ œ์ž‘์ด ๋˜๋ฉฐ, ๋งˆ์ดํฌ๋กœ ๊ณ ๋ถ„์ž ๋ง‰ ํ‘œ๋ฉด์— ๋‚จ์•„์žˆ๋Š” ์•ก์ ์€ ์ถ”๊ฐ€ ์ž์™ธ์„  ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ๋‚˜๋…ธ ํŒจํ„ด์„ ์ƒˆ๊ธฐ๊ฑฐ๋‚˜ ๋‘ ๊ฐœ์˜ ๋งˆ์ดํฌ๋กœ ๊ณ ๋ถ„์ž ๋ง‰์„ ์—ฐ๊ฒฐํ•˜๋Š” ์—ญํ• ์„ ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด์— ๋”ํ•ด, ๋ชฐํฌ๋‚˜๋น„ ๋‚ ๊ฐœ ํ˜น์€ ์†Œ๊ธˆ์Ÿ์ด ๋‹ค๋ฆฌ์˜ ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ, ๋น„๋Œ€์นญ ๋ž˜์นซ ๊ตฌ์กฐ๋ฌผ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ„๋‹จํ•˜๋ฉด์„œ๋„ ์œ ์šฉํ•œ ์ œ์ž‘ ๊ณต๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋งˆ์ดํฌ๋กœ ์ฑ„๋„ ๋‚ด์— ์ž์™ธ์„  ๊ฒฝํ™” ๊ณ ๋ถ„์ž๋ฅผ ์ฑ„์›Œ๋„ฃ์€ ์ƒํƒœ์—์„œ UV ๋น›์„ ํŠน์ • ๊ฐ๋„๋กœ ํœ˜๊ฒŒ ๋งŒ๋“ค์–ด ์ฃผ๋Š” ๋ฃจ์‹œ์šฐ์Šค ํ”„๋ฆฌ์ฆ˜ ์–ด๋ ˆ์ด ๋ฅผ ํ†ต๊ณผ์‹œ์ผœ ๋งˆ์ดํฌ๋กœ ์ฑ„๋„ ๋‚ด์— ์ง์ ‘์ ์œผ๋กœ ๋น„๋Œ€์นญ ๋ž˜์นซ ๊ตฌ์กฐ๋ฌผ์„ ํ˜•์„ฑํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋งˆ์ดํฌ๋กœ ์ฑ„๋„ ๋‚ด์— ํ˜•์„ฑ๋œ ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ, ๋น„๋Œ€์นญ ๊ตฌ์กฐ๋ฌผ์„ ์ด์šฉํ•˜์—ฌ ๋งˆ์ดํฌ๋กœ ์œ ์ฒด ์‹œ์Šคํ…œ ๋‚ด์—์„œ์˜ ์ผ๋ฐฉํ–ฅ์„ฑ ์œ ์ฒด ํ๋ฆ„ ํŠน์„ฑ ๊ตฌํ˜„ ๋ฐ ๋ž˜์นซ ๊ตฌ์กฐ๋ฌผ์˜ ๋ฐฉํ–ฅ์„ฑ์„ ์กฐ์ ˆํ•˜์—ฌ ํŠน์ • ๊ตฌ์—ญ์—์„œ์˜ ์œ ์ฒด ์†๋„ ์กฐ์ ˆ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋น„๋Œ€์นญ ๋ž˜์นซ ๊ตฌ์กฐ๋ฌผ์„ ์ด์šฉํ•˜์—ฌ ์™ธ๋ถ€ ํŽŒํ”„ ๋ฐ ๋ฐธ๋ธŒ ์žฅ์น˜๊ฐ€ ์—†์ด ๋งˆ์ดํฌ๋กœ ์œ ์ฒด ์‹œ์Šคํ…œ์—์„œ์˜ ์†๋„ ์กฐ์ ˆ ๋ฐ ์œ ์ฒด ํ๋ฆ„ ์ง€์—ฐ์„ ํ†ตํ•œ ํƒ€์ด๋จธ์˜ ์‘์šฉ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, ๊ตฌ์กฐ์ ์œผ๋กœ ๋Œ€์นญ์˜ ํŠน์„ฑ์„ ์ง€๋‹ˆ๋Š” ๊ณ ๋ถ„์ž ํ”„๋ฆฌ์ฆ˜ ์–ด๋ ˆ์ด์— ๊ธฐ์šธ์ž„ ๊ธˆ์† ์ฆ์ฐฉ ๊ณต๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๋Œ€์นญ์ด์ง€๋งŒ ํ™”ํ•™์ ์œผ๋กœ ๋น„๋Œ€์นญ์ธ ํ”„๋ฆฌ์ฆ˜ ์–ด๋ ˆ์ด๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์ผ๋ฐฉํ–ฅ์„ฑ ์ –์Œ ํŠน์„ฑ์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด์— ๋”ํ•ด, ํŠน์ • ์ž๊ทน์— ๋”ฐ๋ผ ์œ ์ฒด ํ๋ฆ„์˜ ๋ฐฉํ–ฅ์„ฑ์„ ๋ฐ”๊พธ๊ณ ์ž ํ”„๋ฆฌ์ฆ˜ ์–ด๋ ˆ์ด๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๊ณ ๋ถ„์ž๋ฅผ ์ €์˜จ( 32 โ„ƒ)์—์„œ๋Š” ์†Œ์ˆ˜ ์„ฑ์งˆ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์—ด๊ฐ์‘์„ฑ ๊ณ ๋ถ„์ž(poly(N-isopropylacrylamide))๋ฅผ ์ด์šฉํ•ด ํŒจํ„ฐ๋‹ํ•˜์—ฌ, ์˜จ๋„์— ๋”ฐ๋ผ์„œ ์œ ์ฒด ํ๋ฆ„์„ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ๋Š” ๋งˆ์ดํฌ๋กœ ์œ ์ฒด ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์—ด๊ฐ์‘์„ฑ ๊ณ ๋ถ„์ž(poly(N-isopropylacrylamide))๋ฅผ ํƒ„์†Œ ๋‚˜๋…ธ์ž…์ž์˜ ํ‘œ๋ฉด์— ์„ ํƒ์ ์œผ๋กœ ๊ฐœ์งˆํ•˜์—ฌ ์ˆ˜์†Œ ์—ฐ๋ฃŒ ์ „์ง€ ์Œ๊ทน์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌผ์˜ ์ด๋™์„ ์ด‰์ง„์‹œ์ผœ ์ „์ง€์˜ ํšจ์œจ์ด ํ–ฅ์ƒ๋จ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์˜ ๊ฒฝ์šฐ, ๊ณ ๋ถ„์ž๊ฐ€ ์ด‰๋งค(PlatinumPt) ํ‘œ๋ฉด์„ ๊ฐ์‹ธ ํ™œ์„ฑ ๋ฉด์ ์„ ์ค„์ด๊ฑฐ๋‚˜ ๋‘๊ป˜๋ฅผ ์ฆ๊ฐ€์‹œ์ผœ ์‚ฐ์†Œ ํ™•์‚ฐ์„ ์ €ํ•˜์‹œ์ผœ ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œ์ผฐ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Amine(-NH2) ์ž‘์šฉ๊ธฐ๊ฐ€ ๋‹ฌ๋ ค ์žˆ๋Š” ์—ด๊ฐ์‘์„ฑ ๊ณ ๋ถ„์ž๋ฅผ Pt/C ์ด‰๋งค์— ๋Œ€ํ•ด Pt์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š์œผ๋ฉด์„œ๋„ ํƒ„์†Œ ํ‘œ๋ฉด์—๋งŒ ์„ ํƒ์ ์œผ๋กœ ๊ฐœ์งˆ์‹œํ‚จ ํ›„, ์ €์˜จ์—์„œ ์นœ์ˆ˜ ์„ฑ์งˆ์„ ๋„๊ฒŒ ํ•˜์—ฌ ์ด‰๋งค ๋ถ„์‚ฐ์˜ ๋ฌธ์ œ๋ฅผ ์—†์• ๊ณ , ์ˆ˜์†Œ์—ฐ๋ฃŒ์ „์ง€ ์šด์ „์‹œ(~ 70 โ„ƒ)์— ์†Œ์ˆ˜ ์„ฑ์งˆ์„ ๊ฐ€์ง€๊ฒŒ ํ•˜์—ฌ ๋ฌผ์„ ํšจ์œจ์ ์œผ๋กœ ๋ฐฐ์ถœ์‹œ์ผœ ๋ฌผ์งˆ ์ „๋‹ฌ ์ฆ๊ฐ€์— ์˜ํ•œ ์ˆ˜์†Œ์—ฐ๋ฃŒ์ „์ง€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ ๋„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋ฌผ ์ „๋‹ฌ ์ •๋„๋ฅผ ์ƒ๋Œ€์ ์œผ๋กœ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ์ง€์ˆ˜(index)๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด์— ๋”ํ•ด, ๋ฉ€ํ‹ฐํ”Œ๋ ‰์Šค ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ณต์ •์„ ํ†ตํ•ด ์ œ์ž‘๋œ ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ๊ณ ๋ถ„์ž ๊ตฌ์กฐ๋ฌผ์„ ๋‚˜๋…ธ์ž„ํ”„๋ฆฐํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ณต์ •์„ ํ†ตํ•ด ์ด์˜จ๊ตํ™˜๋ง‰์— ๊ณ„์ธต๊ตฌ์กฐ๋ฌผ์„ ์ƒˆ๊ธด ํ›„, ์ด๋ฅผ ๋ง‰-์ „๊ทน ์ ‘ํ•ฉ์ฒด์— ๋„์ž…ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ง‰ ๋‘๊ป˜๋ฅผ ๊ฐ์†Œ์‹œ์ผœ ์ˆ˜์†Œ์ด์˜จ์˜ ์ „๋„๋ฅผ ์šฉ์ดํ•˜๊ฒŒ ํ•˜๊ณ , ์ด์˜จ๊ตํ™˜๋ง‰์˜ ํ‘œ๋ฉด์˜ ๊ตฌ์กฐ๋ฌผ๋กœ ์ธํ•œ ์ „๊ทน ํ‘œ๋ฉด์ ์˜ ์ฆ๊ฐ€๋ฅผ ์œ ๋„ํ•˜์—ฌ ์ˆ˜์†Œ์—ฐ๋ฃŒ์ „์ง€์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ํšจ๊ณผ๋ฅผ ๊ฐ€์ ธ์™”๋‹ค.In this thesis, we describe novel and facile methods to achieve multiscale, asymmetric structures via controlled oxygen-inhibition effect of UV-curable materials and guided UV light transmission. From the nature-inspired multiscale structures with the aid of thermally responsive chemical composition, we could exhibit directional liquid control in microfluidic system and also achieve enhanced performance of polymer electrolyte membrane fuel cell. First, we propose methodological breakthroughs to achieve multiscale structures mimicking biological surfaces in nature. Representatively, multiplex lithography via stacking designed polymeric membrane provides possibility for hierarchical design of pattern dimension at each layer and number of layers. The facile yet versatile strategy for multiscale structures from soft materials allows structural deformations on surface and enables LEGOยฎ-like, monolithic integrations of them by quantitatively controlling the oxygen-inhibition effect of UV-curable materials. Micro ebb tides of partially cured resin were observed and utilized to form dual phase brick with viscoelastic coating that was promoted to be nanopatterns and connections under multiple UV exposures. Furthermore, to realize asymmetric ratchet structure in morphobutterfly wings or water strider legs, we developed a simple but powerful strategy to directly program asymmetric structures within a microchannel by combination of photopolymerization within a microchannel and the guided light transmission through an optically asymmetric Lucius prism array. Next, we present the asymmetric ratchet structures, created at the bottoms of microchannels, show the unidirectional liquid flows as well as controlling the fluid speed in a predefined region. Then, we demonstrated two examples of asymmetric structures created or programmed in specific regions within microchannels to control the fluid speed in predefined regions and to be used as on-chip timers in split microchannels. In addition, we present a simple approach to reversibly switch the direction of liquid flow on physically symmetric and chemically asymmetric prism structures by exploiting the reversibility of wetting properties on a thermo-responsive polymer, poly(N-isopropyl-acrylamide) surface is demonstrated. Such an asymmetric prism array creates a flow path in the direction of the lower critical contact angle. This allows a unidirectional step flow across the ridges of prism channels, which can be made reversible with suitable temperature change. Finally, we demonstrate enhancing performance in polymer electrolyte membrane fuel cell (PEMFC) via multiscale approaches. To improve mass transport in cathode electrode, carbon-supported Pt (Pt/C) catalyst was selectively functionalized by a thermally responsive poly(N-isopropylacrylamide) (PNIPAM) to improve water transport in the cathode of proton exchange membrane fuel cell. Amine-terminated PNIPAM selectively reacted with the functional group of ?COOH on carbon surfaces of Pt/C via the amide reaction by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a catalyst. Pt surfaces of Pt/C were intact throughout the carbon surface functionalization, and the carbon surface property could be thermally changed. The PNIPAM-functionalized Pt/C was well dispersed due to its hydrophilic surface property at room temperature during the catalyst ink preparation. In sharp contrast, when PEMFC was operated at 70 โ„ƒ, PNIPAM-coated carbon surface of Pt/C became hydrophobic, which resulted in a decrease in water flooding in the cathode electrode. Due to the switched wetting property of the carbon surface, PEMFC with PNIPAM-functionalized Pt/C catalyst in the cathode showed high performance in the high current density region. To explain the enhanced water transport, we proposed a simple index as the ratio of systematic pressure (driving force) and retention force. Furthermore, to demonstrate the effectiveness of multiscale engineering, complex and multiscale architectures with an aid of multiplex lithography that integrates rational advantages in both microscale and nanoscale, was embedded into fuel cell devices to fully probe advantages of each scale pattern, resulting in outstanding device performance by increasing both proton conductivity and surface area for electrocatalysis.Abstract List of Figures Nomenclature Chapter 1. Introduction Chapter 2. Multiscale Design and Fabrication of Polymeric Architectures 2-1. Multiscale architecturing by quantitatively controlled oxygen-inhibition effect of UV-curable materials 2-1-1. Introduction 2-1-2. Experimental 2-1-3. Results and Discussion 2-1-4. Summary 2-2. Multiscale, asymmetric ratchet structures within microchannels via guided UV light transmission 2-2-1. Introduction 2-2-2. Experimental 2-2-3. Results and Discussion 2-2-4. Summary Chapter 3. Multiscale Architectures for Wettability Control in Microfluidic System 3-1. In Situ Realization of Asymmetric Ratchet Structures within Microchannels by Directionally Guided Light Transmission and Their Directional Flow Behavior 3-1-1. Introduction 3-1-2. Experimental 3-1-3. Results and Discussion 3-1-4. Summary 3-2. Thermoresponsive Switching of Liquid Flow Direction on a Two-Face Prism Array 3-2-1. Introduction 3-2-2. Experimental 3-2-3. Results and Discussion 3-2-4. Summary Chapter 4. Multiscale Architectures for Enhancing Performance in Polymer Electrolyte Membrane Fuel Cell 4-1. High Performance Hybrid Catalyst with Selectively Functionalized Carbon by Temperature-Directed Switchable Polymer 4-1-1. Introduction 4-1-2. Experimental 4-1-3. Results and Discussion 4-1-4. Summary 4-2. High Performance Ultra-thin and Free-standing Multiscale Nafion Membrane via Enhanced Proton Conductivity with Increased Reaction Area 4-2-1. Introduction 4-2-2. Experimental 4-2-3. Results and Discussion 4-2-4. Summary References ๊ตญ๋ฌธ์ดˆ๋กDocto
    corecore