127 research outputs found

    ๊น€์ •์€ ์ •๊ถŒ์˜ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ ํ†ต์น˜ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์ •์น˜์™ธ๊ตํ•™๋ถ€(์ •์น˜ํ•™์ „๊ณต), 2021. 2. ์ž„๊ฒฝํ›ˆ.๋ณธ ์—ฐ๊ตฌ๋Š” ๋…์žฌ์ •์น˜ ์ด๋ก ์˜ ๊ด€์ ์—์„œ ๊น€์ •์€์˜ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ ํ†ต์น˜ ์ „๋žต ๋ฐฉ์‹์„ ๋ฐํž˜๊ณผ ๋™์‹œ์— ๋‹น-๊ตญ๊ฐ€์ฒด์ œ์˜ โ€˜์ •์ƒํ™”โ€™๋ผ๋Š” ๋ถํ•œ ์ •์น˜์ฒด์ œ์˜ ๋ณ€ํ™”๋ฅผ ์ˆ˜๋ น์˜ ์ •๊ถŒ ์•ˆ์ •ํ™” ๋„๋ชจ๋ผ๋Š” ๋งฅ๋ฝ ์†์—์„œ ํ•ด์„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋ถํ•œ ์—ฐ๊ตฌ์—์„œ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ์— ๋Œ€ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ ๊ฐœ์ธ์˜ ์ถœ์‹ ์„ฑ๋ถ„๊ณผ ์ˆ˜๋ น๊ณผ์˜ ์—ฐ๊ด€์„ฑ ๋ถ„์„์„ ์ค‘์‹ฌ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์ด ์ด๋ฃฌ ๋ถํ•œ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ์— ๋Œ€ํ•œ ๋ถ„์„๊ณผ ์ž๋ฃŒ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ •๊ถŒ ์•ˆ์ •ํ™”์™€ ์ฒด์ œ ์œ ์ง€๋ฅผ ์œ„ํ•ด ๋…์žฌ์ž๊ฐ€ ์—˜๋ฆฌํŠธ ์—ฐํ•ฉ์— ๋Œ€ํ•ด ์–ด๋– ํ•œ ์ „๋žต์„ ์‚ฌ์šฉํ•˜๋Š”์ง€ ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋…์žฌ์ •์น˜ ์ด๋ก ์€ ๋…์žฌ์ž ์ด์™ธ์—๋„ ๋…์žฌ์ฒด์ œ๋ฅผ ์ด๋ฃจ๋Š” ํ–‰์œ„์ง‘๋‹จ์„ ๊ตฌ๋ณ„ํ•˜์—ฌ ๊ทธ ๊ด€๊ณ„์˜ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ๋…์žฌ์˜ ์ž‘๋™์›๋ฆฌ๋ฅผ ๋ฐํžŒ๋‹ค๋Š” ์ ์—์„œ ์œ ์šฉํ•˜๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ์„ ์ถœ์ธ๋‹จ๊ณผ ์Šน์ž์—ฐํ•ฉ์˜ ๊ทœ๋ชจ ๋ณ€ํ™”, ๊ทธ๋ฆฌ๊ณ  ํ†ต์น˜์ž์™€ ์Šน์ž์—ฐํ•ฉ์˜ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด์„œ ํ†ต์น˜์ž์˜ ์ •๊ถŒ ์œ ์ง€ ์ „๋žต์„ ์„ค๋ช…ํ•˜๋Š” ๋ถ€๋ฅด๋…ธ ๋ฐ ๋ฉ”์Šคํ‚คํƒ€์˜ ์„ ์ถœ์ธ๋‹จ์ด๋ก ์„ ๋ณธ ์—ฐ๊ตฌ์˜ ์ด๋ก ์  ๋…ผ์˜ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ผ๋Š”๋‹ค. ๊น€์ •์€์€ 1) ์‹ค์งˆ์ ์ธ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ์˜ ๊ทœ๋ชจ๋Š” ์ถ•์†Œ์‹œํ‚ค๋ฉด์„œ ์Šน์ž ์—ฐํ•ฉ์— ๋Œ€ํ•œ ์ž์‹ ์˜ ํ†ต์ œ๋ ฅ์„ ๋†’์ด๊ณ , 2) ์žฆ์€ ์กฐ์ง ๋ฐ ์ธ์‚ฌ ๊ฐœํŽธ์„ ํ†ตํ•ด ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ๋“ค์ด ๋…์ž์ ์ธ ํŒŒ๋ฒŒ์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋ง‰๋Š” ์ „๋žต์„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ „๋žต์€ ๋…์žฌ์ž๊ฐ€ ์ถฉ์„ฑ์„ธ๋ ฅ์—๊ฒŒ ์ ์ ˆํ•œ ๋ณด์ƒ์„ ์ œ๊ณตํ•˜๊ณ  ์ด๊ถŒ์„ ์žฌ๋ถ„๋ฐฐํ•˜๋Š” ๊ฒƒ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋…์žฌ๊ตญ๊ฐ€์—์„œ ์‰ฝ๊ฒŒ ์ฐพ์•„๋ณผ ์ˆ˜ ์žˆ๋Š” ๋…์žฌ์ž์˜ ์ „๋žต์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ถํ•œ์˜ ๊น€์ •์€์€ ์ด๋Ÿฌํ•œ ๋…์žฌ์ž์˜ ์ „๋žต์„ ๋‹น-๊ตญ๊ฐ€ ์ฒด์ œ์˜ ์ •์ƒํ™”๋ผ๋Š” ์ œ๋„์  ๋ณ€ํ™”์™€ ํ•จ๊ป˜ ์‚ฌ์šฉํ–ˆ๋‹ค. ๋‹น-๊ตญ๊ฐ€์ฒด์ œ๋Š” ์›๋ž˜ ์‚ฌํšŒ์ฃผ์˜ ์ •์น˜์ฒด์ œ์˜ ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์ด๊ณ  ๊ธฐ๋ณธ์ ์ธ ํŠน์ง•์ด์ง€๋งŒ, ๋ถํ•œ์˜ ๊ฒฝ์šฐ์—๋Š” ์ฒด์ œ๊ฑด์„ค๊ณผ์ •๊ณผ ์ˆ˜๋ น๋…์žฌ์ฒด์ œ์˜ ๊ณต๊ณ ํ™”๋ฅผ ๊ฑฐ์น˜๋ฉฐ ๋‹น์˜ ์˜๋„๋ณด๋‹ค ์ˆ˜๋ น์˜ ์˜๋„๊ฐ€ ๋” ์šฐ์œ„์— ์žˆ์–ด์™”๋‹ค. ๊น€์ •์€์€ ์ง‘๊ถŒ ์ดํ›„ ๋‹น-๊ตญ๊ฐ€์ฒด์ œ์˜ โ€˜์ •์ƒํ™”โ€™๋‚˜ ํ˜น์€ โ€˜๋ณต์›โ€™์ด๋ผ๊ณ  ๋ถˆ๋ฆด ๋งŒํ•œ ์ œ๋„์  ๋ณ€ํ™”๋ฅผ ๊พ€ํ•˜๋ฉด์„œ ๊ฐ•ํ™”๋œ ๋‹น์˜ ๊ถŒ์œ„๋ฅผ ํ†ตํ•ด์„œ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ์— ๋Œ€ํ•œ ํ†ต์ œ๋ฅผ ๊ฐ•ํ™”ํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์ฒ˜๋Ÿผ ๋‹น-๊ตญ๊ฐ€์ฒด์ œ์˜ โ€˜์ •์ƒํ™”โ€™๋ผ๋Š” ๊น€์ •์€ ์ •๊ถŒ ํ•˜์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋ถํ•œ ์ •์น˜์ฒด์ œ์˜ ๋ณ€ํ™”๋ฅผ ์‚ฌํšŒ์ฃผ์˜ ๋‹น-๊ตญ๊ฐ€์ฒด์ œ์˜ ๊ฐœ๋… ๋ฐ ์ˆ˜๋ น์ œ์™€ ํ•จ๊ป˜ ๊ตฌ์ถ•๋œ ๋ถํ•œ ์ฒด์ œ์˜ ์ˆ˜๋ฆฝ ๊ณผ์ • ๋“ฑ๊ณผ ํ•จ๊ป˜ ์‚ดํŽด๋ณด๋ฉด์„œ, ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋“ค์„ ์ •๊ถŒ ์•ˆ์ •ํ™”์™€ ์ฒด์ œ ์œ ์ง€ ๋ฐ ๊ถŒ๋ ฅ ์—˜๋ฆฌํŠธ ํ†ต์ œ๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•œ ๋…์žฌ์ž์˜ ์ „๋žต์  ์ธก๋ฉด์—์„œ ๋ถ„์„ํ•œ๋‹ค.By analyzing the power elite of the Kim Jong-un regime from the perspective of autocratic theory, this thesis reveals Kim Jong-unโ€™s strategy of taming power elites and explores the meaning of the political changes in North Korea. Previous studies on the power elite in North Korea have focused mainly on analyzing the origins and backgrounds of individual power elites or their connection with Suryeong. This thesis interprets the analysis and data on the North Korean power elite achieved by these previous studies from the perspective of autocratic theory. The autocratic theory is useful because it distinguishes between groups of acts that form a dictatorship and reveals the operating principles of dictatorship through changes in their relationships. In particular, the Selectorate Theory of Bueno de Mesquita (BdM) explains the relationship between the ruler and the Winning Coalition through the size of the Selectorate and the Winning Coalition, which is the basis of the theoretical discussion in this thesis. Kim Jong-un diminishes the size of power elites in an effort to consolidate the dictatorโ€™s political standing. And he staves off factional coalitions from forming by stirring up organizational structure and frequent cabinet/elite reshuffle. These two strategies are accompanied by an institutional change in the โ€˜normalizationโ€™ of the Party-Sate System. This thesis analyzes the partyโ€™s empowerment in North Korea from the perspective of Kim Jong-unโ€™s strategy of maintaining his dictatorship.Chapter 1. Introduction 1 1.1 Research Questions 1 1.2 Research Methods and Materials 5 1.3 Composition of the Thesis 8 Chapter 2. Literature Review 10 2.1 Studies of Party-State System 10 2.2 Studies of Dictatorships. 14 2.3 "Selectorate Theory" of Bueno de Mesquita. 16 Chapter 3. Capitalizing on the Party-State System 18 3.1 Succession Strategy for Kim Jong-un 18 3.2 Reign of Terror under Kim Jong-un. 20 3.3 "Normalization" in Context. 22 Chapter 4. Party over Winning Coalition: Maneuvering the Size 25 4.1 Shrinking of the Winning Coalition 25 4.2 Discussion of the Selectorate in North Korea. 30 Chapter 5. Stirring Up the Elite Coalitions 32 5.1 Revamping the Bureaucracy. 32 5.1.1 The Military. 32 5.1.2 Office No. 39. 39 5.2 Reshuffling the Personnel. 43 Chapter 6. Conclusion 44 Bibliography 46 Abstract in Korean 51Maste

    ์„ธํฌ์น˜๋ฃŒ์ œ๋ฅผ ์œ„ํ•œ ์ ์ธต์‹ ํ•˜์ด๋“œ๋กœ๊ฒ” ํ•„๋ฆ„ ์„ธํฌ ์ฝ”ํŒ…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€,2019. 8. Nathaniel S. Hwang.Cell therapy has been emerged as a promising approach for severe diseases. However, the efficacy of cell therapy is limited by low cell survival owing to external stress during and after transplantation. In this study, we constructed a layer-by-layer cell coating platform with hydrogel film that provides cells a cytoprotective barrier. The hydrogel film was stabilized by Streptomyces avermitilis-derived tyrosinase (SA-Ty) which mediate oxidative coupling reactions of mono-phenols. Hydrogel film-coated cells were characterized by measuring zeta potential, fluorescence intensity, and TEM imaging. The 6-layer stacked hydrogel film was as thick as 139.40 nm. Cell viability was not deteriorated by coating procedures. Furthermore, hydrogel film was fabricated on ฮฒ-cell spheroids for the application in the field of islet transplantation. Confocal image showed thin, uniform, and compact film layers on ฮฒ-cell spheroids. In addition, hydrogel film-coated ฮฒ-cell spheroids showed higher insulin secretion ability than the native ฮฒ-cell spheroids. At last, the cytoprotective effects of the hydrogel film against physical and oxidative stress were evaluated in vitro. Overall, we expect our fast, facile, durable, and layer-controllable cell coating technique will offer a great potential for clinical applications in cell therapy.์„ธํฌ์น˜๋ฃŒ์ œ๋Š” ์ค‘์ฆ ์งˆํ™˜์— ๋Œ€ํ•œ ์น˜๋ฃŒ๋ฒ•์œผ๋กœ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์„ธํฌ์น˜๋ฃŒ์ œ์˜ ํšจ๋Šฅ์€ ์ฃผ์‚ฌ ์‹œ ๋˜๋Š” ํˆฌ์—ฌ ํ›„ ์™ธ๋ถ€ ์ŠคํŠธ๋ ˆ์Šค๋กœ ์ธํ•ด ๊ทธ ์ƒ์กด์œจ์ด ๋‚ฎ๋‹ค๋Š” ํ•œ๊ณ„์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ์ฒด ์ ํ•ฉ ๋ฐ ์„ธํฌ ๋ณดํ˜ธ ํ•˜์ด๋“œ๋กœ๊ฒ” ํ•„๋ฆ„์„ ์‚ฌ์šฉํ•˜์—ฌ ์ ์ธต์‹ ์„ธํฌ ์ฝ”ํŒ… ํ”Œ๋žซํผ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ํ•˜์ด๋“œ๋กœ๊ฒ” ๋ง‰ ํ˜•์„ฑ์„ ์ด‰์ง„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋ฐ˜๋Œ€ ์ „ํ•˜๋ฅผ ๋„๋ฉฐ Streptomyces avermitilis ์œ ๋ž˜ ํƒ€์ด๋กœ์‹œ๋„ค์ด์ฆˆ ๋งค๊ฐœ ์‚ฐํ™” ์ปคํ”Œ๋ง ๋ฐ˜์‘์„ ํ†ตํ•ด ์„ธ๋กœ ํ‘œ๋ฉด์˜ ์ž‘์šฉ๊ธฐ์™€ ๊ณต์œ ๊ฒฐํ•ฉ์„ ํ˜•์„ฑํ•˜๊ฑฐ๋‚˜ ๊ต์ฐจ๊ฒฐํ•ฉํ•˜๋Š” ํžˆ์•Œ๋ฃจ๋ก ์‚ฐ ๋ฐ ๊ธ€๋ผ์ด์ฝœ ํ‚คํ† ์‚ฐ์— ๋‹จ์ผํŽ˜๋†€ ๊ทธ๋ฃน์„ ๋„์ž…ํ•˜์˜€๋‹ค. ํ•˜์ด๋“œ๋กœ๊ฒ” ํ•„๋ฆ„์ด ์ฝ”ํŒ…๋œ ์„ธํฌ๋Š” ์ œํƒ€ ์ „์œ„, ํ˜•๊ด‘ ์„ธ๊ธฐ๋ฅผ ์ธก์ •ํ•˜๊ณ  TEM ์ด๋ฏธ์ง€๋ฅผ ์ธก์ •ํ•˜์—ฌ ํ™•์ธ๋˜์—ˆ๋‹ค. 6๊ฐœ ์ธต์ด ์Œ“์ธ ํ•˜์ด๋“œ๋กœ๊ฒ” ํ•„๋ฆ„์€ 139.40 nm์˜€๋‹ค. ์ฝ”ํŒ… ๊ณผ์ • ํ›„ ์„ธํฌ์˜ ์ƒ์กด์œจ์€ ๋‚˜๋น ์ง€์ง€ ์•Š์•˜๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ์ทŒ๋„ ์ด์‹์—์˜ ํ™œ์šฉ์„ ์œ„ํ•˜์—ฌ ๋ฒ ํƒ€ ์„ธํฌ ์ŠคํŽ˜๋กœ์ด๋“œ์˜ ํ‘œ๋ฉด์— ํ•˜์ด๋“œ๋กœ๊ฒ” ํ•„๋ฆ„์„ ํ˜•์„ฑํ•˜์˜€๋‹ค. ์ปจํฌ์นผ ์ด๋ฏธ์ง€์—์„œ ์–‡๊ณ , ๊ท ์ผํ•˜๊ณ , ์••์ถ•๋˜์–ด ์žˆ๋Š” ํ•„๋ฆ„ ์ธต์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”์šฑ์ด, ํ•˜์ด๋“œ๋กœ๊ฒ” ํ•„๋ฆ„์ด ์ฝ”ํŒ…๋œ ๋ฒ ํƒ€ ์„ธํฌ ์ŠคํŽ˜๋กœ์ด๋“œ๋Š” ์ผ๋ฐ˜ ์„ธํฌ๋ณด๋‹ค ๋” ๋†’์€ ์ธ์Š๋ฆฐ ๋ถ„๋น„ ๋Šฅ๋ ฅ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ํ•˜์ด๋“œ๋กœ๊ฒ” ํ•„๋ฆ„์˜ ๋ฌผ๋ฆฌ์ , ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค์— ๋Œ€ํ•œ ์„ธํฌ ๋ณดํ˜ธ ํšจ๊ณผ๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์šฐ๋ฆฌ๊ฐ€ ๊ฐœ๋ฐœํ•œ ๋น ๋ฅด๊ณ , ํŽธ๋ฆฌํ•˜๊ณ , ๋‹จ๋‹จํ•˜๊ณ , ์ธต ์ˆ˜ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•œ ์„ธํฌ ์ฝ”ํŒ… ๊ธฐ์ˆ ์ด ์„ธํฌ์น˜๋ฃŒ์ œ์˜ ์ž„์ƒ ํ™œ์šฉ์— ์žˆ์–ด ํฐ ์ž ์žฌ๋ ฅ์„ ๋ถ€์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.ABSTRACT 1 Table of Contents 3 List of Figures and Table 6 Chapter 1. The Scientific Background and Research Progress 8 1.1 Cell Therapy 8 1.2 Cell encapsulation for cell therapy 9 1.3 Strategies for cell surface engineering 10 Chapter 2. Construction of Layer-by-layer (LbL) Cell Coating Platform 12 2.1 Introduction 12 2.2 Materials and methods 13 2.2.1 Synthesis of GC-T, HA-T, GC-T-RITC, and HA-T-FA 13 2.2.2 Purification of recombinant tyrosinase from Streptomyces avermitilis (SA-Ty) 13 2.2.3 Attenuated total reflection-fourier transform infrared spectrometer (ATR-FTIR) 14 2.2.4 Quartz crystal microbalance (QCM) 15 2.2.5 Cell culture 15 2.2.6 Hydrogel film coating on 2D cell surface 16 2.2.7 Layer-by-layer hydrogel film coating of single cells 16 2.2.8 Measurement of zeta potential 17 2.2.9 FACS analysis 17 2.2.10 Transmission electron microscopy (TEM) 17 2.2.11 Evaluation of cell viability and proliferation 18 2.2.12 Statistical analysis 18 2.3 Results & Discussion 19 2.3.1 Synthesis and characterization of GC-T and HA-T 19 2.3.2 Characterization of SA-Ty. 19 2.3.3 Optimization of hydrogel film coating conditions on 2D cell surface 27 2.3.4 Identification of LbL hydrogel film by Quartz Crystal Microbalance 31 2.3.5 Identification of LbL hydrogel film-coated single cells 35 2.3.6 Cell viability and proliferation of hydrogel film-coated cells 39 Chapter 3. Layer-by-layer (LbL) Coating of ฮฒ-cell Spheroids for Islet Encapsulation 43 3.1 Introduction 43 3.2 Materials and methods 44 3.2.1 Fabrication of MIN6 ฮฒ-cell spheroids and layer-by-layer hydrogel film coating 44 3.2.3 Confocal laser scanning microscopy (CLSM) 44 3.2.4 Glucose-stimulated insulin secretion (GSIS) assay 44 3.2.5 Physical stress test 45 3.2.6 Oxidative stress test 45 3.2.7 Statistical analysis 46 3.3 Results & Discussion 47 3.3.1 Layer-by-layer hydrogel film coating of ฮฒ-cell spheroids 47 3.3.2 Cell viability of hydrogel film-coated ฮฒ-cell spheroids 47 3.3.3 Evaluation of the functionality of hydrogel film-coated ฮฒ-cell spheroids 53 3.3.4 Cytoprotection effect against physical stress 53 3.3.5 Cytoprotection effect against oxidative stress 53 Chapter 4. Conclusions 58 References 59 ๊ตญ๋ฌธ์ดˆ๋ก 64Maste

    Estimation and Allocation of Cost Savings from Collaborations

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021.8. ๋ฌธ์ผ๊ฒฝ.The physical internet (PI) is a state-of-the-art open global supply chain network that is gaining attention from both participants and researchers of supply chains. The PI uses standardized containers to dispatch shipments through an interconnected network within a supply chain, where information, storage facilities, and transportation methods are shared participants of the physical internet. The network aims to save costs, handle volatile demand and information, and be socially and environmentally responsible. Up until now, however, almost all studies concerning the PI have focused primarily on its conceptual development and the advantages of putting it into practical, widespread use. Studies that consider realistic constraints of its use, such as empty runs of transportation, limited capacity of resources, or an equitable allocation of the cost savings obtained from its implementation are limited. While in general the PI can offer greater efficiency and sustainability compared to the traditional supply chain network, in certain situations some users of it experience loss through its use because of the inherent setup it presents of sharing capacitated resources. Therefore, compensating companies that experience loss when joining a PI is essential in building a solid network. In this thesis, in order to address the minimization of a total cost problem in the production-inventory-distribution decision of a PI, we first propose a mixed-integer linear programming (MILP) model formulation that takes into account capacitated factory and warehouse capacity, the penalty sustained by empty runs of transportation, and the maximum delivery distance of freight runs. Next, we use the model to compare the costs incurred by individual players when they do not participate in the PI and the costs of collaboration in the PI in which players do participate. After comparing the costs saved by participating in the PI, we then allocated the cost savings among independent supply chains, allotting them through three different allocation methods, including the Shapley value method, which is a cooperative game theory solution method.ํ”ผ์ง€์ปฌ ์ธํ„ฐ๋„ท์€ ์ตœ์ฒจ๋‹จ์˜ ๊ณต์œ  ๊ธ€๋กœ๋ฒŒ ๊ณต๊ธ‰๋ง ๋„คํŠธ์›Œํฌ๋กœ ๋‹ค์–‘ํ•œ ํ•™์ž ๋ฐ ์‹ค๋ฌด์ž๋“ค์˜ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํ”ผ์ง€์ปฌ ์ธํ„ฐ๋„ท์€ ํ‘œ์ค€ํ™”๋œ ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ƒํ˜ธ ์—ฐ๊ฒฐ๋œ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์ œํ’ˆ ๋ฐ ์žฌํ™”๋ฅผ ๋ฐœ์†กํ•ฉ๋‹ˆ๋‹ค. ์ด ๋•Œ, ์ •๋ณด, ๋ณด๊ด€ ์‹œ์„ค ๋ฐ ์šด์†ก ์ˆ˜๋‹จ์€ ์ฐธ์—ฌ์ž๋“ค ๊ฐ„์— ๊ณต์œ ๋ฉ๋‹ˆ๋‹ค. ์ด ๋„คํŠธ์›Œํฌ๋Š” ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๊ณ  ๋ณ€๋™์„ฑ์ด ํฐ ์ˆ˜์š”์™€ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ  ์‚ฌํšŒ์ , ํ™˜๊ฒฝ์ ์œผ๋กœ ์ง€์†๊ฐ€๋Šฅ์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ํ”ผ์ง€์ปฌ ์ธํ„ฐ๋„ท์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๊ทธ ๊ฐœ๋…๊ณผ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ๊ฐœ๋ฐœ, ๊ทธ๋ฆฌ๊ณ  ์‚ฌํšŒ์— ๋„์ž…ํ•˜์˜€์„ ๋•Œ์˜ ์žฅ์ ์„ ์ฃผ๋กœ ๋‹ค๋ฃจ์—ˆ์Šต๋‹ˆ๋‹ค. ํ”ผ์ง€์ปฌ ์ธํ„ฐ๋„ท ์†์—์„œ ์šด์†ก ์ˆ˜๋‹จ์˜ ๊ณต์ฐจ ์šดํ–‰, ์ž์›์˜ ํ•œ๊ณ„ ์šฉ๋Ÿ‰, ์ ˆ๊ฐํ•œ ๋น„์šฉ์˜ ๋ฐฐ๋ถ„ ๋“ฑ๊ณผ ๊ฐ™์€ ํ˜„์‹ค์ ์ธ ์š”์†Œ๋“ค์— ๋Œ€ํ•œ ๊ณ ๋ ค๋ฅผ ํ•œ ์—ฐ๊ตฌ๋“ค์€ ์•„์ง ์ œํ•œ์ ์ž…๋‹ˆ๋‹ค. ํ”ผ์ง€์ปฌ ์ธํ„ฐ๋„ท์€ ์ „์ฒด์ ์œผ๋กœ ๋ณด์•˜์„ ๋•Œ ๊ธฐ์กด์˜ ๊ณต๊ธ‰๋ง์— ๋น„ํ•ด ๋” ํฐ ํšจ์œจ์„ฑ๊ณผ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ์–ป์„ ์ˆ˜ ์žˆ์ง€๋งŒ ํŠน์ •ํ•œ ์ƒํ™ฉ์—์„œ๋Š” ์ผ๋ถ€ ์ฐธ๊ฐ€์ž๋Š” ํ˜„์‹ค์ ์ธ ์ œ์•ฝ ์ƒํ™ฉ์œผ๋กœ ์ธํ•ด ์˜คํžˆ๋ ค ์†ํ•ด๋ฅผ ๋ณด๋Š” ๊ฒฝ์šฐ๊ฐ€ ์กด์žฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋” ํฐ ํšจ์œจ์„ฑ๊ณผ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ํ”ผ์ง€์ปฌ ์ธํ„ฐ๋„ท์— ๊ธฐ์—…๋“ค์„ ์ฐธ์—ฌ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„  ๊ทธ๋“ค์ด ์ฐธ์—ฌํ•จ์œผ๋กœ์จ ์†ํ•ด๋ฅผ ๋ณด๋Š” ์ƒํ™ฉ์„ ๋งŒ๋“ค์ง€ ์•Š๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ธ ์กฐ๊ฑด์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋จผ์ € ์šด์†ก ์ˆ˜๋‹จ์˜ ๊ณต์ฐจ ์šดํ–‰ ํŽ˜๋„ํ‹ฐ ๋น„์šฉ, ์ตœ๋Œ€ ์šด์†ก ๊ฐ€๋Šฅ ๊ฑฐ๋ฆฌ, ์ฐฝ๊ณ ์˜ ํ์‡„๋ฅผ ๊ณ ๋ คํ•œ ํ†ตํ•ฉ ์ƒ์‚ฐ-์žฌ๊ณ -๋ฌผ๋ฅ˜ ์ตœ์†Œ ๋น„์šฉ ํ˜ผํ•ฉ ์ •์ˆ˜ ์„ ํ˜• ๊ณ„ํš๋ฒ• ๋ชจํ˜•์„ ์ œ์•ˆํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ทธ ํ›„, ๊ฐœ๋ณ„์ ์ธ ๊ณต๊ธ‰๋ง์˜ ๋น„์šฉ๊ณผ ํ”ผ์ง€์ปฌ ์ธํ„ฐ๋„ท ํ•˜์—์„œ ํ˜‘์—…ํ•œ ํ†ตํ•ฉ ๊ณต๊ธ‰๋ง์˜ ๋น„์šฉ์„ ๋น„๊ตํ•˜์—ฌ ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ๋ฅผ ๊ณ„์‚ฐํ•œ ํ›„ ํ˜‘๋ ฅ ๊ฒŒ์ž„์˜ ์ผ์ข…์ธ ์„€ํ”Œ๋ฆฌ ๊ฐ’์„ ํฌํ•จํ•œ ์„ธ ๊ฐ€์ง€ ๋ฐฐ๋ถ„ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ ๋ฐฐ๋ถ„์„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 The Physical Internet 5 2.2 Cost Savings Allocation Problem 8 Chapter 3 Model Formulation 10 3.1 Problem Definition 10 3.2 Assumptions 15 3.3 Notaions and Formulations 17 Chapter 4 Numerical Analysis of the MILP model 22 4.1 Experimental Design 22 4.2 Results Analysis 26 4.3 Cost Parameter Sensitivity Analysis 29 Chapter 5 Cost Savings Allocation Problem 31 5.1 No Pre-set Rules 31 5.2 Proportional to Customer Demand 33 5.3 The Shapley Value 35 Chapter 6 Conclusions 37 Bibliography 39 ๊ตญ๋ฌธ์ดˆ๋ก 42์„

    Treatment Effect of Psychoeducation and Training Program Using Virtual Reality Technique in the Patients with Depressive Symptoms

    Get PDF
    Objectives To compare the clinical effectiveness of the virtual reality (VR) programs in assessing psychosocial problems, improving symptoms, and reducing suicide risk in depressive patients with those of pharmacotherapy. Methods Thirty-six patients were recruited with depression in the treatment group and 22 participants in the healthy control group through internet advertisements between November 2018 and March 2019. Participants in the treatment group were allocated randomly at a 1:1 ratio to either the VR group or pharmacotherapy group. At the baseline, all participants were assessed with a comprehensive battery for their psychological characteristics by structured scales using VR technologies. Assessments of patients in the treatment group were repeated four weeks after therapeutic intervention. The primary outcome measures were the Korean Version of Quick Inventory of Depressive Symptomatology-Self-Report and suicidality scales of the Korean Mini International Neuropsychiatric interview. The borderline personality (Personality Assessment Inventoryโ€“Borderline Features Scale) and resilience (Korean Resilience Questionnaire) were also evaluated. Results Twenty-four depressive patients completed the treatment, and the final assessment was conducted after four weeks of treatment. In the initial assessment, the patient group showed significantly higher depressive symptoms, suicidality, borderline personality trait, and lower resilience than healthy control group. After the four-week therapeutic interventions, the VR group showed significant improvement in depression, suicidality, borderline personality trait, and resilience. In addition, there was no significant difference in the treatment efficacy between the VR group and the pharmacotherapy group. Conclusion In this study, the VR treatment program has clear benefits for emotional distress and reducing suicidality in depressive patients. Evidence-based VR treatments may show new clinical potential for depressive disorder.ope

    ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ ์ „ํ›„ ์˜์ƒ์น˜์˜ํ•™์  ๊ฒ€์‚ฌ์˜ ์ •๋‹นํ™”๊ทผ๊ฑฐ๊ธฐ๋ฐ˜์ง€์นจ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜ํ•™๋Œ€ํ•™์› ์น˜์˜๊ณผํ•™๊ณผ, 2020. 8. ์ด์‚ผ์„ .๋ชฉ์ : ์ด ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ ์ „ ์ ์ ˆํ•œ ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ ์œ„์น˜๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ์ถ”์  ๊ฒ€์‚ฌ์— ์ ์ ˆํ•œ ์˜์ƒ์น˜์˜ํ•™์  ๊ฒ€์‚ฌ์˜ ์ •๋‹นํ™”๊ทผ๊ฑฐ๊ธฐ๋ฐ˜์ง€์นจ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ฐฉ๋ฒ•: ์ง€์นจ์˜ ๊ฐœ๋ฐœ๊ณผ์ •์€ ๋Œ€ํ•œ์˜์ƒ์˜ํ•™ํšŒ์˜ ๊ทผ๊ฑฐ๊ธฐ๋ฐ˜ ์ž„์ƒ์˜์ƒ์ง€์นจ ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•๋ก ์„ ๋”ฐ๋ž๋‹ค. ์ง€์นจ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ์œ„์›ํšŒ๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ํ•ต์‹ฌ์งˆ๋ฌธ์„ ์„ค์ •ํ•˜์˜€๋‹ค. ๊ทธ ํ›„ ํ•ต์‹ฌ์งˆ๋ฌธ์— ํ•ด๋‹นํ•˜๋Š” ์ง€์นจ์„ ๊ฒ€์ƒ‰ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ตญ๋‚ดยท์™ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ๊ฒ€์ƒ‰๋œ ์ง€์นจ๋“ค์€ Korean Appraisal of Guidelines for Research and Evaluation II (AGREE II)๋กœ ํ‰๊ฐ€ํ•˜๊ณ  ์„ ๋ณ„ํ•˜์˜€์œผ๋ฉฐ ๊ถŒ๊ณ ๋ฌธ์˜ ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š” ์ง€์นจ๊ณผ ์ตœ์‹  ๋ฌธํ—Œ์„ ๊ฒ€์ƒ‰ํ•˜์—ฌ Korean-Clinical Imaging Guidelines (K-CIG) ๋ฐฉ๋ฒ•์œผ๋กœ ์งˆ ํ‰๊ฐ€๋ฅผ ํ•˜์˜€๋‹ค. ์ด๋ฅผ ๊ถŒ๊ณ ๋ฌธ์œผ๋กœ ์ž‘์„ฑํ•˜๊ณ  ์ „๋ฌธ๊ฐ€๋“ค์˜ ํ•ฉ์˜ ๊ณผ์ •๊ณผ ๋ธํŒŒ์ด ๋ฐฉ๋ฒ•์œผ๋กœ ๊ถŒ๊ณ ๋ฌธ์˜ ์ตœ์ข…์•ˆ์„ ์ž‘์„ฑํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ ์ „ ์ง„๋‹จ์„ ์œ„ํ•œ ์˜์ƒ๊ฒ€์‚ฌ๋ฒ•์— ๋Œ€ํ•ด ์ด 294๊ฐœ์˜ ์ง€์นจ์ด ๊ฒ€์ƒ‰๋˜์—ˆ์œผ๋ฉฐ ๊ทธ ์ค‘ ํ•ด๋‹น ์ฃผ์ œ์™€ ๊ด€๋ จ๋œ 3๊ฐœ์˜ ์ง€์นจ ๋ฌธํ—Œ์„ ์„ ์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ˆ  ํ›„ ์ž„ํ”Œ๋ž€ํŠธ์˜ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์˜์ƒ๊ฒ€์‚ฌ๋ฒ•์— ๋Œ€ํ•ด ์ด 66๊ฐœ์˜ ์ง€์นจ์ด ๊ฒ€์ƒ‰๋˜์—ˆ๊ณ  ์ด ์—ญ์‹œ ์„ ๋ณ„๊ณผ์ •์„ ๊ฑธ์ณ 3๊ฐœ์˜ ์ง€์นจ ๋ฌธํ—Œ์„ ์„ ํƒํ•˜์˜€๋‹ค. ์„ ๋ณ„๋œ ์ง€์นจ ๊ด€๋ จ ๋ฌธํ—Œ์„ ํ†ตํ•ด, ์ž„ํ”Œ๋ž€ํŠธ ์ˆ˜์ˆ  ์ „ํ›„์˜ ์˜์ƒ์น˜์˜ํ•™์  ๊ฒ€์‚ฌ์— ์ ์ ˆํ•œ ์˜์ƒ๊ฒ€์‚ฌ๋ฒ•์˜ ๊ถŒ๊ณ ์•ˆ์„ ์ž‘์„ฑํ•˜์˜€๋‹ค. ๊ฒฐ๋ก : ์ž„ํ”Œ๋ž€ํŠธ ์ˆ˜์ˆ  ์ „ ๊ณ„ํš์„ ์œ„ํ•ด ํŒŒ๋…ธ๋ผ๋งˆ๋ฐฉ์‚ฌ์„ ์˜์ƒ์ด๋‚˜ ์น˜๊ทผ๋‹จ๋ฐฉ์‚ฌ์„ ์˜์ƒ๊ณผ ๊ฐ™์€ ์ผ๋ฐ˜ ๋ฐฉ์‚ฌ์„ ์˜์ƒ ํš๋“์ด ์šฐ์„ ๋˜๋ฉฐ, ์ด๋ฅผ ํŒ๋…ํ•œ ํ›„ ๋‹จ๋ฉด์˜์ƒ์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋  ๊ฒฝ์šฐ์— ์ฝ˜๋น”CT (cone-beam CT; CBCT)์˜์ƒ์„ ํš๋“ํ•  ๊ฒƒ์„ ๊ถŒ๊ณ ํ•œ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ž„ํ”Œ๋ž€ํŠธ ์ˆ˜์ˆ  ํ›„ ์ž„ํ”Œ๋ž€ํŠธ์˜ ์œ„์น˜ ๋ฐ ๊ณจ์œ ์ฐฉ ํ‰๊ฐ€์— ์žˆ์–ด ์ผ๋ฐ˜ ๋ฐฉ์‚ฌ์„ ์˜์ƒ์ด ์šฐ์„ ๋˜๋‚˜ ์ˆ  ํ›„ ๊ฐ๊ฐ์ด์ƒ์„ ํ˜ธ์†Œํ•˜๋Š” ํ™˜์ž์—๊ฒŒ ์›์ธ์„ ๋ฐํ˜€๋‚ด๊ณ  ์ฒ˜์น˜๋ฅผ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ฝ˜๋น”CT์˜์ƒ์ด ๊ถŒ๊ณ ๋œ๋‹ค.Purpose: This study aimed to develop evidence-based clinical imaging guidelines before and after dental implant surgery to assess the proper implant location to prevent complications and identify potential complications during follow-up. Methods: The guideline development process employed an adaptation methodology in accordance with the Korean clinical imaging guidelines (K-CIG). A committee was developed for the development of guidelines and key questions were set. After that, domestic and international databases were used to search for guidance corresponding to the key question. The searched guidelines were selected according to established criteria, and the quality of the studys was evaluated by searching the latest documents that are the basis of the recommendations. Through this, recommendations and evidences for each key question are prepared . The recommendations were decided through the expert's consensus process (Delphi method), and the final recommendation was made. Results: To derive recommendations for implant planning, the search identified 294 articles, of which 3 were selected as relevant guidelines. And our online search identified 66 articles, of which 3 were selected for the development of the guidelines regarding the appropriate imaging modalities that should be used following implant placement. Conclusion: Cone beam computed tomography (CBCT) scanning is recommended for individual patients judged to require a cross-sectional image after reading of a panoramic X-ray image and a conventional intraoral radiological image for implant planning. Also, conventional imaging should be the first choice for assessing the implant following its placement and osseointegration. The metal artifacts in Cone Beam Computed Tomography (CBCT) should be considered. However, CBCT is recommended for patients with sensory abnormalities following dental implant surgery to evaluate and identify the underlying cause of implant complications and to determine the appropriate treatment.1.์„œ๋ก  5 2.์—ฐ๊ตฌ๋ฐฉ๋ฒ• 7 2.1 ์œ„์›ํšŒ ๊ตฌ์„ฑ 7 2.2 ํ•ต์‹ฌ์งˆ๋ฌธ ์„ ์ • 7 2.3 ์ง€์นจ์˜ ๊ฒ€์ƒ‰ 8 2.4 ์ง€์นจ์˜ ์„ ๋ณ„ 9 2.5 ์ง€์นจ์˜ ์งˆ ํ‰๊ฐ€ 10 2.6 ์ตœ์‹  ๋ฌธํ—Œ ๊ฒ€์ƒ‰ 13 2.7 ํ•ต์‹ฌ์งˆ๋ฌธ๋ณ„ ๊ถŒ๊ณ  ๋ฐ ๊ทผ๊ฑฐ์ •๋ฆฌ, ๊ถŒ๊ณ ๋ฌธ์˜ ์ดˆ์•ˆ์ž‘์„ฑ 13 2.8 ํ•ฉ์˜ ๋ฐ ๊ถŒ๊ณ ๋“ฑ๊ธ‰ ๊ฒฐ์ • 19 2.9 ๊ถŒ๊ณ ๋ฌธ์˜ ์ตœ์ข…์•ˆ 20 3.์—ฐ๊ตฌ๊ฒฐ๊ณผ 20 3.1 PICO 20 3.2 ์ง„๋ฃŒ์ง€์นจ ๊ฒ€์ƒ‰ 22 3.3 ์ง„๋ฃŒ์ง€์นจ ์„ ๋ณ„ 30 3.4 ์ง€์นจ์˜ ์งˆ ํ‰๊ฐ€ 32 3.5 ์ตœ์‹  ๋ฌธํ—Œ ๊ฒ€์ƒ‰ 38 3.6 ๊ทผ๊ฑฐ์ˆ˜์ค€ ๊ฒฐ์ •, ๊ถŒ๊ณ ๋ฌธ ์ž‘์„ฑ, ๊ถŒ๊ณ ๋“ฑ๊ธ‰ ๊ฒฐ์ • 39 3.7 ์ตœ์ข… ๊ถŒ๊ณ ๋ฌธ์˜ ํ•ฉ์˜ 44 4.๊ณ ์ฐฐ 46 5.๊ฒฐ๋ก  51 ์ฐธ๊ณ ๋ฌธํ—Œ 52 Abstract 59Docto

    Effects of presynaptic mitochondrial depolarization on short-term synaptic plasticity

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผํ•™๊ณผ ์ƒ๋ฆฌํ•™ ์ „๊ณต, 2016. 2. ์ด์„ํ˜ธ.๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„๋Š” ATP๋ฅผ ์ƒ์‚ฐํ•ด๋‚ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์„ธํฌ ๋‚ด ์นผ์Š˜์„ ์™„์ถฉํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ๋Šฅ์„ ๊ฐ€์ง„ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„๊ฐ€ ์‹œ๋ƒ…์Šค์ „ ๋ง๋‹จ์—์„œ ์‹œ๋ƒ…์Šค ์ „๋‹ฌ์—์„œ ๊ฐ–๋Š” ์—ญํ• ์— ์ฃผ๋ชฉํ•˜๊ณ , dual patch-clamp recording์ด ๊ฐ€๋Šฅํ•œ calyx of Held ์‹œ๋ƒ…์Šค์—์„œ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„์˜ ์ €๋ถ„๊ทน์ด ๋‹จ๊ธฐ์‹œ๋ƒ…์Šค ๊ฐ€์†Œ์„ฑ (short-term synaptic plasticity)์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์กฐ์‚ฌํ•˜์˜€๋‹ค. Calyx of Held์‹œ๋ƒ…์Šค์— ์ €๋†๋„ (1 ฮผM)์˜p-trifluoromethyl-oxyphenyl-hydrazone (FCCP)๋ฅผ ์งง๊ฒŒ (5๋ถ„) ์ฒ˜๋ฆฌํ•˜์—ฌ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„์˜ ๋ง‰์ „์••์„ ๋ถ€๋ถ„์ ์œผ๋กœ ์ €๋ถ„๊ทน ์‹œ์ผฐ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ FCCP๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์‹œ๊ฐ„ ๋™์•ˆ basal EPSC๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๊ณ  FCCP๋ฅผ ์”ป์–ด์ค€ ํ›„์— short-term facilitation๊ฐ€ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€ ATP synthase inhibitor์ธ oligomycin์ด๋‚˜ mitochondrial calcium uptake inhibitor์ธ Ru360์— ์˜ํ•ด์„œ๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. Fura-2๋ฅผ ์ด์šฉํ•œ ์นผ์Š˜ ์ด๋ฏธ์ง• ์‹คํ—˜์—์„œ FCCP ์ฒ˜๋ฆฌํ•˜๋Š” ๋™์•ˆ ์‹œ๋ƒ…์Šค์ „ ๋ง๋‹จ ๋‚ด์˜ ์นผ์Š˜ ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ FCCP๋ฅผ ์ฒ˜๋ฆฌ ์ „์— pulse train์œผ๋กœ conditioningํ•˜๋ฉด FCCP์— ์˜ํ•œ ์„ธํฌ ๋‚ด ์นผ์Š˜ ๋†๋„์˜ ์ฆ๊ฐ€๊ฐ€ ๋” ์ด‰์ง„๋˜์—ˆ๋‹ค. mitochondrial Na+/Ca2+ exchanger์˜ blocker์ธ tetraphenylphosphonium (TPP+) ์กด์žฌ ํ•˜์— FCCP๋ฅผ ์ฒ˜๋ฆฌํ•˜๋ฉด ์„ธํฌ ๋‚ด ์นผ์Š˜ ๋†๋„์˜ ์ฆ๊ฐ€๊ฐ€ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ ์‹œ๋ƒ…์Šค์ „ ๋ง๋‹จ์— ์œ„์น˜ํ•œ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„๊ฐ€ ์ €๋ถ„๊ทน๋˜๋ฉด ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„์— ์˜ํ•œ ์„ธํฌ ๋‚ด ์นผ์Š˜์กฐ์ ˆ์˜ ๋ณ€ํ™”์— ์˜ํ•˜์—ฌ ๋‹จ๊ธฐ์‹œ๋ƒ…์Šค๊ฐ€์†Œ์„ฑ์— ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.์„œ๋ก  1 ์‹คํ—˜์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 3 ๊ฒฐ๊ณผ 8 ๊ณ ์ฐฐ 27 ์ฐธ๊ณ ๋ฌธํ—Œ 32 Abstract 35Maste

    Structural Relationships between Professional Identity, Person-Job Fit, Self-Efficacy, Support for Career Development, and Job Challenge of HRD Practitioners in Korean Conglomerates

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์‚ฐ์—…๊ต์œก๊ณผ, 2017. 2. ๊น€์ง„๋ชจ.์ด ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์šฐ๋ฆฌ๋‚˜๋ผ ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ๊ณผ ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ, ์ž๊ธฐํšจ๋Šฅ๊ฐ ๋ฐ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›์˜ ๊ตฌ์กฐ์  ๊ด€๊ณ„๋ฅผ ๊ฒ€์ฆํ•˜๊ณ , ๊ตฌ์กฐ๋ชจํ˜•์˜ ์ผ๋ถ€ ๊ฒฝ๋กœ์—์„œ ์ง๋ฌด๋„์ „์„ฑ์˜ ์กฐ์ ˆํšจ๊ณผ๋ฅผ ๊ตฌ๋ช…ํ•˜๋Š” ๋ฐ ์žˆ๋‹ค. ์—ฐ๊ตฌ์˜ ๋ชจ์ง‘๋‹จ์€ ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž๋กœ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” 2015๋…„ ๋งค์ถœ์•ก ๊ธฐ์ค€ 1,000๋Œ€ ๊ธฐ์—…์˜ HRD ๋‹ด๋‹น์ž๋กœ ๋ชฉํ‘œ๋ชจ์ง‘๋‹จ์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๊ณ , ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ, ์ž๊ธฐํšจ๋Šฅ๊ฐ, ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์› ๋ฐ ์ง๋ฌด๋„์ „์„ฑ์€ ๊ธฐ์กด์˜ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ž๋ฃŒ ์ˆ˜์ง‘์€ ์˜จ๋ผ์ธ ์„ค๋ฌธ ์‹œ์Šคํ…œ ๋ฐ ์šฐํŽธ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ด 84๊ฐœ ๊ธฐ์—…์˜ HRD ๋‹ด๋‹น์ž 312๋ช…์ด ์‘๋‹ตํ•œ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์ด ์ค‘ ๋ถˆ์„ฑ์‹ค ์‘๋‹ต์ž๋ฃŒ ๋ฐ ๋งˆํ• ๋ผ๋…ธ๋น„์Šค ์ด์ƒ์น˜ ์ž๋ฃŒ์— ํ•ด๋‹นํ•˜๋Š” ์ด 34๊ฐœ์˜ ์ž๋ฃŒ๋ฅผ ์ œ์™ธํ•˜๊ณ , ์ตœ์ข…๋ถ„์„์—๋Š” 84๊ฐœ ๊ธฐ์—…์˜ 278๋ช…์ด ์‘๋‹ตํ•œ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ๊ณผ ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ, ์ž๊ธฐํšจ๋Šฅ๊ฐ, ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์› ๋ฐ ์ง๋ฌด๋„์ „์„ฑ์˜ ๊ตฌ์กฐ์  ๊ด€๊ณ„๋ฅผ ๊ตฌ๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ AMOS 21.0์„ ํ™œ์šฉํ•˜์—ฌ ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจํ˜•์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์–ป์€ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๊ตญ๋‚ด ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๊ตฌ์•ˆ๋œ ์—ฐ๊ตฌ๋ชจํ˜•์€ ์ฃผ์–ด์ง„ ๊ฒฝํ—˜ ์ž๋ฃŒ์— ์ ํ•ฉํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘˜์งธ, ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ, ์ž๊ธฐํšจ๋Šฅ๊ฐ ๋ฐ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›์€ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์— ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ๊ณผ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›์€ ์ž๊ธฐํšจ๋Šฅ๊ฐ์— ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ, ์ž๊ธฐํšจ๋Šฅ๊ฐ ๋ฐ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›์„ ํ–ฅ์ƒ์‹œํ‚ค๋ ค๋Š” ๋…ธ๋ ฅ์ด ํ•„์š”ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์…‹์งธ, ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ ๋ฐ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›์€ ์ž๊ธฐํšจ๋Šฅ๊ฐ์„ ๋งค๊ฐœ๋ณ€์ธ์œผ๋กœ ํ•˜์—ฌ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์— ์œ ์˜ํ•œ ๊ฐ„์ ‘ํšจ๊ณผ๋ฅผ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰, ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ ๋ฐ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›๊ณผ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์˜ ๊ด€๊ณ„์—์„œ ์ž๊ธฐํšจ๋Šฅ๊ฐ์ด ๋งค๊ฐœํšจ๊ณผ๋ฅผ ์ง€๋‹ˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ ๋ฐ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›์ด ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์˜ ํ–ฅ์ƒ์œผ๋กœ ์—ฐ๊ณ„๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž๊ธฐํšจ๋Šฅ๊ฐ ์ˆ˜์ค€์„ ๋†’์ด๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ž„์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋„ท์งธ, ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์˜ ์ง๋ฌด๋„์ „์„ฑ์€ ์ž๊ธฐํšจ๋Šฅ๊ฐ๊ณผ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์˜ ๊ด€๊ณ„์—์„œ ์ •์  ์กฐ์ ˆํšจ๊ณผ๋ฅผ ์ง€๋‹ˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ๊ณผ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์˜ ๊ด€๊ณ„, ๊ทธ๋ฆฌ๊ณ  ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์›๊ณผ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์˜ ๊ด€๊ณ„์—์„œ๋Š” ์ •์  ์กฐ์ ˆํšจ๊ณผ๋ฅผ ์ง€๋‹ˆ์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” HRD ๋‹ด๋‹น์ž๋“ค์˜ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐœ์ธ์˜ ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ, ์ž๊ธฐํšจ๋Šฅ๊ฐ ๋ฐ ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์› ์ˆ˜์ค€์„ ํ–ฅ์ƒ์‹œํ‚ด๊ณผ ๋™์‹œ์— ์ง๋ฌด๋„์ „์„ฑ ์ˆ˜์ค€์„ ์ ์ • ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์ด ์š”๊ตฌ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ์ œ์‹œํ•œ ์ œ์–ธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์ด ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ ์ธก์ • ๋„๊ตฌ๋ฅผ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ ๋ฐ ๊ฒ€์ฆํ•˜์—ฌ ๋„๊ตฌ์˜ ํƒ€๋‹น๋„๋ฅผ ํ™•๋ณดํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋‘˜์งธ, ์—ฐ๊ตฌ๋Œ€์ƒ์„ ๋‹ฌ๋ฆฌํ•˜์—ฌ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ ๋ฐ ์„ ํ–‰๋ณ€์ธ์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ๊ต์ฐจ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์…‹์งธ, ์ด ์—ฐ๊ตฌ์—์„œ์˜ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ๊ณผ ์„ ํ–‰๋ณ€์ธ๋“ค์˜ ๊ตฌ์กฐ์  ๊ด€๊ณ„๋ฅผ ์žฌํ™•์ธํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋„ท์งธ, ๊ธฐ์—… ๋‚ด HRD ๋‹ด๋‹น์ž์˜ ์ˆ˜์— ๋”ฐ๋ฅธ ์ง‘๋‹จ์„ ๊ตฌ๋ถ„ํ•˜์—ฌ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์˜ ์ˆ˜์ค€๊ณผ ๊ด€๋ จ ๋ณ€์ธ๊ณผ์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋‹ค์„ฏ์งธ, ์ž๊ธฐํšจ๋Šฅ๊ฐ๊ณผ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์˜ ๊ด€๊ณ„์—์„œ ํŠน์ˆ˜ ์ž๊ธฐํšจ๋Šฅ๊ฐ์„ ๊ตฌ๋ถ„ํ•˜์—ฌ ์‚ดํŽด๋ณผ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์—ฌ์„ฏ์งธ, HRD ๋‹ด๋‹น์ž์˜ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ณ€์ธ๋“ค์˜ ๊ด€๊ณ„๋ฅผ ๋ณด๋‹ค ์ข…ํ•ฉ์ ์œผ๋กœ ํ™•์ธํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.I. ์„œ ๋ก  1 1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 1 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  4 3. ์—ฐ๊ตฌ ๊ฐ€์„ค 4 4. ์šฉ์–ด์˜ ์ •์˜ 6 5. ์—ฐ๊ตฌ์˜ ์ œํ•œ 7 II. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 9 1. ๋Œ€๊ธฐ์—… HRD ๋‹ด๋‹น์ž์™€ ์ „๋ฌธ์ง์—…์  ์ •์ฒด์„ฑ 9 2. ๊ฐœ์ธ-์ง๋ฌด ์ ํ•ฉ์„ฑ 35 3. ์ž๊ธฐํšจ๋Šฅ๊ฐ 41 4. ๊ฒฝ๋ ฅ๊ฐœ๋ฐœ์ง€์› 44 5. ์ง๋ฌด๋„์ „์„ฑ 46 6. ์—ฐ๊ตฌ ๋ณ€์ธ ๊ฐ„ ๊ด€๊ณ„ 50 III. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 57 1. ์—ฐ๊ตฌ๋ชจํ˜• 57 2. ์—ฐ๊ตฌ๋Œ€์ƒ 58 3. ์กฐ์‚ฌ๋„๊ตฌ 63 4. ์ž๋ฃŒ์ˆ˜์ง‘ 73 5. ์ž๋ฃŒ๋ถ„์„ 77 IV. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 83 1. ์ธก์ •๋ณ€์ธ์˜ ๊ธฐ์ˆ ์  ํ†ต๊ณ„๋Ÿ‰ 83 2. ์ธก์ •๋ชจํ˜• ๋ถ„์„ ๊ฒฐ๊ณผ 90 3. ์—ฐ๊ตฌ๋ชจํ˜•์˜ ์ ํ•ฉ๋„ ๊ฒ€์ฆ 93 4. ์—ฐ๊ตฌ ๋ณ€์ธ ๊ฐ„ ์˜ํ–ฅ๊ด€๊ณ„ 94 5. ์ž๊ธฐํšจ๋Šฅ๊ฐ์˜ ๋งค๊ฐœํšจ๊ณผ 98 6. ์ง๋ฌด๋„์ „์„ฑ์˜ ์กฐ์ ˆํšจ๊ณผ 99 7. ๋…ผ์˜ 110 V. ์š”์•ฝ, ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 119 1. ์š”์•ฝ 119 2. ๊ฒฐ๋ก  121 3. ์ œ์–ธ 124 ์ฐธ๊ณ ๋ฌธํ—Œ 127 [๋ถ€๋ก 1] ์ธก์ •๋ฌธํ•ญ ์ดˆ์•ˆ 145 [๋ถ€๋ก 2] ์ธก์ •๋ฌธํ•ญ ์ดˆ์•ˆ ๋‚ด์šฉํƒ€๋‹น๋„ ๊ฒ€์ฆ ๊ฒฐ๊ณผ 147 [๋ถ€๋ก 3] ์ธก์ •๋„๊ตฌ์˜ ์˜ˆ๋น„์กฐ์‚ฌ ๋ฐ ๋ณธ์กฐ์‚ฌ ๊ฒฐ๊ณผ 151 [๋ถ€๋ก 4] ์„ค๋ฌธ์ง€ 161 Abstract 169Docto

    ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ ๊ธฐ๋ก ์ •๋ณด ์—ฐ๊ณ„๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ๋ชจ๋ธ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๋ก๊ด€๋ฆฌํ•™์ „๊ณต, 2017. 2. ๊น€ํ™๊ธฐ.์ตœ๊ทผ ๊ธฐ๋ก ๊ด€๋ฆฌ ๋ถ„์•ผ์—์„œ๋Š” ๊ธฐ๋ก์˜ ์ˆ˜์ง‘๊ณผ ๋ณด๊ด€์„ ๋„˜์–ด ๊ทธ๊ฐ„ ์Œ“์—ฌ์˜จ ๊ธฐ๋ก์„ ๋”์šฑ ํŽธ๋ฆฌํ•˜๊ฒŒ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊ณ ๋ฏผํ•˜๊ณ  ์žˆ๋‹ค. ์ธํ„ฐ๋„ท ํ™˜๊ฒฝ์ด ๋ฐœ๋‹ฌํ•œ ํ˜„ ์‹œ์ ์—์„œ๋Š” ์ด์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ๊ธฐ๋ก์„ ์ฐพ๊ณ ์ž ์ผ์ผ์ด ๊ธฐ๋ก๊ด€์„ ๋ฐฉ๋ฌธํ•  ํ•„์š” ์—†์ด ์˜จ๋ผ์ธ์ƒ์—์„œ ๊ธฐ๋ก ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ  ์‹ค๋ฌผ ์ž๋ฃŒ์˜ ๋””์ง€ํ„ธ ์‚ฌ๋ณธ์„ ์—ด๋žŒํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•ด์•ผํ•œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ์—ฌ๋Ÿฌ ๊ธฐ๊ด€์˜ ์†Œ์žฅ ๊ธฐ๋ก์„ ํ•˜๋‚˜์˜ ๊ฒ€์ƒ‰์ง€์ (one point access)์—์„œ ์ฐพ์•„๋ณด๊ณ  ๊ด€๋ จ ์ •๋ณด๋ฅผ ์—ฐ๊ณ„ํ•˜์—ฌ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ๋„๋ก ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•  ํ•„์š”๋„ ์žˆ๋‹ค. ๊ธฐ๊ด€์— ํฉ์–ด์ ธ ๋ณด๊ด€๋˜์–ด ์žˆ๋Š” ๊ธฐ๋ก ์ •๋ณด๋ฅผ ์—ฐ๊ณ„ํ•˜๋Š” ๋ฐฉ์‹์€ ๊ธฐ๊ด€ ํ•œ์ •์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ธฐ์กด์˜ ๊ธฐ๋ก ์ •๋ณด ์„œ๋น„์Šค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ์ด์šฉ์ž์—๊ฒŒ ๋”์šฑ ํ’๋ถ€ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ์ •๋ณด ์—ฐ๊ณ„์— ๋Œ€ํ•œ ์š”๊ตฌ ์ฆ๊ฐ€๋Š” ๋ฌธํ™”์œ ์‚ฐ ์˜์—ญ์—์„œ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์—ฌ์„œ ๊ฐœ๋ณ„ ๊ธฐ๊ด€์˜ ์†Œ์žฅ ์œ ์‚ฐ ์ •๋ณด์˜ ํ™œ์šฉ์„ ์œ„ํ•œ ๋…ธ๋ ฅ๊ณผ ๋”๋ถˆ์–ด ๊ธฐ๊ด€ ์ƒํ˜ธํ˜‘๋ ฅ์„ ํ†ตํ•ด ๋ฌธํ™”์œ ์‚ฐ ์ •๋ณด๋ฅผ ํ†ตํ•ฉ์ ์œผ๋กœ ์ œ๊ณตํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜๊ณ  ์žˆ๋‹ค. ๋ฌธํ™”์œ ์‚ฐ์˜ ๊ฒฝ์šฐ ๋™์ผํ•œ ์ถœ์ฒ˜์—์„œ ์ƒ์‚ฐ๋˜์–ด ์—ฌ๋Ÿฌ ๊ธฐ๊ด€์— ํฉ์–ด์ ธ ๋ณด๊ด€๋˜์–ด ์žˆ๊ฑฐ๋‚˜, ๋‹ค์–‘ํ•œ ์ถœ์ฒ˜๋กœ๋ถ€ํ„ฐ ์ƒ์‚ฐ๋˜์—ˆ์œผ๋‚˜ ์ฃผ์ œ๋‚˜ ์˜๋ฏธ์ ์œผ๋กœ ์„œ๋กœ ์—ฐ๊ด€์„ฑ์„ ๊ฐ–๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋‹จ์› ๊น€ํ™๋„์˜ ์ž‘ํ’ˆ์€ ๊ตญ๋ฆฝ์ค‘์•™๋ฐ•๋ฌผ๊ด€๊ณผ ๊ฐ„์†ก ๋ฏธ์ˆ ๊ด€, ๋‹จ์› ๋ฏธ์ˆ ๊ด€ ๋“ฑ์— ์†Œ์žฅ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด์ˆœ์‹  ์žฅ๊ตฐ์˜ ์˜์ •๊ณผ ๊ฑฐ๋ถ์„ , ๊ท€์„ ๋„, ๋‚œ์ค‘์ผ๊ธฐ๋Š” ๋ชจ๋‘ ์ž„์ง„์™œ๋ž€์ด๋ผ๋Š” ์ฃผ์ œ๋กœ ์—ฐ๊ฒฐ๋  ์ˆ˜ ์žˆ๋Š” ๋ฌธํ™”์œ ์‚ฐ์ด๋‹ค. ์œ ๊ธฐ์ ์œผ๋กœ ์—ฐ๊ด€๋˜์–ด ์žˆ์œผ๋‚˜ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๋ถ„๋ฆฌ๋˜์–ด ์žˆ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธํ™”์œ ์‚ฐ ์ •๋ณด๋ฅผ ์—ฐ๊ณ„ํ•˜๊ณ ์žํ•˜๋Š” ์‹œ๋„๋Š” ์ž์—ฐ์Šค๋Ÿฝ๋‹ค. ๋ฌธํ™”์œ ์‚ฐ ์ •๋ณด์˜ ์ผ์ข…์ด๋ฉฐ ๋™์‹œ์— ๋ฏธ์ˆ  ๊ธฐ๋ก ์ •๋ณด ๋ฒ”์ฃผ์— ์†ํ•˜๋Š” ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ์˜ ๊ธฐ๋ก ์ •๋ณด ์—ญ์‹œ ์ •๋ณด ๊ฐ„ ์—ฐ๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ตœ๊ทผ ํ˜„๋Œ€ ๋ฏธ์ˆ  ์ž‘๊ฐ€๋“ค์€ ์ž‘์—…์‹ค์ด์ž, ๋Œ€์•ˆ๊ณต๊ฐ„(alternative space), ๋ฏธ์ˆ ๊ณ„์˜ ๋“ฑ์šฉ๋ฌธ ์—ญํ• ์„ ํ•˜๋Š” ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ๋ฅผ ์ด๋™ํ•˜๋ฉฐ ํ™œ๋™ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ž‘๊ฐ€๋“ค์˜ ๊ธฐ๊ด€ ๊ฐ„ ์œ ๋™์ด ๋นˆ๋ฒˆํ•œ ์ƒํ™ฉ์—์„œ ๊ธฐ๊ด€ ๊ธฐ๋ก ์ •๋ณด๋ฅผ ํ•œ ๋ฒˆ์— ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์€ ํ˜„๋Œ€ ๋ฏธ์ˆ ์‚ฌ๋ฅผ ์—ฐ๊ตฌํ•˜๊ฑฐ๋‚˜ ์ž‘๊ฐ€๋“ค์˜ ํ™œ๋™ ์‚ฌํ•ญ์„ ์‚ดํŽด๋ณด๊ณ ์žํ•˜๋Š” ๋ฏธ์ˆ ๊ณ„ ์ „๋ฌธ๊ฐ€๋“ค์—๊ฒŒ ๋„์›€์ด ๋œ๋‹ค. ๋ ˆ์ง€๋˜์‹œ ๊ฐ„ ๊ธฐ๋ก ์ •๋ณด๊ฐ€ ์—ฐ๊ณ„๋˜์–ด ์žˆ๋‹ค๋ฉด ์ž‘๊ฐ€๊ฐ€ ์–ด๋–ค ๋ ˆ์ง€๋˜์‹œ์— ์ž…์ฃผํ•˜์—ฌ ํ™œ๋™ํ–ˆ์œผ๋ฉฐ, ๊ทธ ๊ณณ์—์„œ ์ œ์ž‘ํ•œ ์ž‘ํ’ˆ๊ณผ ์ด์— ๊ด€๋ จ๋œ ๊ธฐ๋ก์—๋Š” ์–ด๋–ค ๊ฒƒ๋“ค์ด ์žˆ๋Š”์ง€ ๋“ฑ์˜ ์ •๋ณด๋ฅผ ํ•œ ๋ฒˆ์— ์ฐพ์•„๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ๊ฐ„ ๊ตญ๋‚ด์—์„œ ์ง„ํ–‰๋œ ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋“ค์—์„œ๋Š” ๊ธฐ๋ก ์ •๋ณด ์—ฐ๊ณ„๋ฅผ ์œ„ํ•œ ๋…ผ์˜๋ฅผ ์ฐพ๊ธฐ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ์™€ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋“ค์—์„œ ๊ธฐ๋ก์— ๊ด€๋ จ๋œ ๋…ผ์˜ ์ž์ฒด๋ฅผ ์ฐพ์•„๋ณด๊ธฐ ์–ด๋ ต๊ณ , ๋Œ€๋ถ€๋ถ„ ๋ ˆ์ง€๋˜์‹œ์˜ ์šด์˜ ํ™œ์„ฑํ™” ๋ฐฉ์•ˆ์— ๋Œ€ํ•œ ๋…ผ์˜์— ์น˜์šฐ์ณ์ ธ ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. ํ•˜์ง€๋งŒ ๋ฏธ์ˆ ๊ณ„์—์„œ ์•„์นด์ด๋ธŒ์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ํ™œ๋ฐœํ•ด์ง€๊ณ  ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ์—์„œ๋„ ์ด์— ๋Œ€ํ•œ ํ•„์š”์„ฑ์ด ์—ญ์„ค๋˜๋Š” ๊ฐ€์šด๋ฐ, ๊ธฐ๋ก ์ •๋ณด๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์ด ์ œ์‹œ๋˜์–ด์•ผ ํ•  ์‹œ์ ์ด๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ ˆ์ง€๋˜์‹œ ๊ธฐ๋ก์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ ์ค‘ ํ•˜๋‚˜๋กœ ๊ธฐ๋ก ์ •๋ณด์˜ ์—ฐ๊ณ„์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ค๋ฃจ๊ณ ์ž ํ•˜์˜€๋‹ค.์ œ1์žฅ ์„œ๋ก  1 ์ œ2์žฅ ๋ฏธ์ˆ ๋ ˆ์ง€๋˜์‹œ์˜ ์ดํ•ด 8 ์ œ1์ ˆ ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ์˜ ๊ฐœ๋… 8 ์ œ2์ ˆ ๊ตญ๋‚ด ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ์˜ ์—ญ์‚ฌ ๋ฐ ์šด์˜ ์‚ฌ๋ก€ 11 ์ œ3์žฅ ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ ๊ธฐ๋ก 14 ์ œ1์ ˆ ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ ๊ธฐ๋ก์˜ ๊ฐœ๋… ๋ฐ ์œ ํ˜• 14 1. ๋ฏธ์ˆ ๊ด€ ๊ธฐ๋ก 15 2. ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ ๊ธฐ๋ก 18 ์ œ2์ ˆ ๋ฏธ์ˆ  ๋ ˆ์ง€๋˜์‹œ ๊ธฐ๋ก ์ •๋ณด์˜ ๊ตฌ์„ฑ 22 1. ๊ธฐ๋ก๋ฌผ์— ๋Œ€ํ•œ ์ •๋ณด 25 2. ๊ธฐ๊ด€์— ๋Œ€ํ•œ ์ •๋ณด 27 3. ์‚ฌ๋žŒ(ํ–‰์œ„์ฃผ์ฒด)์— ๋Œ€ํ•œ ์ •๋ณด 31 4. ํ–‰์‚ฌ(ํ™œ๋™)์— ๋Œ€ํ•œ ์ •๋ณด 33 ์ œ4์žฅ ๋ ˆ์ง€๋˜์‹œ ๊ธฐ๋ก์ •๋ณด ์—ฐ๊ณ„๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ๋ชจ๋ธ ์„ค๊ณ„ 35 ์ œ1์ ˆ ๋ฐ์ดํ„ฐ ๋ชจ๋ธ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ์ฐธ๊ณ  ๋ชจ๋ธ 36 1. ๋”๋ธ”๋ฆฐ ์ฝ”์–ด (Dubline Core) 36 2. FOAF ๋ชจ๋ธ 39 3. ์œ ๋กœํ”ผ์•„๋‚˜ EDM ๋ชจ๋ธ 41 ์ œ2์ ˆ ๋ฐ์ดํ„ฐ ๋ชจ๋ธ ์„ค๊ณ„ 42 1. ๋ชจ๋ธ ์ฃผ์š” ๊ฐœ์ฒด ๊ด€๊ณ„ ์„ค์ • 42 2. ํ™•์žฅ๋œ ๋ชจ๋ธ 46 1) ๋ ˆ์ง€๋˜์‹œ ์ •๋ณด ์˜์—ญ 46 2) ์‚ฌ๋žŒ ์ •๋ณด ์˜์—ญ 51 3) ํ–‰์‚ฌ ์ •๋ณด ์˜์—ญ 56 4) ๊ธฐ๋ก๋ฌผ ์ •๋ณด ์˜์—ญ 58 ์ œ5์žฅ ๊ฒฐ๋ก  66 ์ฐธ๊ณ ๋ฌธํ—Œ 67 Abstract 70Maste

    Production of isobutanol by pyruvate decarboxylase-deficient Saccharomyces cerevisiae

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2014. 2. ์„œ์ง„ํ˜ธ.Global environmental problems and high oil prices are driving the development of technologies for synthesizing alternative liquid biofuels from renewable resources as transportation energy. Compared to ethanol traditionally used as a gasoline additive, branched-chain higher alcohols exhibit significant advantages such as higher energy density, lower hygroscopicity, lower vapor pressure and compatibility with existing transportation infrastructures. Isobutanol is regarded as a next generation transportation fuel of good quality and so microbial production of isobutanol from cellulosic biomass has been done extensively. In this study, Saccharomyces cerevisiae was metabolically engineered to produce isobutanol. This strain has been traditionally used for industrial production of ethanol because of high tolerance against alcohols and many genetic tools. Naturally S. cerevisiae produces a little isobutanol by the valine biosynthesis pathway and the Erlich pathway. To strengthen the isobutanol biosynthetic pathway, the modified endogenous ILV2 gene from S. cerevisiae without the mitochondria targeting sequence, the ilvC and ilvD genes from Escherichia coli and the kivD gene from Lactobacillus lactis were overexpressed in S. cerevisiae. ILV2 is coding the acetolactate synthase (ALS), ilvC and ilvD are ketoacid reductoisomerase (KARI) and dihydroxyacid dehydratase (DADH) and kivD is ketoacid decarboxylase (ADH). ALS, KARI, DADH and ADH are the enzymes necessary fo isobutanol biosynthesis. The constructed strain produced 120 mg/L isobutanol from glucose, along with production of ethanol as a major metabolite. To improve isobutanol production through eliminating ethanol production, a pyruvate decarboxylase (Pdc)-deficient mutant (SOS4) was used as a host for isobutanol production, which is a non-ethanol producing and pyruvate accumulating strain. Pyruvate is a key intermediate for isobutanol production. When the modified endogenous ILV2 gene, ilvC and ilvD genes from E. coli and kivD gene from L. lactis were overexpressed in the SOS4, the resulting strain was able to produce 283 mg/L isobutanol from glucose in 144 h. Acetohydroxyacid reductoisomerase and dihyroxyacid dehydratase encoded by ilvC and ilvD genes act in mitochondria of S. cerevisiae naturally. Also these enzymes are presumed to be expressed in mitochondria in the yeast because the ilvC and ilvD genes have the specific sequences for mitochondria targeting. So the modified ilvC and ilvD genes without the specific sequences were used and the resulting strain produced 326mg/L isobutanol from glucose in 144 h. Additionally, to increase an expression level of all four genes involved in the isobutanol biosynthetic pathway, an existing GPD promoter was replaced with the truncated HXT7 promoter known as a strong promoter. The resulting strain produced 446 mg/L isobutanol from glucose in 144 h, which was about 15-fold higher than the wild type strain. Isobutanol production from xylose that is abundant in lignocellulosic hydrolyzate would make the production of isobutanol more sustainable and economical. However S. cerevisiae cannot utilize xylose as a carbon source, the XYL1, XYL2 and XYL3 genes coding for xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulokinase (XK) derivied from Schefferosomyces stipitis were introduced into the SOS4 for xylose fermentation. The resulting strain (SOS4X) accumulated pyruvate by utilizing xylose without ethanol production. By introducing the isobutanol biosynthetic system into the SOS4X, the resulting strain produced 121 mg/L isobutanol from xylose in 144h. These results suggest that S. cerevisiae might be a promising host for producing isobutanol from lignocellulosic biomass for industrial applications.ABSTRACT i CONTENTS vi LIST OF TABLES vii LIST OF FIGURES โ…ท I. INTRODUCTION 1 1. Advanced biofuel - Isobutanol 1 2. Isobutanol production in microorganisms 3 3. Isotubanol biosynthetic pathway 6 3.1. The valine biosynthesis pathway 6 3.2. The Ehrlich pathway 7 4. Compartmentalization of the whole isobutanol biosynthetic pathway into cytosol of S. cerevisiae 9 5. Promoter for efficient gene expression in yeast 12 6. Pyruvate decarboxylase-deficient S. cerevisiae 14 7. Isobutanol production from xylose 16 8. Research objectives 20 II. MATERIALS AND METHODS 21 1. Reagents 21 2. Strains and plasmids 21 2.1. Strains 21 2.2. Plasmids 25 3. DNA manipulation and transformation 30 3.1. Enzymes 30 3.2. Transformation of E. coli 30 3.3. Preparation of plasmid DNA and yeast genomic DNA 31 3.4. Isolation of DNA fragments and DNA sequencing 31 3.5. Polymerase chain reaction (PCR) 31 3.6. Yeast transformation 32 4. Media and culture conditions 32 4.1. Media 32 4.2. Inoculum 33 4.3. Cultivations 34 5. Analysis 35 5.1 Dry cell mass 35 5.2 Metabolite detection 35 5.3 Isobutanol detection 36 III. RESULTS AND DISCUSSIONS 38 1.Production of isobutanol by pyruvate decarbyoxylase-defieient S. cerevisiae (SOS4) with the isobutanol biosynthetic pathway 38 1.1. Production of isobutanol in S. cerevisiae 38 1.2. Production of isobutanol in the SOS4 42 2. Construction of the efficient isobutanol biosynthetic system 45 2.1. Evaluation of the acetolactate synthases from various microorganisms 45 2.2. Re-localization of the whole valine biosynthesis pathway into cytosol of S. cerevisiae 49 2.3. Promoter replacement to increase gene expression level of the isobutanol biosynthetic pathway 52 3. Production of isobutanol from xylose by pyruvate decarboxylase-deficient S. cerevisiae with xylose fermenting pathway and the isobutanol biosynthetic system 56 IV. CONCLUSIONS 61 V. REFERENCES 62 ๊ตญ ๋ฌธ ์ดˆ ๋ก 69 ๊ฐ์‚ฌ์˜ ๊ธ€ 72Maste

    ์™œ ๋Ÿฌ์‹œ์•„์™€ ์œ ๋Ÿฝ์€ ํฌ๋ฆผ๋ฐ˜๋„์—์„œ ์ถฉ๋Œํ•˜๋Š”๊ฐ€? ์ฃผ๊ถŒ์ธ์‹ ์ฐจ์ด ์ค‘์‹ฌ์˜ ๊ตฌ์„ฑ์ฃผ์˜์  ํ•ด์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๊ตญ์ œ๋Œ€ํ•™์› : ๊ตญ์ œํ•™๊ณผ(๊ตญ์ œํ˜‘๋ ฅ์ „๊ณต), 2016. 8. ์ด๊ทผ.This thesis explores the reasons why Russia and Europe clash on Crimea focusing on different conceptions of sovereignty in Russia and Europe. In an effort to provide a Constructivist interpretation of the clash in the Ukrainian peninsula of Crimea, this study investigates the concepts of sovereignty adopted in Russia and Europe as a foundation for their clash. In addressing the main research question Why do Russia and Europe clash on Crimea? the main thesis laid out is that Russia and Europes conceptions of sovereignty significantly differ, and this difference serves as a critical impetus for the clash between Russia and Europe on Crimea. The first part of the analysis demonstrates the different conceptions of sovereignty in Russia and Europe, while the second part provides the reasons for such discrepancy. It is revealed that the conceptions of sovereignty in Russia and Europe diverge from one another at the core due to their unique national identities. Whereas the Russian concept, driven by its hegemonic identity, distinguishes legal (de jure) and real (de facto) sovereignties, the European construct of sovereignty conception, driven by the shared sense of establishing peace and equality among states, is a unitary and undiscriminating conception. The main objective of this research was to provide a Constructivist interpretation for the clash between Russia and Europe on Crimea. This study shows that the different conceptions of sovereignty โ€“ influenced by states national identity โ€“ serve as a reason behind the clash, which substantiates that acknowledging national identity and discovering states understanding of foreign policy concepts could serve a useful purpose in understanding international relations.I. Introduction 1 1. The Annexation of Crimea in 2014 1 2. Why Russia 3 3. Russia and Europe 6 4. Research Question 10 5. Structure of the Thesis 11 II. Theoretical Framework and Methodology 14 1. Constructivism 14 1-1. Limitations of competing Realist Theory 14 1-2. Choice of Constructivism 17 2. Key Conceptions and Proposition 21 2-1. National Identity and Foreign Policy 21 2-2 National Identity and Conception of Sovereignty 24 2-3. Sovereignty 25 2-4. Concept of Sovereignty in Foreign Policy 29 3. Research Methodology 30 3-1. Foreign Policy Analysis 30 3-2. History Analysis 35 3-3. Discourse Analysis 36 III. Annexation of Crimea in 2014 38 1. The Annexation of Crimea in 2014 38 1-1. Overview 38 1-2. The 2014 Crimean Crisis 41 2. Different Conceptions of Sovereignty in Russia and Europe 44 2-1. De jure and de facto Sovereignty 45 2-2. Absoluteness of Sovereignty 54 IV. National Identity and Concept of Sovereignty 57 1. Different Conceptions of Sovereignty 57 2. Russian National Identity 58 2-1. National Identity in Russia 58 2-2. Imperial Legacy and Hegemonic Identity 61 2-3. Hegemonic Identity and Concept of Sovereignty 71 3. The European Identity 77 3-1. Identity of Europe 77 3-2. Legacy of the WWII and Isocratic Identity 79 3-3. Isocratic Identity and Concept of Sovereignty 87 V. Conclusion 91 1. Different Conceptions of Sovereignty in Russia and Europe 91 2. Limitations of the Study and Further Research 96 3. Concluding Remark 99 Annex 101 Bibliography 121Maste
    • โ€ฆ
    corecore