26 research outputs found
ìŽì€ ì€ëŠ¬íŒì€ìì ë°ìíë ë í©ì± ì ížì ì ë ìížìì©ì êŽí ì€íì ì°êµ¬
íìë
Œë¬ž (ìì¬) -- ììžëíêµ ëíì : 공곌ëí êž°ê³ê³µíë¶, 2020. 8. í©ìí.Multiple orifice synthetic jet devices are becoming widely utilized for active flow control and jet impingement cooling, due to its mixing performance resulting from the vortices and jet interaction. Therefore, understanding the flow interaction between multiple synthetic jets is crucial in maximizing the potential for many industrial applications. In the present study, an experimental investigation on flow interaction between two synthetic jets generated from a dual-orifice device is performed. The influence of the orifice spacing (s/D = 1.2, 2.0, and 3.0) and the dimensionless stroke length (L0/D = 13.7, 19.0, and 28.3) is analyzed at a fixed Reynolds number of Re0 = 3700. Phase-locked particle image velocimetry (PIV) is used to obtain time- and phase-averaged flow fields. The jet interaction is enhanced as the orifice spacing and the dimensionless stroke length decrease, resulting in shorter distances for the merging and combining points. In addition, the inner vortices between the two jets are deformed and cancelled due to the jet interaction, which leads to the inner and outer vortices merging into a single vortex. The vortex interactions and merging are delayed as the orifice spacing increases, while the advection speed of vortices is increased without change of flow structure as the dimensionless stroke length increases.í©ì± ì íž ì¥ì¹ë ëŽë¶ì ìë ì 첎륌 ì€ëŠ¬íŒì€ë¥Œ íµíŽ ëŽë³ŽëŽë©Žì ìë¥ ê³ ëŠ¬ë¥Œ í¬íší íì€ ì ížë¥Œ ìì±íë€. ìŽë ìŽ ì§ë ë³í ììŽ ëªšë©í
ì ë°ììí¬ ì ììŽ ì 첎 ê³µêžì ìí íìŽí ë±ìŽ ë¶íìíë©°, ì°ì ì ížì ë¹íŽ ëì íì°ìšì ê°ì§êž° ë묞ì ë¥ë ì ë ì ìŽì ì íž ì¶©ë ëê° ë± ë€ìí ìì©ë¶ìŒì ì°ìŽê³ ìë€. ìµê·Œìë ë€ì€ í©ì± ì ížë¥Œ ì¬ì©íŽ 몚ë©í
ìì±ê³Œ íŒí©ì ìŠëìíŽìŒë¡ìš ìì©ë¶ìŒììì íšìšìŽ í¥ìëšìŽ ë³Žê³ ëê³ ìë€. ë°ëŒì 볞 ì°êµ¬ììë ë í©ì±ì íž ê° ì ë ìížìì© ì°êµ¬ë¥Œ íµíŽ í©ì± ì ížì ìì© ê°ë¥ì±ì ê·¹ëííê³ ì íë€. ì€í ì ëì ëìŒ ì€ëŠ¬íŒì€ - ëšìŒ ê³µë í©ì± ì ížìì ìì±íììŒë©°, ê³ ì ë ë ìŽëìŠ ì 조걎ìì ë€ìí ì ížê° 거늬ì 묎찚ìíë ì€ížë¡í¬ êžžìŽì ëíŽ ìííë€. íê· ì ëì¥ê³Œ ìì ë¶íŽ ì ëì¥ì ê³ìž¡ì ìì ëêž° PIV륌 ì¬ì©íŽ ìíëìë€. ì ížê° ê±°ëŠ¬ê° ê°ìíê³ ë¬Žì°šìíë ì€ížë¡í¬ êžžìŽê° ê°ìíšì ë°ëŒ ë í©ì±ì ížê° ìížìì©ìŽ ìŠëëë©Žì, ìê° íê· ë ì íž ì€ì¬ìëì ë¹ ë¥ž ê°ìì íì°ìŽ ë°ìíìë€. ëìì ì€ëŠ¬íŒì€ ì¬ìŽ ëì¹ì¶ ìì ì ììŽ ë¹ ë¥Žê² ìŠê°íì¬ ë ì ížì ì ìŽ ìì¹ì ê²°í© ìì¹ê° ê°ê¹ìì§ìŽ êŽì°°ëìë€. 구ë 죌Ʞ ëì ì€ëŠ¬íŒì€ìì ë°©ì¶ë ëŽë¶ì ìë¥ë ìë¡ ìížìì©íë©Žì ì ëë°©í¥ìŒë¡ì ë³íì ê±°ì³ ëë¶ë¶ ììëë©° ìŽìœê³ ìžë¶ì ìë¥ë¥Œ ì¶ìíë©Žì ìì°íìê³ , ëšììë ê° ì ížì ìžë¶ ìë¥ë ìë¡ìŽ ìë¥ ìì íì±íì¬ ì§ííšìŽ êŽì°°ëìë€. ìë¥ê° ìížìì©ì ì ížê° ê±°ëŠ¬ê° ê°ê¹ìì§ì ë°ëŒ ë ìŽë¥ž ìì ì ì€ëŠ¬íŒì€ ê°ê¹ìŽìì ë°ìíììŒë©°, ì€ížë¡í¬ êžžìŽê° ìŠê°íšì ë°ëŒ ìë¥ ìížìì©ì ì ë ííë ë³íì§ ìììŒë, ê°íë íí ì ížì ìí¥ìŒë¡ ì 첎ì ìž ê±°ëìŽ ë¹ ë¥Žê² ì§íëšì 볎ìë€.Chapter 1. Introduction 1
1.1 Research background 1
1.2 Purpose of research 3
Chapter 2. Experimental method 5
2.1 Experimental chamber and dual synthetic jet actuator 5
2.2 Phase-locked particle image velocimetry 6
2.3 Data reduction 7
Chapter 3. Time-averaged flow fields 12
3.1 Streamwise mean velocity distributions 12
3.2 TKE and PKE contours 15
Chapter 4. Phase-averaged flow fields 29
4.1 Phase-averaged vorticity contours 29
4.2 Vortex advection 30
Chapter 5. Conclusion 37
Bibliography 39
Abstract in Korean 41Maste
êµì ì§ ìíê°ë°ì¬ì ì¶ì§ë°©ìì ëí ì¬ííê°
íìë
Œë¬ž (ìì¬)-- ììžëíêµ íì ëíì : 공Ʞì
ì ì±
í곌, 2012. 8. ê³ êžžê³€.2004ë
ë¶í° ì ë¶ìì êµì ì¬ì°ì íšìšì êŽëŠ¬ë¥Œ ìíŽ ì¶ì§íê³ ìë êµì ì§ ìíê°ë°ì ì±
ì 공Ʞì
ì
ì¥ìì 늬ì€í¬ê° ì죌 ëì ì¬ì
ììë ë¶êµ¬íê³ ì¬ì êž°ì¬ëê° ëë€ë ìŽì ë¡ íë ì¶ì§ëê³ ìë€. êµì ì§ ê°ë°ì¬ì
ìŽ ì¶ì§ë ì§ 7ë
ìŽ ê²œê³Œí íì¬ ìŒë¶ììë ì¬ì
ì 늬ì€í¬ê° ëë€ë ìŽì ë¡ ë ìŽì ìíê°ë°ìŽ ìë ë€ë¥ž ë°©ìì ì¬ì
ëªšëž ì°êµ¬ ë° ì¶ì§ íìì±ì 죌ì¥íê³ , ë€ë¥ž ìŒë¶ììë ì ë¶ì ì ì±
ì ìí ì ìííŽìŒ íë 공Ʞì
ì ì€ëŠœ 목ì ì ë€ìŽ ì¬ì
ìŽ ë€ì ìííëëŒë ìíê°ë°ì íëíŽìŒ íë€ê³ 죌ì¥íë€.
ì¬ì
ì¶ì§ì ëí ìŽë¬í ìë°ë 견íŽê° ìììë ë¶êµ¬íê³ íì¬ê¹ì§ 구첎ì ìž ì¬ííê°ë¥Œ íµíŽ ì¬ì
ì 묞ì ì ìŽë ê°ì ë°©í¥ì ì ìí ì°êµ¬ë ë§ì§ ììë€. ë°ëŒì 볞 ë
Œë¬žììë ì¬ì
ì íšìšì êŽì ìì ì€ì ì¬ë¡ë¥Œ ê°ì§ê³ ì¬ííê°ë¥Œ ì€ìíŽ ë³Žê³ ìŽ ì¬ë¡ë¥Œ íµíŽ ìíê°ë°ì¬ì
ì¶ì§ë°©ìì ëí ì ë°ì ìž ë¬žì ì ì ìŽíŽë³Žê³ ê°ì ë°©ìì ì ìžíìë€. ê·žëŠ¬ê³ ì¬ì
ìŽ ê³ì ì¶ì§ëë€ë ê°ì íì íŽìž êµì ì§ ê°ë°ì¬ë¡ ì°êµ¬ë¥Œ íµíì¬ í¥í êµëŽ ìíê°ë°ì¬ì
ì ì ì±
ì ë°©í¥ì ëíŽ ê³ ë¯ŒíŽ ë³Žìë€.
êµì ì§ë¥Œ ê°ë°í ì ìë ë°©ìì ìíê°ë°, ì íê°ë°, í묌ì¶ìê°ë°ì ìž ê°ì§ê° ìë€. ê·žë¬ë ì íê°ë°ì ëì ì¡°ë¬ë¹ì© 묞ì ë묞ì í 걎ì ì¬ì
ë§ ì¶ì§ë ìŽí íì¬ê¹ì§ ì€ëšëìê³ , 믌êŽ(æ°å®)ìŽ íšê» ì°žì¬ ê°ë¥í 몚ëžìŽìë í묌ì¶ìê°ë°ì ì ëë¡ ì¶ì§íŽ 볎ì§ë 못íê³ ë²ë ¹ìŽ íì§ëìŽ ë¶ê°ë¥í ë°©ììŽ ëìë€. ë°ëŒì íì¬ë ìíê°ë°ë§ìŽ êµì ì§ë¥Œ ê°ë°í ì ìë ì ìŒí ì¶ì§ë°©ììŽë€.
ìíê°ë°ì ì§êžê¹ì§ ì€íŒì€, ìê°, 죌í ë± ë€ìí ì©ëë¡ ê°ë°ì ì¶ì§íì¬ ìŽ 9걎ì ìë²ì¬ì
ìŽ ìë£ëìë€. 볞 ì°êµ¬ì ì¬ííê°ë¥Œ ìíŽ ë¶ìí íë¡ì ížë 믌êŽë³µí©ì€íŒì€ê°ë°ì¬ì
ìž ëšë묞ìžë¬Žì ê°ë°ì¬ì
í 걎ìŒë¡ íì íìë€. ìëíë©Ž ë€ë¥ž ì©ë íë¡ì ížì ê²œì° ì íí ë¶ìì ìíŽ íìí ê°êŽì ìž ìì¥ë°ìŽí°ê° ë¶ì¡±íì¬ íšìšì êŽì ì ì¬ì
íë¹ì± íê°ê° ë¶ê°ë¥íêž° ë묞ìŽë€.
ëšë묞ìžë¬Žì ê°ë°ì¬ì
ì ì¬ííê° ê²°ê³Œë¥Œ ê°ì§ê³ êµì ì§ ìíê°ë°ì¬ì
ì¶ì§ë°©ìì ì ë°ì ìž ë¬žì ì ì ë¶ìíŽ ë³Žë©Ž ì°ì , ìíê°ë° ë°©ìì ì¬ì
ìŽ ê³ìëë©Ž ë ìë¡ ìíêŽëŠ¬êž°êŽì ë¶ì±ë¹ìšìŽ ìŠê°íì¬ êž°êŽì 겜ì 걎ì ì±ì íŽì¹ ê°ë¥ì±ìŽ ëë€ë ê²ìŽ ëëëìë€. ë ë²ì§žë ì ì±
ì±
ìììž ì ë¶(ìŽêŽì²)ì ì§íììž ê³µêž°ì
ì ìì¬ê²°ì êµ¬ì¡°ê° ë³µì¡íŽì ìì°šìžë€ìê² íŒíŽë¥Œ ì€ ì ìë€ë ì ìŽ ì êž°ëìë€. ìž ë²ì§žë ì ë¶ ì ì±
ì ëí ê°êŽì ìž íê° ììŽ ê³µêž°ì
ìì ììµì± ì죌ì ì¬ì íê°ë¥Œ ê°ì§ê³ ì¬ì
ì ì¶ì§íšìŒë¡ìš êµì ì§ ê°ë°ì ì±
ì ëí 공공ì±ìŽ ê²°ì¬ëìŽ ìë ì ëì 묞ì ì ë ììë€.
ìŽë¬í 묞ì ì ê°ì ì ìíŽ ë³ž ì°êµ¬ììë 믌êŽí©ë ê°ë°ì¬ì
몚ëžì ëì
곌 ì ë¶ ìì¬ê²°ì ê¶íì ëëì ìž íë°©ìì ê·žëŠ¬ê³ ì¬ì
ì ê³µê³µì± ì€íì ìíŽ ì ëµì ë¹ì 곌 목í ì€ì ìŽ íìíë€ê³ ì ìžíìë€.
볞 ë
Œë¬žì êµì ì§ ìíê°ë°ì¬ì
ì 구첎ì ìž íë¡ì ížë¥Œ ê°ì§ê³ ì¬ííê°ë¥Œ ì€ìí 첫 ì¬ë¡ë¡, ìŽ ì°êµ¬ë¥Œ íµíŽ ì¬ì
ì¶ì§ë°©ìì ëí 묞ì ì ì ì§ì íê³ ì¬ë¬ ê°ì§ ì ëì ê°ì ì¬íì ì ìíŽ ë³Žìë€. í¥í ìŽê²ìŽ ìë°ì ìŽ ëìŽ êµì ì§ ê°ë°ì¬ì
ì ëí ë§ì ì°êµ¬ê° ì§ìì ìŒë¡ ìŽë£šìŽì§êž°ë¥Œ êž°ëíë€.Since the policy for the efficient management of the national property began in 2004, the Korean government has been tried to set up the proper structure of the government owned land development. The consignment development structure to develop the government owned land was pushed ahead actively by the government and the public consignment company, KAMCO in 2005.
The consignment development policy takes two aspects. One is that this has such high risks to the public enterprise that it will be seriously considered to be broadened. The other is that one of the public enterprise's objectives is to serve the government policy so that it is going to forward continually.
Regarding the pros and cons of the consignment development policy, the little research has been studying. Thus, in this study I tried to determine the cause of problems of the consignment development to utilize the ex post evaluation of the specific project and propose some improvements. The ex post evaluation was made from one of 9 pilot projects, which was developed to the intelligent office building using with private and public corporations. The reason for choosing the office building case is that it can easily seek for the objective and comparative market data rather than any other real estate such as residential property or retails.
The first problem of the consignment development is that the debt ratio of the public enterprise can be increased if projects continuously proceed. Because of this debt ratio, the public enterprise should be influenced to the general business management plan and the possibility of the bad management might be going up.
Secondly, it frequently has tenant risks because of the two different decision making systems. The main decision maker is the government and the business is proceeding with the public enterprise. Thus, it is very difficult to find fast, proper, and efficient ways about the tenant request.
Lastly, the public enterprise which has been doing the project pre-evaluation has the systematic approach problem that is only focusing on the profitability. It did not consider publicness very seriously.
To solve these problems I proposed a couple of measures in the paper, which are the necessity of public and private partnership development model, delegation of government authority to the public enterprise, and set up the strategic vision and objectives for the publicness.
This paper contributes to propose some improvements for the consignment development policy analyzing the ex post evaluation of the specific project. Through this thesis, we expect to have more researched and studied about the government owned land development hereafter.ì 1 ì¥ ìë¡
ì 1 ì ì°êµ¬ë°°ê²œê³Œ 목ì
ì 2 ì ì°êµ¬ì ë²ìì ë°©ë²
ì 2 ì¥ ì íì°êµ¬ ê³ ì°° ë° ìŽë¡ ì ë
Γ
ì 1 ì ì íì°êµ¬ ê³ ì°°
1. êµì ì§ ê°ë°ì ëí ì íì°êµ¬
2. 믌êŽí©ë ê°ë°ì¬ì
ì ëí ì íì°êµ¬
ì 2 ì ìŽë¡ ì ë
Γ
1. êµì ì§ ê°ë° ê°êŽ
1-1. êµì ì§ ê°ë°ì¬ì
íí©
1-2. êµì ì§ ê°ë°ì¬ì
ë°©ì
1-3. êµì ì§ ìë²ê°ë°ì¬ì
íí©
1-4. êµì ì§ ê°ë°ì¬ì
ì ê³µê³µì± ì€í 묞ì
2. 믌êŽí©ë ê°ë°ì¬ì
ì ëí ìŽíŽ
2-1. 믌êŽí©ë ê°ë°ì¬ì
ì ë°ë¬
2-2. íë¡ì íž íìŽëžì±
ì 3 ì¥ êµì ì§ ê°ë° íŽìž ì¬ë¡ ì°êµ¬
ì 1 ì ìŒë³žì ì¬ë¡
1. êµê° 죌ëì ëìì¬ì íë¡ì íž
1-1. ëìì¬ì ì ì±
ì ë±ì¥
1-2. ëìì¬ì 죌ì íë¡ì íž
2. ì€ì í©ëì²ì¬ 7ížêŽ ì ë¹ì¬ì
ì¬ë¡
2-1. êµì ì§ ê°ë°ì íµí ëìì¬ì ê³í
2-2. ì€ì í©ëì²ì¬ 7ížêŽ ì ë¹ì¬ì
ì 2 ì ì€íìžì ì¬ë¡
1. ìì¹ì ë¶ì ëìì¬ì íë¡ì íž
1-1. ë°ì€í¬ì§ë°©ì ëìì¬ìì¬ì
ì¶ì§ 배겜
1-2. ë¹ë°ì€ì ëìì¬ìì¬ì
곌ì
2. ë¹ë°ì€ êµì ì§ ìíê°ë°íì¬
2-1. Bilbao Ria 2000
2-2. Bilbao Ria 2000 íë¡ì íž ì¬ë¡
ì 3 ì íŽìž ì¬ë¡ì ìì¬ì
ì 4 ì¥ êµì ì§ ìíê°ë°ì¬ì
ì¬ííê°
ì 1 ì ì¬ííê° êž°ì€ê³Œ íê° ë°©ë²
ì 2 ì ì¬ííê° ê²°ê³Œ
1. íê°ëì ì ì
2. íšìšì± ìž¡ë©Ž ì¬ì
íë¹ì± ì¬ì ê²í 결곌
2-1. ë¶ìì Ʞ볞 ê°ì
2-2. ë¶ì 결곌
2-3. 믌ê°ë ë¶ì
3. ì¬ííê° ê²°ê³Œ ë¶ì
3-1. ë¶ìì Ʞ볞 ê°ì
3-2. ë¶ì 결곌
3-3. 믌ê°ë ë¶ì
4. ì¬ì ·ì¬í ë¶ìì ë¹êµ
ì 5 ì¥ êµì ì§ ìíê°ë°ì ë 묞ì ì 곌 ê°ì ë°©ì
ì 1 ì êµì ì§ ìíê°ë° ë°©ìì 묞ì ì
1. ìíêŽëŠ¬êž°êŽì ë¶ì±ë¹ìš ìŠê°
2. ìíêŽëŠ¬êž°êŽì ìŽì ììšì± 묞ì
3. ì¬ì íê°ì ì ëì 묞ì ì
ì 2 ì êµì ì§ ê°ë°ì ë ê°ì ë°©ì
1. 믌êŽí©ë ê°ë°ì¬ì
ì ì ëì êž°ë° ë§ë š
2. ìŽìì ììšì± 볎ì¥
3. ê³µê³µì± ì€íì ìí ë¹ì ì늜
ì 6 ì¥ ê²° ë¡
ì 1 ì ì°êµ¬ ììœ ë° ê²°ë¡
ì 2 ì ì°êµ¬ì íê³ì ë° í¥í ì°êµ¬ë°©í¥Maste
ìŒë³ž ì¡ì§ãìžì¹ŽìŽ(äžç)ãì§ì ëíë ë¶íìì êŽí ì°êµ¬
íìë
Œë¬ž(ìì¬)--ììžëíêµ ëíì :ì¬íí곌,2005.Maste
ì§ì§ë€ë¹ì²Žë¥Œ ìì©ì²Žë¡ ìžìíë ì ê· ë°í 늬ì€íì§ CSP1ì ìŽì©í í¬ë¡ë žë°í° ì¬ì¹Žìí€ê· ì ì ê°
íìë
Œë¬ž (ìì¬)-- ììžëíêµ ëíì : ëì
ìëª
곌íëí ìíê³µí곌, 2018. 8. ì ììŽ.í¬ë¡ë
žë°í° ì¬ì¹Žìí€ë ìì ììê² íšíìŠìŽë ì¥ì ꎎì¬ë¥Œ ìŒìŒí¬ ì ìë ë³ìì±ê· ìŽë€. 볞 ë
Œë¬žììë í¬ë¡ë
žë°í° ì¬ì¹Žìí€ë¥Œ í¹ìŽì ìŒë¡ ê°ìŒíë ë°í
늬ì€íì§ CSP1ìŽ ì¬ì¹Žìí€ê· ì ì ìŽì ì¬ì© ë ì ììì ì ìíìë€. CSP1ì íííì ë¶ìì íµíŽ, íì§ê° ìŽì멎첎몚ìì 뚞늬ì êž°ë€ë ë¹ìì¶ì± ꌬ늬륌 ê°ì§ Siphoviridaeì ìíë ê²ì ì ì ììë€. CSP1ì ì ì 첎 ë¶ìì íµíì¬ ìŽ íì§ë 60,222ê°ì ìŒêž°ììŒë¡ ìŽë£šìŽì§ ìŽì€ëì DNA(GC% íšë 44.96%)륌 ê°ì§ê³ ììì ë°íìŒë©°, ìŽ DNAë¡ë¶í° tRNAë rRNA ììŽ 99ê°ì ORFs륌 ììž¡í ì ììë€. í¬ë¡ë
žë°í° ì¬ì¹Žìí€ ATCC 29544 ìŒìí ê· ì£Œì Tn5 ížëì€í¬ì¡Žì ìŽì©íì¬ ë¬Žììë¡ ëì°ë³ìŽë¥Œ ìŒìŒìŒ CSP1 íì§ë¥Œ ê°ìŒìíŽìŒë¡ìš, ì§ì§ë€ë¹ì²Ž(LPS) ìí©ì± êŽë š ì ì ìì ëì°ë³ìŽê° ìŒìŽë¬ì 겜ì°ì CSP1 ê°ìŒì ì íì±ì ê°ê² ëë ê²ì íìžíìë€. í¹í LPS outer core ìí©ì±ì êŽì¬íë waaG ì ì ì륌 ì ê±°íìì ë í¬ë¡ë
žë°í° ì¬ì¹Žìí€ ATCC 29544ë íì§ì ê°ìŒëì§ ììì 볌 ì ìììŒë©°, waaG ì ì ì륌 볎ìíŽì£Œìì ë ë€ì íì§ì ê°ìŒëë íìì íìží ì ììë€. ìŽë¬í 결곌륌 íµíŽ LPS, í¹í outer core ìŽí ë¶ë¶ìŽ íì§ì ì죌 ìì©ì²Žë¡ ìì©íê³ ìì ê²ìì ììí ì ììë€. ìì°ì ìŒë¡ ë°ìí CSP1 ì íì± ì¬ì¹Žìí€ ëì°ë³ìŽ ê· ì Tn5ì ìí waaG ëì°ë³ìŽ ê· ì£Œ ë° waaG ì ì ìê° ê²°ì¬ë ëì°ë³ìŽ ê· ì£Œì ì ì¬íê² ìë €ì§ íšíŽì LPS 구조륌 볎ìë€. ëí ìŽë¬í ëì°ë³ìŽ ê· ì£Œë€ì ìŒìí ê· ì£Œì ë¹íŽ ìëì ìŒë¡ Caco-2 ë묌 ì¥ ìíŒ ìží¬ì 칚í¬íë ë¥ë ¥ìŽ ê°ìíìë€. ìŽë¬í 결곌ë€ì íì§ CSP1ìŽ í¬ë¡ë
žë°í° ì¬ì¹Žìí€ë¥Œ ì ìŽíêž° ìí ì묌íì ë°©ë²ìŒë¡ ìì©ë ê°ë¥ì±ìŽ ììì ìë €ì€ë€.CONTENTS
ABSTACTââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
°
CONTENTSâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
²
List of Figureâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
µ
List of Tableââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
¶
â
. INTRODUCTIONââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ1
â
¡. MATERIALS AND METHODSâââââââââââââââââââââââââââââââââââââââââââââââââââââ5
1. Bacterial strains and growth conditionâââââââââââââââââââââââââââ5
2. Bacteriophage isolation and propagationââââââââââââââââââââââââ5
3 Determination of phage host rangeâââââââââââââââââââââââââââââââââââ7
4. Morphological analysis by Transmission electron microscopyâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ8
5. Bacteriophage DNA extractionâââââââââââââââââââââââââââââââââââââââââ9
6. Bacteriophage genome sequencing and bioinformatics
analysisââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ10
7. Bacteriophage adsorption assayâââââââââââââââââââââââââââââââââââââ10
8. Bacterial challenge assayâââââââââââââââââââââââââââââââââââââââââââââââââ11
9. Bacteriophage heat stability testââââââââââââââââââââââââââââââââââââ12
10. Constructing transposon random mutant library and selection of phage CPS1-resistant mutantâââââââââââââââââââââââââââââââââââ12
11. Construction of waaG deletion mutant and obtaining spontaneous CSP1 resistance mutantââââââââââââââââââââââââââââââââââââââââââââ14
12. Constructing complementation strain of waaG mutant and complementation testâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ16
13. Virulence test of phage CSP1-resistant mutantââââââ23
â
¢. RESULTSâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ25
1. Bacteriophage isolation, morphological analysis and host range determinationââââââââââââââââââââââââââââââââââââââââââââââââ25
2. Whole genome sequencing and bioinformatic analysis of phage CSP1âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ30
3. Bacterial challenge assay and phage adsorption assayâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ33
4. Heat stability of phage CSP1ââââââââââââââââââââââââââââââââââââââââââ37
5. Constructing transposon random mutant library and selection of phage CPS1-resistant mutantâââââââââââââââââ39
6. Determination of the phage receptor by complementation testââââââââââââââââââââââââââââââââââââââââââââââââââââââ42
7. Virulence test of phage CSP1-resistant mutantââââââââ49
â
£. DISCUSSIONâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ51
â
€. REFRENCESââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ55
â
¥. êµë¬žìŽë¡ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ63
â
List of Figure
Figure 1. Electron microscopic image of negatively stained phage CSP1ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ29
Figure 2. Genomic map of phage CSP1âââââââââââââââââââââââââââââââââââââââââââââââ32
Figure 2. The growth of C. sakazakiiââââââââââââââââââââââââââââââââââââââââââââââââââ35
Figure 3. Adsorption of phage CSP1 to the host C. sakazakii ATCC 29544 cellsâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ36
Figure 4. Thermal stability of CSP1ââââââââââââââââââââââââââââââââââââââââââââââââââââ38
Figure 5. Scheme of transposon inserted sites of CSP1 resistant ATCC 29544 mutantââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ41
Figure 6. General scheme of core oligosaccharide of lipopolysacchrideââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ42
Figure 7. CSP1 spotting assayââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ46
Figure 8. Motility testââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ47
Figure 9. DOC-PAGEâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ48
Figure 10. Invasion assayâââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ50
List of Table
Table 1. Primers used in this studyââââââââââââââââââââââââââââââââââââââââââââââââ21
Table 2. Host range of the phage CSP1ââââââââââââââââââââââââââââââââââââââââââ27Maste
Effect of calcium immersion or ultraviolet light treatment on osseointegration of sand blasted with alumina and acid etched surface implant in rabbit
ì¹ìí곌/ìì¬ìíëíž íë©Ž ì¹ìì±ì ìŠê°ë ìíëíž ì늜 í íë©Žì ì묌íì íì±ë륌 ìŠì§ìíšë€. ìŽë¬í ìíëíž íë©Žì ì¹ìì±ì íì í¡ì°©ì ìí ì€ìŒìŒë¡ ì ì°š ê°ìíë€ê³ ë³Žê³ ëê³ ìë€. ë°ëŒì íì í¡ì°©ì ìí íë©Žì ì€ìŒì ë°©ì§íê³ ì¹ìì±ì ìŠê°ìí€êž° ìíŽ ìíëížë¥Œ ìŒí 칌ì ì©ì¡ì 볎êŽíê±°ë ìíëíž íë©Žì ììžì ì ì¡°ì¬íë ë°©ë² ë±ìŽ ì°êµ¬ëê³ ìë€.볞 ì°êµ¬ì 목ì ì ìŒí 칌ì ì©ì¡ì 볎êŽí SA(Sandblasting with alumina and Acid etching)íë©Ž ìíëíž(CAêµ°)ì ììžì ì ì¡°ì¬í SA íë©Ž ìíëíž(UVêµ°)륌 곚ì§ìŽ ë¶ëí í ëŒì ëíŽê³šì ì늜íì¬ ì¹ì êž°ê°ì ë°ëŒ 곚ì ì°© ì ë륌 ìž¡ì íê³ , ìŽë¥Œ êž°ì¡Žì SA íë©Ž ìíëížì 곚ì ì°© ìì곌 ë¹êµíê³ ì íšìŽë€.볞 ì°êµ¬ììë ìŽ 9ë§ëŠ¬ì í ëŒë¥Œ ìŽì©íììŒë©° í ëŒì ì쪜 ëíŽê³šì ìíëížë¥Œ ê°ê° 2ê°ì©, ìŽ 36ê°ì ìíëížë¥Œ ì늜íìë€. ëì¡°êµ°ì SAíë©Ž ìíëížë¥Œ ì늜í SAêµ°, ì€íêµ° 1ì ìŒí 칌ì ì©ì¡ì 볎êŽí SA íë©Ž ìíëížë¥Œ ì늜í CAêµ°, ì€íêµ° 2ë ììžì ì ì¡°ì¬í SAíë©Ž ìíëížë¥Œ ì늜í UVêµ°ìŒë¡ ì€ì íìë€. ìíëíž ì늜 í ê° êµ°ë§ë€ 2죌, 4죌, 12죌ì ì¹ì êž°ê°ì ê±°ì¹ í ë묌ì í¬ì íìë€. ê° êµ°ì ìížì ì ìíê³ micro CT륌 쎬ìíì¬ ê³š ë¶íŒë¥Œ ìž¡ì íìê³ ì¡°ì§ê³ìž¡íì ë¶ìì íµíŽ íŒì§ê³šê³Œ íŽë©Žê³š ë¶ìë¡ ëëìŽ ê³š ìíëíž ì ìŽë¥ 곌 곚 ëšë©Žì ë¹ìšì ìž¡ì íìë€. íµê³íì ë¶ìì Wilcoxon Rank Sum Test륌 ìŽì©íìë€.2죌군ì íŽë©Žê³šìì CA íë©Ž ìíëížë êž°ì¡Žì SA íë©Ž ìíëížì ë¹íŽ ë ëì 곚 ìíëíž ì ìŽë¥ , 곚 ëšë©Žì ë¹ìšì 볎ììŒë©°, íµê³ì ìŒë¡ ì ìí ì°šìŽë¥Œ 볎ìë€(p0.05).볞 ì°êµ¬ì 결곌ì ë°ë¥Žë©Ž, CA íë©Ž ìíëížë ìŽêž° 곚ì ì°© ëšê³ì íŽë©Žê³šìì êž°ì¡Ž SA íë©Ž ìíëížì ë¹íŽ íµê³ì ìŒë¡ ì ìí ìì€ìì ëì 곚ì ì°©ë륌 볎ìë€. ììžì ì ì¡°ì¬í SA íë©Ž ìíëížë íŽë©Žê³š ë¶ììì êž°ì¡Žì SA íë©Ž ìíëížì CA íë©Ž ìíëížì ë¹íŽ ì ë°ì ìŒë¡ ì°ìì ìž ííì ê³šê²°í© ììì 볎ìë€. ë³Žë€ ì믞ìë 결곌륌 ì»êž° ìíŽìë ìížì륌 ëë € ì¶ê°ì ìŒë¡ ë¶ìí íìê° ìë€ê³ ìê°ëë€.ope
ì 묎í¹ì±ìŽ ë¹ëêž° 맀첎륌 íµí 컀뮀ëìŒìŽì ì±ê³Œì 믞ì¹ë ìí¥ì êŽí ì°êµ¬
íìë
Œë¬ž(ìì¬)--ììžëíêµ ëíì :겜ìí곌 겜ìíì ê³µ,2002.Maste
Studies on Fabrication of Plasmonic Metamaterials by Block Copolymer Self-Assembly Confined in Anodized Aluminum Oxide Template
Doctorë©í묌ì§ìŽë ìì°ê³ì ì¡Žì¬íì§ ìë êŽíì ì±ì§ì ëë
ž êµ¬ì¡°ì²Žë¡ ìžê³µì ìŒë¡ 구íí 묌ì§ì ë§íëë°, ê·ž 구조 ë° ë°°ìŽì ì¡°ì íŽì ë¹ì ì ìŽí ì ìë ì±ì§ìŽ ìë€. í¹í êžììŒë¡ ë§ë€ìŽì§ ëë
ž 구조첎ë ì
ì¬ë ë¹ì ìíŽ ìì ì ìê° ê°í íëŒìŠëªšë ê³µëª
ìŽ ë°ìíë©Žì ìêž°ê³µëª
, 칎ìŽë, ìì 굎ì ë¥ ë±ì ë
í¹í êŽí ë°ìì ê°ì§ ì ìë€. íì§ë§, ìŽë¬í ë©í묌ì§ì 구ííêž° ìíŽ ì§êžê¹ì§ë 늬ìê·žëŒíŒ (ì ìë¹ ìê°ì¥ë¹, ë ìŽì ž ë±)ìë§ ìì¡ŽíŽìêž° ë묞ì ì ì ë¹ì© ë° ìê°ìŽ í¬ê² ììëê³ , ëë©Žì ì ììŽ ë¶ê°ë¥íêž° ë묞ì ìì©íì ìŽë €ì ë€.
ëžë¡ê³µì€í©ì²Žë ì€ëŠ°ë, ëŒë©ëŒ, ì€íŒìŽ, ììŽë¡ìŽë ë±ì ëë
ž 구조륌 ëë©Žì ì 구íí ì ìë€ë ì¥ì ìŽ ìì§ë§, ìì ì ìí íëŒìŠëªšë ë©í묌ì§ì íìí ë³µì¡í ëë
ž êµ¬ì¡°ë¡ ë°íìí€êž°ì ìŽë µë€ë ì íìŽ ììë€.
ìŽë¥Œ 극복íêž° ìíŽ ë°ì¬íì 곌ì ëì AAO ííì ìŽì©íì¬, ë
í¹í ëžë¡ê³µì€í©ì²Žì ê°ëìŽì§ ìê±°ëì ì ëíê³ , ìŽë¡ë¶í° êžì ëë
žêµ¬ì¡°ì²Žë¥Œ ëë©Žì ìŒë¡ ì ì, ìŽë¥Œ íëŒìŠëªšë ë©í묌ì§ë¡ 구ííë€.
2ì¥ììë PS-b-PMMA ëžë¡ê³µì€í©ì²Žë¥Œ ì€ëŠ°ë 몚ìì ííì ê°ëìŽ ì ìžµ ëŒë©ëŒ 구조륌 êž°íì ëë©Žì ìŒë¡ 구ííë€. ì¬êž°ì ìì ìŠì°©íë©Ž, PS ëë
žììë§ ì íì ìŒë¡ ìŠì°©ëìŽ ì ììœëìž êµ¬ì¡°ë¡ ë§ë€ ì ìë€. ì ììœëìž êµ¬ì¡°ë ììžµì ë°êµ¬ì ì€ë¬Žë¬ì êž°ë¥ ë묞ì ì
ì¬ë ë¹ì ëíŽ ë€ì€ ì ìêž° ê³µëª
ì ê°ìì íìžíìë€.
3ì¥ììë 2ì¥ì ì ìžµ ëŒë©ëŒ 구조륌 ì°ì íëŒìŠë§ë¡ PMMA 믞ìžìë§ ì íì ìŒë¡ ìê°íì¬ ì£ŒëŠì§ íê³ ë€ ëªšìì ëë
ž ë§ë륌 ë§ë€ìë€. ìŽ íê³ ë€ êµ¬ì¡°ë ë
í¹í 구조 ë묞ì êžì êž°ìžì¬ ìŠì°©íì¬ ì ìžµ ìŽì¹ë¬ 구조륌 ë§ë€ ì ìëë° ìŽë ëì íì¥ ìììì ê³µëª
ì íì¬ 0 ì ê°ê¹ìŽ 굎ì ë¥ ì íìží ì ììë€.
4ì¥ììë ì§êžê¹ì§ ëì¹ì ìž ìê±°ë 구조륌 ìŽì©í ê²ê³Œ ë¬ëŠ¬ ë°êµ¬ ííì AAO ì êžì êž°ìžì¬ ìŠì°©íì¬ ë¹ëì¹ì ìž ííì ë§ë€ìŽ ë¹ëì¹ì ìž ììŽìê±°ë 구조륌 ë°ê²¬íë€. ì¬êž°ì ìì ì íì ìŒë¡ ìŠì°©íì¬, ììŽíìŽ ííì 구조륌 ëë©Žì ì ë°°ìŽíìê³ , ìŽë ì
ì¬ë ë¹ì ížêŽ ë°©í¥ì ëíŽ ê°êž° ë€ë¥ž ê³µëª
ì íë ê²ì êŽì°°íìë€.
ê²°ë¡ ì ìŒë¡, íì 곌ì ëì AAO ííììì ì ìžµ ëŒë©ëŒ, íê³ ë€ êµ¬ì¡°ì ê°ì ëžë¡ê³µì€í©ì²Žì ë
í¹í ìë¶ëŠ¬ë¥Œ ì ëíìê³ , ìŽë¥Œ ê°ìêŽ-ì ìžì ìììì ìëíë êŽí ë©í묌ì§ì ëë©Žì ìŒë¡ 구ííìë€. 볞 ì°êµ¬ë í¥í ì€ì©ì ìž ë©í묌ì§ì ì ìì íµí ìì 굎ì ë¥ ë¬Œì§ ë° ì°šìžë êŽíìì ìì©íì í° êž°ì¬ë¥Œ í ê²ìŽëŒ ìê°íë€.Plasmonic structure utilizes surface plasmon polariton, which is a collection of free electron in a metal structure, and thus has different oscillation energy levels depending on the shape, type, and size of the structure. It has the property of absorbing, transmitting and distorting the incident lights with specific wavelength and polarization, applied for surface enhanced Raman scattering (SERS), nonlinear optics, and metamaterials.
The metamaterial is a material that does not exist in nature and can be applied to artificial magnetism, negative refractive index and perfect absorption because the permittivity and permeability controlled by the arrangement of artificially made metal structures. Naturally, metals have only a dielectric constant, so in order to obtain the aforementioned unique optical properties, it is necessary to have artificial magnetic permeability from complex 3D metal nanostructures such as split-ring resonators or vertically stacked rods. However, since most previous studies rely on top-down lithography, such as direct laser writing and multiple e-beam lithography, 1) large area fabrication is impossible, and 2) nanoscale metal structures are not available. The limitations are that the wavelength bands that can be operated cannot cover within the UV-visible area essential for practical applications.
Block copolymers have been intensively researched due to their unique aspects of self-assembly behavior. Various microphase separated morphology, such as lamellae, gyroid, cylinders, and spheres, were shown depending on volume fraction (f) of one portion of block, degree of polymerization and the Flory-Huggins segment interaction parameter. The benefits of easily developing exclusive nanopattern in a large area achieved from microphase separation have been employed for data storage media, solar cells, membranes, and sensors.
However, these practical nanophases limits the application of optical, lithography, and organic-inorganic complexes that require complex structures, so research has been ongoing about the block copolymer morphologies confined in a limited space to observe more complex phase separation. In this thesis, we utilized complex block copolymer morphologies developed by confinement effect of anodized aluminum oxide (AAO) template for plasmonic metamaterials.
In chapter 2, we prepared a high-density array of âaccordion-likeâ plasmonic silver nanorods over a large area that exhibited multiple electromagnetic responses to visible and near-infrared (NIR) wavelengths. This array of âaccordion-likeâ silver nanorods was fabricated by confining the lamellae-forming polystyrene-block-poly (methyl methacrylate) copolymer (PS-b-PMMA) inside the cylindrical pores of an aluminum oxide (AAO) template grafted with thin neutral brush layers. PS and PMMA lamellar nanodomains with sizes of 15 nm were alternatively stacked along the nanorod direction. After the AAO template was removed, a 5-nm-thick layer of silver was thermally deposited on only the PS nanodomains. Due to unique shape with one hemispherical cover and 5 side silver rings, the assemble of accordion nanorods exhibits multiple resonance in the visible and NIR regimes.
In chapter 3, we realized stacked split ring resonators from âpagoda-likeâ nanorods over a large area (~cm2) exhibiting polarization difference in near-infrared (NIR) wavelengths. This array of âpagoda-likeâ nanorods was fabricated from stacked lamellar nanorods with following by O2 reactive ion etching. Stacked split ring resonators with 6 stacking layers were fabricated, followed by tilt silver deposition on the nanorods. Nearly 0 refractive index with polarized incident light were confirmed by finite domain time difference (FDTD) simulation.
In chapter 4, we investigated asymmetric confinement effect on block copolymer morphologies, employing gold segment on half of hemispherical AAO pore. Unique "wi-fiâ like PS-b-PMMA top morphologies were developed due to asymmetric geometric of confining space. After selective silver deposition only on PS nanodomains, we achieved âwi-fiâ like silver nanopattern for a large area, and unique reflectance spectrum depending on polarization of incident light in visible, and NIR regime