41 research outputs found

    ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ (Glandirana emeljanovi)์˜๋ถ„๋ฅ˜ํ•™์  ๊ณ ์ฐฐ ๋ฐ ๊ณ„ํ†ต์ง€๋ฆฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜์˜๊ณผ๋Œ€ํ•™ ์ˆ˜์˜ํ•™๊ณผ, 2021. 2. ์ดํ•ญ.์˜ด๊ฐœ๊ตฌ๋ฆฌ(wrinkled frog)๋Š” ์˜ด๊ฐœ๊ตฌ๋ฆฌ์†(Genus Glandirana) ๋ฌด๋ฏธ์–‘์„œ๋ฅ˜๋กœ์จ ์ด์— ์†ํ•˜๋Š” ๋‹ค์„ฏ ์ข…, G. emeljanovi, G. rugosa, G. tientaiensis, G. minima, G. susurra๊ฐ€ ๋ถ„๋ฅ˜๋˜์–ด ์žˆ๋‹ค. ํ•œ๊ตญ์—๋Š” ์˜ด๊ฐœ๊ตฌ๋ฆฌ ์ข… ํ•˜๋‚˜๋งŒ ์„œ์‹ํ•˜๊ณ  ์žˆ์ง€๋งŒ, ์ด ์ข…์€ G. rugosa ํ˜น์€ G. emeljanovi๋กœ ํ˜ผ์šฉ๋˜์–ด ๊ธฐ์žฌ๋˜์–ด ์žˆ๋‹ค. ์›๊ธฐ์žฌ ๊ธฐ๋ก์— ์˜ํ•˜๋ฉด G. rugosa๋Š” ์ผ๋ณธ์— ์„œ์‹ํ•˜๋Š” ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋ฅผ ์ด๋ชจ์‹ํ‘œ๋ณธ(syntype)์œผ๋กœ ์‚ผ์•„ ๋ฐœํ‘œํ•˜์˜€๊ณ , G. emeljanovi๋Š” ์ค‘๊ตญ ํ‘๋ฃก๊ฐ•์„ฑ ์ผ๋ฉดํฌ์—ญ์—์„œ ๋ฐœ๊ฒฌํ•œ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋ฅผ ์™„๋ชจ์‹ํ‘œ๋ณธ(holotype)์œผ๋กœ ์‚ผ์•„ ๋ฐœํ‘œํ•˜์˜€๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋Š” ์ง€์—ญ์— ๋”ฐ๋ผ ๋‘ ๊ฐœ ์•„๊ณ„ํ†ต๊ตฐ(sub-lineage)์„ ํ˜•์„ฑํ•˜๋ฉฐ, ์ผ๋ณธ ์˜ด๊ฐœ๊ตฌ๋ฆฌ G. rugosa์™€ ์œ ์ „์  ์ฐจ์ด๊ฐ€ ์žˆ๊ณ , ์ค‘๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ์™€๋Š” ๋‹จ๊ณ„ํ†ต๊ตฐ(monophyletic taxon)์„ ํ˜•์„ฑํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ•œ๊ตญ ๊ฐœ์ฒด๊ตฐ์„ ๋ถ„์„ํ•˜๋ฉด์„œ ์ผ๋ณธ ๊ฐœ์ฒด์™€๋งŒ ๋น„๊ตํ•˜๊ฑฐ๋‚˜, ๋˜๋Š” ํ•œ๊ตญ๊ณผ ์ค‘๊ตญ ๊ฐœ์ฒด๋ฅผ ๋น„๊ตํ•˜๋Š” ๋ฐ ๊ทธ์ณ ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ ์˜ ์ •ํ™•ํ•œ ๊ณ„ํ†ต๋ถ„๋ฅ˜ํ•™์  ๊ด€๊ณ„๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์— ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์˜ด๊ฐœ๊ตฌ๋ฆฌ์˜ ๋ถ„๋ฅ˜ํ•™์  ์Ÿ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๊ตญ, ์ค‘๊ตญ, ์ผ๋ณธ ์˜ด๊ฐœ๊ตฌ๋ฆฌ ๊ฐœ์ฒด๊ตฐ ์‹œ๋ฃŒ๋ฅผ ๋ชจ๋‘ ์ด์šฉํ•˜์—ฌ ๊ณ„ํ†ต์œ ์ „ํ•™ ๋ถ„์„๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํ†ตํ•ฉ์ ์œผ๋กœ ๋น„๊ตยท๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ์˜ ๊ณ„ํ†ต์ง€๋ฆฌ์  ๋ถ„ํ™” ๋ฐ ์ง„ํ™”์—ญ์‚ฌ ์ถ”๋ก ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ DNA ์œ ์ „์ž 5๊ฐœ(Cytochrome b, 817bp; D-loop, 765~774bp; 12S rRNA, 823~828bp; tRNA-val, 69~71bp; 16S rRNA, 62bp)์˜ ์—ผ๊ธฐ์„œ์—ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋œ ์˜ด๊ฐœ๊ตฌ๋ฆฌ ์œ ์ „์ž ์‹œ๋ฃŒ๋Š” ์ด 324๊ฐœ์ฒด๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘ํ•˜์˜€์œผ๋ฉฐ, ๋‚จํ•œ 93๊ฐœ ์ง€์—ญ 304๊ฐœ์ฒด, ์ค‘๊ตญ 2๊ฐœ ์ง€์—ญ 7๊ฐœ์ฒด, ์ผ๋ณธ 3๊ฐœ ์ง€์—ญ 13๊ฐœ์ฒด์˜ ์œ ์ „์ž ์‹œ๋ฃŒ๋ฅผ ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด G. emeljanovi์˜ ๋™๋ชจ์‹ํ‘œ๋ณธ์œผ๋กœ์จ ์ค‘๊ตญ ๊ธธ๋ฆผ์„ฑ ๊ฐœ์ฒด(KU641020)์™€ ์ผ๋ณธ ๋‚ด์—์„œ ์ง€์—ญ์ ์œผ๋กœ ๋šœ๋ ทํ•œ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋‰˜๋Š” ์ง€์—ญ๋ณ„ 4๊ฐœ์ฒด์˜ ์—ผ๊ธฐ์„œ์—ด ์ •๋ณด(LC536281~LC536284)๋ฅผ ๋ฏธ๊ตญ ๊ตญ๋ฆฝ์ƒ๋ฌผ์ •๋ณด์„ผํ„ฐ(NCBI) GenBank์—์„œ ์–ป์–ด ๋ถ„์„์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ G. tientaiensis์™€ ๋”๋ถˆ์–ด Raninae์•„๊ณผ์— ํ•จ๊ป˜ ์†ํ•˜๋Š” Rana huanrensis, Sylvirana guentheri, Pelophylax nigromaculata๋ฅผ outgroup์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด 2,630๊ฐœ ์—ผ๊ธฐ์„œ์—ด์„ ์–ป์–ด ํ•œ๊ตญ, ์ค‘๊ตญ, ์ผ๋ณธ ์˜ด๊ฐœ๊ตฌ๋ฆฌ ๊ฐœ์ฒด๊ตฐ์„ ํ†ตํ•ฉ์ ์œผ๋กœ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ํ•œ๊ตญ๊ณผ ์ค‘๊ตญ ๊ฐœ์ฒด๊ตฐ์€ ๋ชจ๋‘ ์ผ๋ณธ ๊ฐœ์ฒด๊ตฐ๊ณผ ์œ ์ „์ ์œผ๋กœ ๋šœ๋ ทํ•˜๊ฒŒ ๊ตฌ๋ถ„๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ํ•œ๊ตญ๊ณผ ์ค‘๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋Š” ํ•จ๊ป˜ ๋‹จ๊ณ„ํ†ต๊ตฐ์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ด 198๊ฐœ ํ•˜ํ”Œ๋กœํƒ€์ž…(Haplotype)์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ๊ทธ ์ค‘ ํ•˜ํ”Œ๋กœํƒ€์ž… 9๋Š” ๋Œ€ํ‘œ์ ์ธ ํ•˜ํ”Œ๋กœํƒ€์ž…์œผ๋กœ์„œ ์ค‘๊ตญ ์ง€๋ฆฐ์„ฑ(๋™๋ชจ์‹ํ‘œ๋ณธ, KU641020) ๋ฐ ๋žด์˜ค๋‹์„ฑ๊ณผ ๋‚จํ•œ 21๊ณณ์—์„œ๋งŒ ๊ด€์ฐฐ๋˜๋Š” ๊ฒƒ์œผ๋กœ ํŒŒ์•…๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ์ฐฐํ•ด ๋ณผ ๋•Œ, ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋Š” ์ค‘๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ์™€ ํ•จ๊ป˜ ํ•™๋ช… G. emeljanovi์— ์†ํ•˜๋Š” ๋™์ผ์ข…์œผ๋กœ ์ทจ๊ธ‰ํ•˜๋Š” ๊ฒƒ์ด ํƒ€๋‹นํ•˜๋ฆฌ๋ผ ์‚ฌ๋ฃŒ๋œ๋‹ค. ํ•œํŽธ ์ผ๋ณธ G. rugosa๋Š” ์ค‘๊ตญ G. tientaiensis์™€ ํ•จ๊ป˜ ์ธก๊ณ„ํ†ต๊ตฐ(paraphyletic taxon)์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ ๊ฐœ์ฒด๊ตฐ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋Š” ๋‘ ๊ฐœ์˜ ์•„๊ณ„ํ†ต๊ตฐ, A1๊ณผ A2๋กœ ๋‚˜๋‰จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์•„๊ณ„ํ†ต๊ตฐ A1์€ ๊ฒฝ์ƒ๋„ ์ค‘๋ถ๋ถ€ ์ง€์—ญ, ์•„๊ณ„ํ†ต๊ตฐ A2๋Š” ๊ทธ ์™ธ ๋Œ€๋ถ€๋ถ„์˜ ๋‚ด๋ฅ™ ์ง€์—ญ์— ๋ถ„ํฌํ•˜๋ฉฐ ๊ฒฝ์ƒ๋„ ๋‚จ๋ถ€ ์ผ๋ถ€ ์ง€์—ญ์—์„œ ๊ณต์„œ์ง€์—ญ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, Barrier test๋ฅผ ์‹œํ–‰ํ•˜์—ฌ ๋‘ ์•„๊ณ„ํ†ต๊ตฐ์ด ์ด์†Œ์„ฑ์„ ํ˜•์„ฑํ•˜๋Š” ์ง€์—ญ ์‚ฌ์ด์— ์œ ์ „์  ์žฅ๋ฒฝ์ด ์กด์žฌํ•จ์„ ํ™•์ธํ•˜์˜€๊ณ  ์ด๋Š” ์†Œ๋ฐฑ์‚ฐ๋งฅ๊ณผ ๋‚จ๋ถ€์˜ ์ง€๋งฅ์ด ์ง€๋ฆฌ์  ์žฅ๋ฒฝ์„ ํ˜•์„ฑํ•˜์—ฌ ์˜ํ–ฅ์„ ๋ฏธ์นœ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ๋‘ ์•„๊ณ„ํ†ต๊ตฐ์ด ๋ถ„ํ™”ํ•œ ์›์ธ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ํ™•์‚ฐ๊ฒฝ๋กœ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋„ค ๊ฐ€์ง€ ๊ฐ€์„ค์„ ์ˆ˜๋ฆฝํ•˜๊ณ  MANTEL test๋ฅผ ์‹ค์‹œํ•˜์—ฌ ๊ฐ ๊ฐ€์„ค์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋…๋ฆฝ๋œ ๊ฐ ๋ฏผ๋ฌผ์ˆ˜๊ณ„ ๋‚ด์—์„œ ํ™•์‚ฐํ•œ๋‹ค๋Š” ๊ฐ€์„ค(๊ฐ€์„ค2)๊ณผ ๋งˆ์ง€๋ง‰ ์ตœ๋Œ€ ๋น™ํ•˜๊ธฐ(LGM, last glacial maximum) ๋™์•ˆ ์—ฐ์žฅ ํ˜•์„ฑ๋œ ๊ณ ๋Œ€ ๋ฏผ๋ฌผ์ˆ˜๊ณ„๋ฅผ ํ†ตํ•ด ํ™•์‚ฐํ–ˆ๋‹ค๋Š” ๊ฐ€์„ค(๊ฐ€์„ค3)์—์„œ ์œ ์˜๋ฏธํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์—ฐ์•ˆ ๋ฐ ๊ธฐ์ˆ˜์ง€์—ญ์„ ํ†ตํ•ด ์ด๋™ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€์„ค(๊ฐ€์„ค1)๊ณผ ์ง์„ ๊ฑฐ๋ฆฌ๋กœ ๊ฐ€๊นŒ์šด ์ง€์—ญ์œผ๋กœ ํ™•์‚ฐํ•œ๋‹ค๋Š” ๊ฐ€์„ค(๊ฐ€์„ค4)์—์„œ๋Š” ๋‚ฎ์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ์ฒด๊ตฐ ํ™•์žฅ ์‹œ์ ์€ ์•„๊ณ„ํ†ต๊ตฐ A1์ด ์•ฝ 46,000๋…„ ์ „, ์•„๊ณ„ํ†ต๊ตฐ A2๊ฐ€ ์•ฝ 58,000๋…„ ์ „์ธ ๊ฒƒ์œผ๋กœ ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‘ ์•„๊ณ„ํ†ต๊ตฐ ๋ชจ๋‘ ์ œ4๊ธฐ(Quaternary) ํ›„๊ธฐ ํ™์ ์„ธ(Late Pleistocene)์— ๊ฐœ์ฒด๊ตฐ ํ™•์žฅ์ด ์‹œ์ž‘๋œ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋˜์—ˆ๋‹ค. ์œ„ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ์„ ํ–‰๋œ ํ•œ๋ฐ˜๋„์˜ ์ง€์‚ฌํ•™์  ์—ฐ๊ตฌ๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ์˜ ์ง„ํ™”์—ญ์‚ฌ ์ถ”๋ก ์„ ์‹œ๋„ํ–ˆ๋‹ค. ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋Š” ํ•œ๋ฐ˜๋„ ๋‚จ๋ถ€๋ฅผ ๋™๋ถ~์„œ๋‚จ ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ€๋กœ์ง€๋ฅด๋Š” ์†Œ๋ฐฑ์‚ฐ๋งฅ๊ณผ ๊ฒฝ์ƒ๋‚จ๋„ ์ค‘๋ถ€์ง€์—ญ์„ ๋‚˜๋ˆ„๋Š” ์ˆ˜๋„์ง€๋งฅ, ๋น„์Šฌ์ง€๋งฅ์„ ์ง€๋ฆฌ์  ์žฅ๋ฒฝ์œผ๋กœ ์‚ผ์•„ ํ˜„์žฌ ๋‘ ์•„๊ณ„ํ†ต๊ตฐ์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ค‘์‹ ์„ธ(Miocene) ๋™์•ˆ์— ํ˜•์„ฑ๋œ ์‚ฐ๋งฅ๋“ค์€ ํ•œ๋ฐ˜๋„ ๋ฏผ๋ฌผ์ˆ˜๊ณ„ ํ˜•์„ฑ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์ณค์œผ๋ฉฐ, ๋ฏผ๋ฌผ์ˆ˜๊ณ„๋Š” ํ™์ ์„ธ(Pleistocene)๋ฅผ ๊ฑฐ์น˜๋ฉด์„œ ์ˆ˜๊ณ„ํ˜•ํƒœ๊ฐ€ ์•ˆ์ •๋œ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํŠนํžˆ ์†Œ๋ฐฑ์‚ฐ๋งฅ์œผ๋กœ ๋ถ„๋ฆฌ๋œ ๋‚™๋™๊ฐ• ์ˆ˜๊ณ„์˜ ๊ณ ๋ฆฝ์€ ๋…๋ฆฝ๋œ ๋ฏผ๋ฌผ์ˆ˜๊ณ„ ๋‚ด ํ™•์‚ฐ์— ์˜์กดํ•˜๋Š” ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๊ฐ€ ๋‘ ์•„๊ณ„ํ†ต๊ตฐ์„ ๋ถ„ํ™”์‹œํ‚ค๋Š” ์—ญํ• ์„ ํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค. ๋˜ํ•œ, ํ™์ ์„ธ(Pleistocene) ๋™์•ˆ ์„œํ•ด, ๋‚จํ•ด, ๋Œ€๋งˆ๋„ ์ธ๊ทผ ๋™ํ•ด ์ง€์—ญ์—์„œ ๋ฐ˜๋ณต์ ์œผ๋กœ ํ˜•์„ฑ๋œ ์œก์ง€์™€ ๋ฏผ๋ฌผ์ˆ˜๊ณ„๋Š” ์ค‘๊ตญ์„ ๋น„๋กฏํ•œ ํ•œ๋ฐ˜๋„์˜ G. emeljanovi์™€ ์ผ๋ณธ์˜ G. rugosa ์‚ฌ์ด์˜ ์ข…๋ถ„ํ™” ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ฐ ์ข… ๋‚ด ์•„๊ณ„ํ†ต๊ตฐ ํ˜•์„ฑ์—๋„ ๋ฐ€์ ‘ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๋Š” ๋‘ ๊ฐœ์˜ ์•„๊ณ„ํ†ต๊ตฐ์ด ์กด์žฌํ•˜๋ฉฐ ์œ ์ „์ ์œผ๋กœ ์ผ๋ณธ G. rugosa์™€ ๋šœ๋ ทํ•˜๊ฒŒ ๋‹ค๋ฅธ ์ข…์œผ๋กœ ๋ถ„ํ™”ํ–ˆ์Œ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ค‘๊ตญ G. emeljanovi์™€ ๋‹จ๊ณ„ํ†ต๊ตฐ์„ ํ˜•์„ฑํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ๊ฐ€ ๋…๋ฆฝ๋œ ๋ฏผ๋ฌผ์ˆ˜๊ณ„ ๋‚ด ํ™•์‚ฐ์„ ํ†ตํ•ด ์ง„ํ™”ํ•ด์™”์œผ๋ฉฐ ํ›„๊ธฐ ํ™์ ์„ธ์˜ ๊ธฐํ›„ ๋ฐ ํ•ด์ˆ˜๋ฉด ๋ณ€๋™์œผ๋กœ ์ธํ•ด ์ง€๋ฆฌ์ ์œผ๋กœ ๋ถ„๋ฆฌ๋œ ๋‘ ๊ฐœ์˜ ์•„๊ณ„ํ†ต๊ตฐ์œผ๋กœ ๋ถ„ํ™”๋˜์—ˆ์Œ์„ ์ถ”์ •ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ ํ•œ๊ตญ ์˜ด๊ฐœ๊ตฌ๋ฆฌ ํ•™๋ช…์€ G. emeljanovi๋กœ ์‚ฌ์šฉํ•จ์ด ๋” ํ•ฉ๋ฆฌ์ ์ž„์„ ์ œ์‹œํ•˜์˜€๊ณ , ํ•œ๊ตญ G. emeljanovi์—์„œ 2๊ฐœ์˜ ์•„๊ณ„ํ†ต๊ตฐ๊ณผ ์ผ๋ณธ G. rugosa์—์„œ 3๊ฐœ์˜ ์•„๊ณ„ํ†ต๊ตฐ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด๋“ค์˜ ํ™•์‚ฐ๊ณผ ๋ถ„ํ™”๊ณผ์ •์„ ์ถ”๋ก ํ•จ์œผ๋กœ์จ ์ง„ํ™”์—ญ์‚ฌ์— ๋Œ€ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•œ ๋ฐ ์˜์˜๊ฐ€ ํฌ๋‹ค๊ณ  ํŒ๋‹จํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์—ฐ๊ตฌ๊ฒฐ๊ณผ ์ถ”ํ’๋ น ์ง€์—ญ๊ณผ ์–‘์‚ฐ๋‹จ์ธต๋Œ€ ์ง€์—ญ์—์„œ ํ•œ๊ตญ G. emeljanovi์˜ ๋‘ ์•„๊ณ„ํ†ต๊ตฐ์ด ๋ชจ๋‘ ์„œ์‹ํ•˜๋Š” ๊ณต์„œ์ง€์—ญ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๊ณ , ์ด ์ง€์—ญ์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ๊ด€์ฐฐ๊ณผ ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค.Wrinkled frogs belong to the genus Glandirana that includes five species: Glandirana emeljanovi, Glandirana rugosa, Glandirana tientaiensis, Glandirana minima, and Glandirana susurra. Even though only a single species of wrinkled frogs is known to inhabit South Korea, there has been confusion on the exact classification of the species; it is described as G. rugosa or G. emeljanovi depending on the authorsโ€™ preference without sound evidence. According to original records, G. rugosa inhabiting Japan were designated as syntype and G. emeljanovi discovered at Imienpo station, Heilongjiang Province, China, were designated as holotype. In previous studies, South Korean wrinkled frogs are divided into two sublineages; they are genetically distinct from G. rugosa and are monophyletically related to G. emeljanovi. Nevertheless, because of the limitations in comparing South Korean wrinkled frog populations with a few individuals from China or Japan, accurate phylogenetic relations could not be determined. Therefore, this study used phylogenetic methods to compare and analyze samples from three wrinkled frog populations of South Korea, China, and Japan representing most of their range and attempted to infer the phylogeographic divergence and evolutionary history of South Korean wrinkled frogs. In this study, G. tientaiensis of the same genus and Rana huanrensis, Sylvirana guentheri, and Pelophylax nigromaculata of the same suborder Raninae were used as outgroups. We used the sequences of five mitochondrial loci (cytochrome b, 817 bp; D-loop, 765โ€“774bp; 12S rRNA, 823โ€“828bp; tRNA-val, 69โ€“71bp; 16S rRNA, 62 bp). In total, we collected 319 wrinkled frog specimens; 304 individuals from 93 localities in South Korea; 2 from 1 locality in China; 13 from 3 localities in Japan. In addition, a sequence (KU641020) from one individual in Jilin, China, and four sequences (LC536281โ€“LC536284) from NCBI GenBank were used as a homoeotype of G. emeljanovi and representatives of each regional group in Japan, respectively. Comparative analyses performed using a total of 2630 bp sequences from the South Korean, Chinese, and Japanese wrinkled frog populations revealed that the South Korean and Chinese populations formed a monophyletic taxon and both were genetically differentiated from the Japanese populations (G. rugosa). A total of 198 haplotypes were discovered in all the populations, of which haplotype 9 was the most common haplotype and was detected only at 21 localities in South Korea and in Liaoning and Jilin Provinces of China. When the results of this and previous studies were compared, South Korean wrinkled frogs were found to be identical to Chinese G. emeljanovi; hence, the nomenclature of South Korean wrinkled frogs as G. emeljanovi was judged to be reasonable. Furthermore, populations of G. rugosa were shown to be paraphyletic with G. tientaiensis. Phylogenetic analyses also revealed that wrinkled frogs in South Korea were divided into two sublineages, A1 and A2. Sublineage A1 was distributed in the north central region of Gyeongsang Province and was separated from the distribution of sublineage A2 in South Korea. A few sympatric areas were detected in the southern part of Gyeongsang Province. The results of barrier test showed the presence of genetic barriers between regions where allopatry was established between the two sublineages. As per this test, the Sobaek Mountain Range and the southern Sudo and Biseul ridge lines were assumed to function as geographic barriers for two sublineages. We performed MANTEL test to determine the dispersal history by comparing four hypotheses based on dispersal mechanisms. Wrinkled frogs in South Korea had significantly positive correlation with dispersal via independent freshwater streams (hypothesis 2) and paleostreams (hypothesis 3). Conversely, low level of correlation was found for the other hypotheses suggesting unlikely dispersal via coastlines (hypothesis 1) and direct dispersal (hypothesis 4). The time of population expansion was about 46,000 years ago (YA) for sublineage A1 and 58,000 YA for sublineage A2. Thus, population expansion of the two sublineages in South Korea was estimated to have occurred during the late Pleistocene of Quaternary. We attempted to infer the evolution history of South Korean wrinkled frogs by combining the results of previous historical geologic studies focusing on the Korean Peninsula. South Korean wrinkled frogs diverged into two sublineages owing to geographic barriers. These barriers are formed by the Sobaek Mountain Range that stretches northeast to southwest of the southern Korean Peninsula and the Sudo and Biseul ridge lines dividing the middle region of South Gyeongsang Province. Geological topology was formed by weathering and erosion. The formation of freshwater streams in the Korean Peninsula was shown to be mostly affected by mountain range formation during the Miocene, and its pattern was stabilized during the Pleistocene. In particular, Nakdong watershed basin isolated by the Sobaek Mountain Range could affect the divergence of the two sublineages of South Korean wrinkled frogs that depend on dispersal within independent freshwater streams. Moreover, the formation of land and freshwater streams on the East Sea near Tsushima Island, the Yellow Sea, and the South Sea were assumed to influence not only the speciation of G. emeljanovi and G. rugosa, but also the formation of sublineages within each species. In conclusion, we revealed that South Korean wrinkled frogs were clearly differentiated as distinct species from Japanese G. rugosa and formed a monophyletic lineage with Chinese G. emeljanovi. We showed that South Korean wrinkled frogs dispersed by independent freshwater streams and then diverged into two allopatric sublineages due to the changes in climate and sea level. Thus, this study suggests the rational basis of using G. emeljanovi as the species name for South Korean wrinkled frogs and provides information on their evolutionary history by inferring the dispersal and divergence processes of two sublineages of South Korean wrinkled frogs and three sublineages of Japanese wrinkled frogs. However, further studies are required for detailed genetic monitoring of the subpopulation in sympatric areas that were discovered in Chupungryeong and Yangsan fault in our study.Abstract 4 General Introduction 13 Nomination of Wrinkled Frogs 13 Morphology and Life Cycle of Wrinkled Frogs 14 Behavior of Wrinkled Frogs 16 Physiology of Wrinkled Frogs 17 General Purpose of Research 18 CHAPTER 1. The taxonomic status of South Korean wrinkled frogs of the Genus Glandirana (Anura: Ranidae) 19 1-1. Introduction 19 1-2. Material and Methods 22 Sampling Sites and Collection 22 DNA Extraction, polymerase chain reaction, and Sequencing 22 Sequence Alignments and Phylogenetic Analysis 23 1-3. Results 26 Phylogenetic lineage compositions 26 1-4. Discussion 35 CHAPTER 2. Dispersal history of wrinkled frogs in South Korea (Glandirana emeljanovi) determined using phylogeographic inference 37 2-1. Introduction 37 2-2. Material and Methods 39 Sampling and DNA extraction 39 Polymerase chain reaction and Sequencing 40 Demographic History 40 Divergence Patterns within the Korean Populations 41 2-3. Results 43 Dispersal history estimates 43 2-4. Discussion 51 Dispersed via independent freshwater streams 51 Genetic and geographic barriers 51 Historical dispersal reconstruction 53 References 56 Appendix 1. A list of specimens used in this study 63 Appendix 2. Primers used in this study 68 ๊ตญ ๋ฌธ ์ดˆ ๋ก 69 Acknowledgement 73Maste

    ํ–‰๋™์  ํ•ญ์ƒ์„ฑ ์กฐ์ ˆ์˜ ์‹ ๊ฒฝํšŒ๋กœ: ์„ญ์‹ ํ–‰๋™๊ณผ ์ฒด์˜จ์กฐ์ ˆ ํ–‰๋™ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋‡Œ๊ณผํ•™์ „๊ณต, 2022. 8. ๊น€์„ฑ์—ฐ.Maintaining physiological conditions (e.g., nutrients, water, and body temperature) within a narrow range is a distinct quality of living organisms. Among them, animals utilize diverse behaviors to suffice materials in need to maintain internal stability, called homeostasis. As such, understanding the neural mechanisms for behavioral regulations of homeostatic conditions has been a key interest in neurobiology and physiology. However, despite the importance of this question, neural processes underlying some of the fundamental behaviors for maintaining organismal homeostasis are still elusive. In this dissertation, I describe the data revealing neural circuit mechanisms underlying two basic behaviors for regulating homeostasis: ingestive and thermoregulatory behaviors. Chapter one of this dissertation briefly overviews the origin of the homeostasis concept and provides a short historical perspective on studying neural processes for behavioral regulation of homeostasis. Chapter two describes a molecularly defined neural population in a hindbrain area called the parabrachial nucleus for monitoring and suppressing ingestion and demonstrates a gut-to-brain neural circuit spanning from the peripheral sensory ganglia to the hypothalamus for mechanosensory feedback control of ingestion. Chapter three describes a parabrachial-to-hypothalamic neural circuit for thermoregulatory behaviors and the neural coding of motivational aspects of thermal stimuli by a subpopulation of hypothalamic neurons. Chapter four describes a summary of the data presented in this dissertation and provides directions for further investigations. Together, this dissertation presents studies on understanding neural circuit mechanisms underlying fundamental behaviors for regulating crucial homeostatic conditions, including energy, fluid, and body temperature.์˜์–‘๋ถ„๊ณผ ์ฒด์˜จ ๋“ฑ ์ฒด๋‚ด ํ™˜๊ฒฝ์„ ์ผ์ • ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€ํ•˜๋Š” ์„ฑ์งˆ์ธ ํ•ญ์ƒ์„ฑ์€ ์ƒ๋ช…์ฒด์˜ ์ค‘์š”ํ•œ ํŠน์ง•์ด๋‹ค. ์—ฌ๋Ÿฌ ์ƒ๋ฌผ ์ข… ์ค‘์—์„œ ํŠน๋ณ„ํžˆ ๋™๋ฌผ๋“ค์€ ํ–‰๋™์„ ํ†ตํ•ด ์ž์‹ ์˜ ํ•„์š”๋ฅผ ์ฑ„์›Œ ์ฒด๋‚ด ํ•ญ์ƒ์„ฑ์„ ์œ ์ง€ํ•˜๋Š”๋ฐ, ๋”ฐ๋ผ์„œ ํ•ญ์ƒ์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋™๋ฌผ ํ–‰๋™์„ ๋งค๊ฐœํ•˜๋Š” ์‹ ๊ฒฝ ๊ธฐ์ž‘์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ์‹ ๊ฒฝ์ƒ๋ฌผํ•™ ๋ฐ ์ƒ๋ฆฌํ•™์˜ ์˜ค๋žœ ๊ณผ์ œ์˜€๋‹ค. ์ˆ˜์‹ญ ๋…„์— ๊ฑธ์นœ ์—ฐ๊ตฌ๋“ค๋กœ ๋งŽ์€ ๋ถ€๋ถ„์ด ๋ฐํ˜€์กŒ์œผ๋‚˜, ๋ช‡๋ช‡ ๊ทผ๋ณธ์ ์ธ ํ•ญ์ƒ์„ฑ ์œ ์ง€ ํ–‰๋™์„ ๋งค๊ฐœํ•˜๋Š” ์‹ ๊ฒฝํšŒ๋กœ ๊ธฐ์ž‘์€ ์—ฌ์ „ํžˆ ์•Œ๋ ค์ง€์ง€ ์•Š๊ณ  ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์„ญ์‹ ํ–‰๋™๊ณผ ์ฒด์˜จ ์œ ์ง€ ํ–‰๋™์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐ ๊ด€์—ฌํ•˜๋Š” ์ƒˆ๋กœ์šด ์‹ ๊ฒฝํšŒ๋กœ ๊ธฐ์ž‘์„ ๋ฐํž˜์œผ๋กœ์จ, ํ•ญ์ƒ์„ฑ ์œ ์ง€์˜ ์‹ ๊ฒฝํ•™์  ์›๋ฆฌ์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋„“ํžˆ๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. 1์žฅ์—์„œ๋Š” ํ•ญ์ƒ์„ฑ ๊ฐœ๋…์˜ ํ˜•์„ฑ๊ณผ ๊ทธ ์ดํ›„ ์ด์–ด์ง„ ํ•ญ์ƒ์„ฑ ์กฐ์ ˆ ์‹ ๊ฒฝ ๊ธฐ์ž‘์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ์—ญ์‚ฌ๋ฅผ ๊ฐ„๋žตํžˆ ์‚ดํŽด๋ณด๊ณ ์ž ํ•œ๋‹ค. 2์žฅ์—์„œ๋Š” ์†Œํ™”๊ด€์˜ ๋ฌผ๋ฆฌ์  ๊ฐ๊ฐ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ญ์‹์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ์ด์— ๋”ฐ๋ผ ์Œ์‹๋ฌผ์˜ ์„ญ์ทจ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ํ›„๋‡Œ๋ถ€ ์‹ ๊ฒฝ์„ธํฌ ์ง‘๋‹จ๊ณผ, ๊ทธ ์ง‘๋‹จ์„ ์ค‘์‹ฌ์œผ๋กœ ๋ง์ดˆ ์‹ ๊ฒฝ์ ˆ์—์„œ ์‹œ์ƒํ•˜๋ถ€๊นŒ์ง€ ์ด์–ด์ง€๋Š” ์žฅ-๋‡Œ ์‹ ๊ฒฝํšŒ๋กœ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๊ธฐ์ˆ ํ•œ๋‹ค. 3์žฅ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ์ฒด์˜จ์กฐ์ ˆ ํ–‰๋™์— ํ•„์ˆ˜์ ์ธ ์‹œ์ƒํ•˜๋ถ€ ์‹ ๊ฒฝ ์ง‘๋‹จ๊ณผ ์ด๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ฒด์˜จ ์กฐ์ ˆ ํ–‰๋™์„ ๋งค๊ฐœํ•˜๋Š” ์‹ ๊ฒฝํšŒ๋กœ ๊ธฐ์ž‘์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๊ธฐ์ˆ ํ•œ๋‹ค. 4์žฅ์—์„œ๋Š” ๋ณธ ๋…ผ๋ฌธ์— ๊ธฐ์ˆ ๋œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ„๋žตํžˆ ์ •๋ฆฌํ•˜๊ณ  ๊ทธ ์˜์˜์— ๊ด€ํ•ด ์‚ดํŽด๋ณธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋“ค์€ ์„ญ์‹ ํ–‰๋™๊ณผ ์ฒด์˜จ ์กฐ์ ˆ ํ–‰๋™์„ ๋งค๊ฐœํ•˜๋Š” ์‹ ๊ฒฝํšŒ๋กœ ๊ธฐ์ž‘์— ๊ด€ํ•œ ์ƒˆ๋กœ์šด ์ดํ•ด๋ฅผ ๋”ํ•จ์œผ๋กœ์จ, ์ƒ๋ช… ์œ ์ง€์— ํ•„์ˆ˜์ ์ธ ํ•ญ์ƒ์„ฑ ์กฐ์ ˆ ํ–‰๋™์˜ ์‹ ๊ฒฝํ•™์  ๊ธฐ๋ฐ˜์„ ์™„์ „ํžˆ ๋ฐํžˆ๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.Chapter 1. Introduction 1 Chapter 2. A neural circuit mechanism for mechanosensory feedback control of ingestion 6 Chapter 3. A forebrain neural substrate for behavioral thermoregulation 80 Chapter 4. Conclusion 167 Bibliography 173 Abstract in Korean 186๋ฐ•

    Risk of Hepatocellular Carcinoma in Patients with Non-alcoholic Fatty Liver Disease

    Get PDF
    ๋น„์•Œ์ฝ”์˜ฌ ์ง€๋ฐฉ๊ฐ„์งˆํ™˜ (non-alcoholic fatty liver disease, NAFLD) ์€ ๋น„๋งŒ ๋ฐ ๋‹น๋‡จ๋ณ‘์˜ ์ฆ๊ฐ€์™€ ๋งž๋ฌผ๋ ค ์ตœ๊ทผ ํ•œ๊ตญ์„ ํฌํ•จํ•œ ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์œ ๋ณ‘๋ฅ ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ฐ„์„ธํฌ์•”์ข…์˜ ์ฃผ์š” ์›์ธ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค.1,2 ํ˜„์žฌ NAFLD ๊ฐ€์ด๋“œ๋ผ์ธ์—์„œ๋Š” ๊ฐ„๊ฒฝ๋ณ€์ฆ์ด๋‚˜ ์ง„ํ–‰์„ฑ ๊ฐ„์„ฌ์œ ํ™” ๋“ฑ ๊ณ ์œ„ํ—˜๊ตฐ์—์„œ๋งŒ ๊ฐ„์„ธํฌ์•”์ข… ๊ฐ์‹œ๋ฅผ ๊ถŒ๊ณ ํ•˜๊ณ  ์žˆ์œผ๋‚˜,3 NAFLD ํ™˜์ž์—์„œ ๊ฐ„์„ฌ์œ ํ™”๊ฐ€ ์ง„ํ–‰ ๋˜์ง€ ์•Š์•„๋„ ๊ฐ„์„ธํฌ์•”์ข…์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ์•„ ๊ฐ„์„ฌ์œ ํ™”๊ฐ€ ์‹ฌํ•˜์ง€ ์•Š์€ NAFLD ํ™˜์ž๋“ค์— ๋Œ€ํ•ด์„œ๋„ ์ ์ ˆํ•œ ๊ฐ„์„ธํฌ์•”์ข… ๊ฐ์‹œ์˜ ํ•„์š”์„ฑ์ด ์ œ๊ธฐ๋˜๊ณ  ์žˆ๋‹ค. ์ด์— Bianco ๋“ฑ4์€ ๊ฐ„๋‚ด ์ง€๋ฐฉ ํ•จ๋Ÿ‰๊ณผ ์—ฐ๊ด€์„ฑ์ด ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ง„ PNPLA3, TM6SF2, GCKR, MBOAT7, ๊ทธ๋ฆฌ๊ณ  HSD17B13 ๋“ฑ์˜ ๋‹ค์„ฏ ๊ฐ€์ง€ ์œ ์ „๋ณ€์ด๋“ค์„ ์ด์šฉํ•˜์—ฌ ๊ฐœ๋ฐœํ•œ ๋‹ค์ค‘์œ ์ „์ž ์œ„ํ—˜์ ์ˆ˜ (polygenic risk score, PRS)๋ฅผ ํ†ตํ•ด NAFLD ์ฝ”ํ˜ธํŠธ์™€ ์ผ๋ฐ˜ ์ธ๊ตฌ์ง‘๋‹จ ์ฝ”ํ˜ธํŠธ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๊ฐ„์„ธํฌ์•”์ข… ๋ฐœ์ƒ ์œ„ํ—˜๋„ ์˜ˆ์ธก ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค.ope

    Preventive effect of empagliflozin and ezetimibe on hepatic steatosis in adults and murine models

    Get PDF
    Background: Even though many oral glucose-lowering or lipid-lowering agents have already been reported to improve hepatic steatosis to some degree, which drug had a more beneficial effect on hepatic steatosis among those drugs has not been precisely explored. We analysed the effect of empagliflozi, a selective sodium-glucose cotransporter 2 inhibitor, and ezetimibe on developing hepatic steatosis. Methods and results: Using 4005,779 patients with type 2 diabetes mellitus (T2DM) or dyslipidemia provided by the Korean National Health Insurance Service (NHIS) between January 2015 and December 2015, we analyzed the odds ratio (OR) of fatty liver development (fatty liver index [FLI] >60). Additionally, we examined the metabolic effects of ezetimibe and empagliflozin in mice fed with a choline-deficient high-fat diet, mimicking the features of human NAFLD. The experiment for agents was performed for the non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) mouse models independently. In the NHIS data, ORs for the development of fatty liver were significantly lower in all treatment groups than in the reference group, which did not receive ezetimibe or empagliflozin. (Ezetimibe therapy; OR=0.962, empagliflozin therapy; OR=0.527, ezetimibe plus empagliflozin; OR=0.509 compared to reference therapy). Unlike non-alcoholic steatohepatitis mouse model, ezetimibe, empagliflozin, and combination therapy also reduced liver steatosis in the non-alcoholic fatty liver mouse model. Conclusions: Compared with other agents, empagliflozin and/or ezetimibe treatment reduced the risk of developing hepatic steatosis. Our data suggest that empagliflozin or ezetimibe can be primarily considered in type 2 DM or dyslipidemia patients to prevent hepatic steatosis.ope

    ์ฒ™์ถ” ์‹ ๊ฒฝ์ดˆ์ข… ์ˆ˜์ˆ ํ›„ ์‹ ๊ฒฝ๊ทผ ์ ˆ์ œ์— ์˜ํ•œ ์‹ ๊ฒฝํ•™์  ๊ฒฐ์†์˜ ์œ„ํ—˜๋„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์‹ ๊ฒฝ์™ธ๊ณผํ•™์ „๊ณต,1998.Maste

    ํ‹ฐํƒ€๋Š„์œ„์— ๋งˆ์ดํฌ๋กœ-์•„ํฌ ์‚ฐํ™”์™€ ์ „๊ธฐ ์˜๋™ ์ฆ์ฐฉ๋ฒ•์„ ์ด์šฉํ•œ HATiO2 ๋ณตํ•ฉ ์ฝ”ํŒ…์˜ ์ œ์กฐ์™€ ํŠน์„ฑํ‰๊ฐ€

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2007.Maste

    ํ‘œ์ ํ˜• ๋‚˜๋…ธ ๋ฌผ์งˆ ๊ธฐ๋ฐ˜ ์ข…์–‘ ๋ฏธ์„ธ ํ™˜๊ฒฝ ์กฐ์ ˆ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๋Œ€ํ•™ ์•ฝํ•™๊ณผ, 2021. 2. ์˜ค์œ ๊ฒฝ.Modulation of tumor microenvironment (TME) has begun to attract attention as a way to overcome the limitations of conventional anti-cancer and immunotherapy. As tumor closely interact with surrounding cells and factors in the entire process from initiation, progression to metastasis, the tumor microenvironment is a promising target for anti-cancer therapy. In particular, nanotechnology provides opportunities to regulate TME in that it can not only has the inherent features of tumor accumulation, but also can give a function to selectively target specific cells or factors. Through this, it is possible to distribute anti-cancer agents to the tumor specifically, or more sophisticated drug delivery in response to the tumor environmental factors can be achieved. Furthermore, by controlling the specific factors that dominate the characteristics of TME, comprehensive changes that can modulate the overall microenvironment can be induced. The subject of this doctoral dissertation is on direct or indirect modulation of TME using nanotechnology. In part I, three types of drug delivery system to modulate TME directly will be introduced. First, the light responsive material coated biopolymeric nanoparticle which can induce simultaneous chemotherapy and photothermal therapy was developed. Second, antibody loaded lipid-based drug delivery system capable of targeting specific receptors overexpressed in the TME was developed. Third, lipid-based nanoparticles that can be selectively activated by TME rich component was developed to achieve stimuli responsive drug delivery. In part II, in order to induce indirect TME modulation by regulating immune response of tumor tissue, the biopolymeric nanoparticle loaded with immune adjuvant was developed to induce effective anti-cancer effect and inhibition of metastasis. Lastly, TGF-b, the most important factor that suppresses the anti-cancer immune response was removed by lipid metal hybrid nanoparticles mediated CRISPR/Cas9 genome editing to reconstruct the immunity. The drug delivery technologies developed through this study have great potentials as a platform technology that can be combined with other TME modulating agents or treatments.์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์˜ ์กฐ์ ˆ์€ ๊ธฐ์กด ํ•ญ์•”์น˜๋ฃŒ ๋ฐ ๋ฉด์—ญ ์š”๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ์ข…์–‘์˜ ๋ฐœ์ƒ๋ถ€ํ„ฐ ์ง„ํ–‰, ์ „์ด์— ์ด๋ฅด๋Š” ์ „ ๊ณผ์ •์—์„œ, ์•”์„ธํฌ๋Š” ์ฃผ๋ณ€ ์„ธํฌ๋“ค ๋ฐ ํ™˜๊ฒฝ๊ณผ ๋ฐ€์ ‘ํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ์ด๋ฃจ๊ฒŒ ๋˜๋ฉฐ ์ด๋Š” ์•”์˜ ๋ฐœ๋‹ฌ์— ํ•„์ˆ˜์ ์ธ ์š”์†Œ๋กœ ์ž‘์šฉํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด๋Ÿฌํ•œ ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์€ ์„ฑ๊ณต์ ์ธ ํ•ญ์•” ์น˜๋ฃŒ์— ์žˆ์–ด์„œ ์œ ๋งํ•œ ํ‘œ์ ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, ํ•ญ์•” ์น˜๋ฃŒ๋ฅผ ์œ„ํ•œ ์•ฝ๋ฌผ ์ „๋‹ฌ ์ธก๋ฉด์— ์žˆ์–ด์„œ, ๋‚˜๋…ธ ๊ธฐ์ˆ ์˜ ์ ‘๋ชฉ์€ ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์„ ํšจ์œจ์ ์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ์ข…์–‘ ์กฐ์ง์œผ๋กœ ์„ ํƒ์ ์œผ๋กœ ์ถ•์ ๋  ์ˆ˜ ์žˆ๋Š” ๋‚˜๋…ธ ์ž…์ž์˜ ๊ณ ์œ ํ•œ ํŠน์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์ข…์–‘ ์กฐ์ง์— ํŠน์ด์ ์œผ๋กœ ์•ฝ๋ฌผ์„ ๋ถ„ํฌ์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์•”์„ธํฌ์˜ ํ‘œ๋ฉด์— ๊ณผ๋ฐœํ˜„ ๋˜์–ด ์žˆ๋Š” ์ธ์ž๋ฅผ ์„ ํƒ์ ์œผ๋กœ ์ธ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋‚˜๋…ธ ์ž…์ž๋ฅผ ํ†ตํ•˜์—ฌ ํŠน์ • ์•”์„ธํฌ๋ฅผ ํ‘œ์ ํ™” ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์— ๋‚˜ํƒ€๋‚˜๋Š” ๋‹ค์–‘ํ•œ ์ž๊ทน ์š”์ธ์— ๊ฐ์‘ํ•˜์—ฌ ์•ฝ๋ฌผ์„ ์ „๋‹ฌํ•˜๋Š” ๋“ฑ ๋‚˜๋…ธ ๊ธฐ์ˆ ์€ ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์˜ ํ•ญ์•” ์น˜๋ฃŒ๋ฅผ ๊ฐ€๋Šฅ์ผ€ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด๋Ÿฌํ•œ ๋‚˜๋…ธ ๊ธฐ์ˆ ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ข…์–‘ ์กฐ์ง์˜ ํŠน์„ฑ๊ณผ ์น˜๋ฃŒ ๋ชฉ์ ์— ๋ถ€ํ•ฉํ•˜๋Š” ์ •๊ตํ•œ ์•ฝ๋ฌผ ์ „๋‹ฌ๊ธฐ์ˆ ์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ข…์–‘ ์กฐ์ง ๋‚ด ํŠน์ • ์„ธํฌ์˜ ํ™œ์„ฑ ๋˜๋Š” ์ฃผ์š” ์ธ์ž๋ฐœํ˜„ ๋“ฑ์œผ๋กœ๋ถ€ํ„ฐ ์ฃผ์š”ํ•œ ๋ณ€ํ™”๋ฅผ ์ด๋Œ์–ด๋ƒ„์œผ๋กœ์จ ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ ์ „๋ฐ˜์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋ฐ•์‚ฌ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์ฃผ์ œ๋Š” ์ด๋Ÿฌํ•œ ๋‚˜๋…ธ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์„ ์ง์ ‘์  ๋˜๋Š” ๊ฐ„์ ‘์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1๋ถ€์—์„œ๋Š” ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ์„ธ๊ฐ€์ง€ ์œ ํ˜•์˜ ๋‚˜๋…ธ ์•ฝ๋ฌผ ์ „๋‹ฌ์ฒด๊ฐ€ ์†Œ๊ฐœ๋œ๋‹ค. ์ฒซ์งธ, ํ•ญ์•” ํ™”ํ•™ ์š”๋ฒ•๊ณผ ๊ด‘์—ด ์š”๋ฒ•์„ ๋™์‹œ์— ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ด‘ ๊ฐ์‘์„ฑ ์†Œ์žฌ๋ฅผ ์ฝ”ํŒ…ํ•œ ์ƒ์ฒด ๊ณ ๋ถ„์ž ๊ธฐ๋ฐ˜ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋‘˜์งธ, ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์— ๊ณผ๋ฐœํ˜„ ๋˜์–ด์žˆ๋Š” ํŠน์ • ์ˆ˜์šฉ์ฒด๋ฅผ ํ‘œ์ ํ•  ์ˆ˜ ์žˆ๋Š” ํ•ญ์ฒด ํƒ‘์žฌ๋Šฅ ์ง€์งˆ ๊ธฐ๋ฐ˜ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์…‹์งธ, ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์— ์กด์žฌํ•˜๋Š” ํŠน์ • ํšจ์†Œ์— ๊ฐ์‘ํ•˜์—ฌ ์ข…์–‘ ์กฐ์ง์—์„œ ํŠน์ด์ ์œผ๋กœ ํ™œ์„ฑํ™”๋˜์–ด ์•”์„ธํฌ๋ฅผ ์‚ฌ๋ฉธ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. 2๋ถ€์—์„œ๋Š” ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์—์„œ ํ•ญ์•” ๋ฉด์—ญ ๋ฐ˜์‘์„ ํ™œ์„ฑํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋‚˜๋…ธ ์•ฝ๋ฌผ์ „๋‹ฌ์ฒด๊ฐ€ ์†Œ๊ฐœ๋œ๋‹ค. ๋จผ์ €, ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์—์„œ ์–ต์ œ๋˜์–ด์žˆ๋Š” ๋ฉด์—ญ ํ™œ์„ฑ์„ ์ž๊ทนํ•  ์ˆ˜ ์žˆ๋Š” ๋ฉด์—ญ ๋ณด์กฐ์ œ๊ฐ€ ํƒ‘์žฌ๋œ ์ƒ์ฒด ๊ณ ๋ถ„์ž ๊ธฐ๋ฐ˜ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ, ํ•ญ์•” ๋ฉด์—ญ๋Šฅ์„ ํ™œ์„ฑํ™”์‹œ์ผœ ํšจ๊ณผ์ ์ธ ํ•ญ์•” ํšจ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๊ณ  ์ด์–ด์„œ ์•”์˜ ์ „์ด๋„ ์–ต์ œํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ํ•ญ์•” ๋ฉด์—ญ ๋ฐ˜์‘์„ ์–ต์ œํ•˜๋Š” ์ฃผ์š” ์ธ์ž์ธ TGF-b๋ฅผ ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์—์„œ ์œ ์ „์ž ํŽธ์ง‘ ๊ธฐ์ˆ ์„ ํ†ตํ•˜์—ฌ ์ œ๊ฑฐํ•จ์œผ๋กœ์จ ์ „๋ฐ˜์ ์ธ ์ข…์–‘ ๋ฉด์—ญ ๋ฏธ์„ธํ™˜๊ฒฝ์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๊ธˆ์† ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์„ ํ†ตํ•˜์—ฌ ์†Œ๊ฐœ๋œ ์ด๋Ÿฌํ•œ ๋‚˜๋…ธ ๊ธฐ์ˆ ์€ ๋‹ค๋ฅธ ์น˜๋ฃŒ์ œ ๋˜๋Š” ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ ์กฐ์ ˆ์ œ์™€ ์ ‘๋ชฉ๋  ์ˆ˜ ์žˆ๋Š” ํ”Œ๋žซํผ ๊ธฐ์ˆ ๋กœ์„œ ๋‹ค์–‘ํ•œ ์น˜๋ฃŒ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํฐ ์ž ์žฌ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.Abstract i Contents iii List of Figures v Chapter I. Overview 1 1.1. Introduction 2 1.2. Tumor microenvironment 5 1.3. Nanomaterials for tumor microenvironment targeting 10 1.4. Scope of the study 15 1.5. References 17 Chapter II. Safety and photochemotherapeutic application of poly(g-glutamic acid)-based biopolymeric nanoparticle 22 2.1. Introduction 23 2.2. Materials and methods 27 2.3. Results 33 2.4. Discussion 43 2.5. Conclusion 46 2.6. References 47 Chapter III. Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles 51 3.1. Introduction 52 3.2. Materials and methods 54 3.3. Results 61 3.4. Discussion 71 3.5. References 74 Chapter IV. Prostatic acid phosphatase-actuated nanoparticles for tumor microenvironment-responsive drug delivery 77 4.1. Introduction 78 4.2. Materials and methods 81 4.3. Results 89 4.4. Discussion 97 4.5. Conclusion 100 4.6. References 101 Chapter V. Biomimetic polymeric nanoparticle-based photodynamic immuno- therapy and protection against tumor challenge 103 5.1. Introduction 104 5.2. Materials and methods 107 5.3. Results and discussion 115 5.4. Conclusion 132 5.5. References 133 Chapter VI. CRISPR/Cas9-mediated restructuring of tumor immune microenvironment for immunotherapy and prevention of metastasis 138 6.1. Introduction 139 6.2. Materials and methods 142 6.3. Results 152 6.4. Discussion 175 6.5. References 179 Chapter VII. Summary 182 7.1. Summary and conclusion 183 ๊ตญ๋ฌธ ์ดˆ๋ก 187 ๊ฐ์‚ฌ์˜ ๊ธ€ 189Docto

    ๋‚˜ํ”„ํƒˆ๋ Œ์—์„œ์˜ ํ™”ํ•™์  ์ด๋™ ๋น„๋Œ€์นญ์„ฑ์— ๊ด€ํ•œ ํ•ต์ž๊ธฐ๊ณต๋ช… ์—ฐ๊ตฌ

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ™”ํ•™๊ณผ ๋ฌผ๋ฆฌํ™”ํ•™์ „๊ณต,1997.Maste

    Experimental gastroschisis by fetal surgery in rabbit

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์™ธ๊ณผํ•™์ „๊ณต,1997.Docto
    corecore