23 research outputs found
cuDNN๊ณผ ์ ์ฌํ ์ธํฐํ์ด์ค๋ฅผ ๊ฐ๋ ์คํ์์ค ๋ฅ ๋ฌ๋ ํ๋ฆฌ๋ฏธํฐ๋ธ ๋ผ์ด๋ธ๋ฌ๋ฆฌ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ์ปดํจํฐ๊ณตํ๋ถ, 2019. 2. ์ด์ฌ์ฑ.Deep neural networks (DNNs) are a key enabler of today's intelligent applications and services. cuDNN is the de-facto standard library of deep learning primitives, which makes it easy to develop sophisticated DNN models. However, cuDNN is a propriatary software from NVIDIA, and thus does not allow the user to customize the library based on her needs. Furthermore, it only targets NVIDIA GPUs and cannot support other hardware devices such as manycore CPUs and FPGAs. In this thesis we propose OpenDNN, an open-source, cuDNN-like DNN primitive library that can flexibly support multiple hardware devices. In particular, we demonstrate the portability and flexibility of OpenDNN by porting it to multiple popular DNN frameworks and hardware devices, including GPUs, CPUs, and FPGAs.์ฌ์ธต ์ ๊ฒฝ๋ง์ ์ค๋๋ ์ ์ง๋ฅํ ์ดํ๋ฆฌ์ผ์ด์
๊ณผ ์๋น์ค์ ํต์ฌ ์์๋ก ๊ฐ๊ด๋ฐ๊ณ ์๋ค. NVIDIA์์ ๊ฐ๋ฐํ cuDNN์ ๋ฅ ๋ฌ๋ ํ๋ฆฌ๋ฏธํฐ๋ธ ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ ํ์ค์ผ๋ก, ์ ๊ตํ ์ฌ์ธต ์ ๊ฒฝ๋ง ๋ชจ๋ธ์ ์ฝ๊ฒ ๊ฐ๋ฐํ๋๋ก ๋๋๋ค. ๊ทธ๋ฌ๋, cuDNN์ NVIDIA์ ํนํ ์ํํธ์จ์ด๋ก ์ ์ ๋ค์ด ์์ ๋ค์ ์๊ตฌ์ ๋ง๊ฒ ์ ์ํ๋ ๊ฒ์ ํ์ฉํ์ง ์๋๋ค. ๊ฒ๋ค๊ฐ NVIDIA GPU๋ง์ ์ง์ํ๊ธฐ ๋๋ฌธ์ ๋ฉํฐ์ฝ์ด CPU๋ ํ FPGA๋ฅผ ์ง์ํ์ง ์๋๋ค. ์ด ๋
ผ๋ฌธ์์๋ ๋ค์ํ ํ๋์จ์ด ์ฅ์น๋ฅผ ์ ์ฐํ๊ฒ ์ง์ํ๊ณ , cuDNN๊ณผ ์ ์ฌํ ์ธํฐํ์ด์ค๋ฅผ ๊ฐ์ง ๋ฅ ๋ฌ๋ ํ๋ฆฌ๋ฏธํฐ๋ธ ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ธ OpenDNN์ ์๊ฐํ๋ค. ํนํ, ๋ค์ํ ์ฌ์ธต ์ ๊ฒฝ๋ง ํ๋ ์์ํฌ์ CPU, GPU, ๊ทธ๋ฆฌ๊ณ FPGA์ ๊ฐ์ ํ๋์จ์ด ์ฅ์น๋ค์ ์ฐ๋ํ์ฌ OpenDNN์ ์ด์์ฑ๊ณผ ์ ์ฐ์ฑ์ ์
์ฆํ๋ค.Abstract
Contents
List of Tables
List of Figures
Chapter 1 Introduction
Chapter 2 Background
2.1 Deep Neural Network
2.2 Heterogeneous Computer
Chapter 3 OpenDNN API
3.1 Overview
3.2 Context Manager
3.3 Descriptor Manager
3.4 Computation Functions
3.5 Summary
Chapter 4 Backend Devices
4.1 CPU
4.2 GPU
4.3 FPGA
Chapter 5 OpenDNN-enabled DNN Frameworks
5.1 Caffe
5.2 TensorFlow
5.3 DarkNet
Chapter 6 Evaluation
6.1 Programmable Effort
6.2 Performance
Chapter 7 Related Work
Chapter 8 Conclusion
Bibliography
๊ตญ๋ฌธ์ด๋ก
AcknowledgementsMaste
๋ณ๋ณ ์จ์ด๋ธ๋ ํจํท ๊ธฐ๋ฐ ํ๋ฉด ํ์ง ํ๋ณ ๋ฐฉ๋ฒ๋ก
The successful implementation of image processing technology has been made it possible to replace the human vision with automated machine vision. In many applications of machine vision, the product grading is considered as the most challenging problem in image analysis field. Recently, image data can be acquired from a product surface in real time by image sensor systems in chemical plants. For quality determination based on these image datasets, effective texture classification methodology is essential to handle high dimensional images and to extract quality-related information from these product surface images.
In this thesis, a surface quality determination methodology based on texture analysis technique was proposed. The proposed methodology has four main stages: image acquisition, feature extraction, feature selection and determination. Feature extraction is a crucial step in pattern recognition problems as well as in methods for characterizing the quality of a product surface. The different types of wavelet transforms, i.e., the wavelet packet transform and the discrete wavelet transform, are compared in the feature extraction step for classification of the surface quality of rolled steel sheets.
Feature selection approach was also proposed for selecting discriminative bases for surface quality determination which had not been performed in wavelet packet domain. Wavelet texture analysis is useful for reducing the dimension and extracting textural information from images. Although wavelet texture analysis extracts only textural characteristics from images, the extracted features still contain unnecessary information to be classified. The texture analysis method can be improved by retaining only class-dependent features and removing obstructive features for classification. In previous works, best bases and local discriminant bases were the most popular techniques for selecting important bases from the wavelet packet bases. Because previous methods were designed for wavelet coefficients as features for analysis, their performance was poor at wavelet texture analysis. However, feature selection based on wavelet texture analysis has not been studied for texture classification.
The proposed methodology is validated through quality determination for industrial steel surfaces. Using this real-world industrial example, it is experimentally shown that which transform method (wavelet packet transform versus discrete wavelet transform) is appropriate for characterizing industrial product surface. In feature selection stage, it is found that orthonormal constraint which has been used in wavelet bases selection for a long time is unnecessary for surface classification when wavelet coefficients are summarized by wavelet texture analysis. From this finding, feature selection strategy to select important bases was proposed for surface quality determination of product. The experimental results show that the proposed method has lower classification errors than previous methods.
This work supports development of automated determination system by providing surface quality determination methodology. The work will be used for other multi-class surface image classification problems as a basic methodology.์ด๋ฏธ์ง ์ฒ๋ฆฌ ๊ธฐ์ ์ ๋ฐ๋ฌ๋ก ์ธํด, ์ธ๊ฐ ์๊ฐ์ ์ญํ ์ ๊ธฐ๊ณ๋ ์ปดํจํฐ๋ก ๋์ฒดํ๋ ๊ธฐ๊ณ ์๊ฐ(Machine vision)์ฐ๊ตฌ ๊ธฐ๋ฐ์ด ๊ณผ๊ฑฐ์ ๋นํด ๊ธ์๋๋ก ๋ฐ์ ํ๊ณ ์๋ค. ๊ธฐ๊ณ ์๊ฐ ์ฐ๊ตฌ์ ์์ญ ์ค, ์ ํ์ ํ์ง ํ๋ณ์ ๋จ์ํ ์ธ๊ฐ์ ์ธ์ง ์์ญ์ ํ๊ตฌํ๋ ๊ฒ์ด ์๋ ์ง์๊ณผ ๊ฒฝํ์ ๊ฐ์ง ๊ธฐ์ ์์ ์์ํ๋ ์ ๋ฌธ์ ์ธ ์ญํ ์ ์ํํด์ผ ํ๋ฏ๋ก, ์ด๋ฏธ์ง ๋ถ์ ๋ถ์ผ์์ ๋์ ์ ์ธ ๊ณผ์ ๋ก ์ฌ๊ฒจ์ง๋ค. ์ด๋ฏธ์ง ์ผ์ ๊ธฐ์ , ๋ฐ์ดํฐ ์ ์ฅ๋งค์ฒด, ์ปดํจํ
๊ธฐ์ ์ ๋ฐ๋ฌ๋ก ๋ค๋์ ์ ํ ์ด๋ฏธ์ง๋ฅผ ์์งํ๊ณ ๋ถ์ํ๋ ์์
์ ์ฐ์
์์ ๋น ๋ฅด๊ฒ ํ์ฐ๋๊ณ ์๋ค. ์ด๋ฌํ ํ๋์จ์ด์ ๊ธฐ๋ฐ์ ๋ฐํ์ผ๋ก ์๋ํ๋ ์ ํ ์ด๋ฏธ์ง ํ๋ณ ์์คํ
์ ๊ฐ๋ฐํ๊ธฐ ์ํด์๋ ๋ง์ ์์ ์ด๋ฏธ์ง ๋ฐ์ดํฐ์์ ์ ํ์ ํ์ง๊ณผ ๊ด๋ จ๋ ํน์ฑ์ ์ถ์ถํ๋ ํจ๊ณผ์ ์ธ ์ด๋ฏธ์ง ์ฒ๋ฆฌ ๊ธฐ์ ์ฐ๊ตฌ๊ฐ ํ์์ ์ด๋ค.
๋ณธ ๋
ผ๋ฌธ์์๋, ์ง๊ฐ ๋ถ์์ ๊ธฐ๋ฐํ ํ๋ฉด ํ์ง ํ๋ณ ๋ฐฉ๋ฒ๋ก ์ด ์ ์๋๋ค. ์ ์๋ ๋ฐฉ๋ฒ๋ก ์ ์ด๋ฏธ์ง ์์ง, ํน์ฑ ์ถ์ถ, ํน์ฑ ์ ๋ณ, ํ๋ณ์ ๋จ๊ณ๋ก ๊ตฌ์ฑ๋์ด ์๋ค. ์ด๋ฏธ์ง ํน์ฑ ์ถ์ถ์ ์ ํ ํ๋ฉด ํ์ง์ ํน์ฑํ์ ์์ด ํต์ฌ์ ์ธ ๊ณผ์ ์ด๋ค. ์ด๋ฅผ ์ํด ๊ธฐ์กด์ ๋๋ฆฌ ์ฌ์ฉ๋๋ ์ด์ฐ ์จ์ด๋ธ๋ ๋ณํ(Discrete Wavelet Transform)๊ณผ ์จ์ด๋ธ๋ ํจํท ๋ณํ (Wavelet Packet Transform)์ ๋น๊ต๋ฅผ ํตํ์ฌ, ์ ํ ํ์ง์ ํ๋ณ์ ์ํ ํจ๊ณผ์ ์ธ ์ด๋ฏธ์ง ๋ณํ๋ฐฉ๋ฒ์ ์ ์ํ๋ค.
์จ์ด๋ธ๋ ์ง๊ฐ ๋ถ์(Wavelet Texture Analysis) ๊ธฐ๋ฒ์ ์ด๋ฏธ์ง์ ์ฐจ์์ ์ถ์ํ๋ ๋์์ ์ง๊ฐ ์ ๋ณด๋ง์ ์ถ์ถํ ์ ์๋ ํจ๊ณผ์ ์ธ ๊ธฐ์ ์ด๋ค. ์จ์ด๋ธ๋ ์ง๊ฐ ๋ถ์์ผ๋ก ์ป์ด์ง ํน์ฑ ์ ๋ณด๋ ์ด๋ฏธ์ง์ ์ง๊ฐ ์ฑ๋ถ๋ง์ ์ถ์ถํ์ฌ ์ด๋ฏธ์ง ๋ถ์์ ์์ด ํจ์จ์ฑ์ ๋์์ผ๋, ์ด ํน์ฑ ์ ๋ณด์๋ ํ๋ณ๊ณผ์ ์์ ๋ถํ์ํ ์ ๋ณด๋ค๋ ํผ์ฌํด ์๋ค. ์ด๋ฏธ์ง ์ง๊ฐ ๋ถ์ ๋ฐฉ๋ฒ์ ํด๋์ค์ ๊ธฐ๋ฐํ ์ ๋ณด๋ง์ ์ถ์ถํ๊ณ , ๋ถํ์ํ ํน์ฑ์ ์ ๊ฑฐํจ์ผ๋ก์จ ๊ทธ ์ฑ๋ฅ์ ํฅ์์ํฌ ์ ์๋ค. ๊ทธ ๋์ ์ ํ ์ด๋ฏธ์ง ๊ธฐ๋ฐ ํ๋ณ์ ์ํด ์ด์ฉ๋์ง ์์๋ ์จ์ด๋ธ๋ ํจํท ๋ณํ ๊ธฐ๋ฐ ํน์ฑ ์ ๋ณ ์ ๊ทผ์ด ์ ์๋๋ค. ์ด์ ์ ์จ์ด๋ธ๋ ํจํท ๋ณํ์์ ์ฌ์ฉ๋๋ ์ต์ ์ ๋ถํ ๊ตฌ์กฐ (best sub-band structure for decomposition)๋ฅผ ์ฐพ์๋ด๊ธฐ ์ํ ๋ฐฉ๋ฒ์ ๋ฒ ์คํธ ๋ฒ ์ด์์ค(Best Bases)์ ๋ก์ปฌ ๋ณ๋ณ ๋ฒ ์ด์์ค(Local Discriminant Bases)์ด๋ค. ๊ธฐ์กด์ ์ด ๋ฐฉ๋ฒ๋ก ๋ค์ ์จ์ด๋ธ๋ ํจํท ๋ณํ์์ ์จ์ด๋ธ๋ ์์(wavelet coefficients)๋ฅผ ํน์ฑ ๋ณ์๋ก ์ฌ์ฉํ ๊ฒฝ์ฐ์ ๋ํด ๊ณ ์๋ ๋ฐฉ๋ฒ์ด๊ธฐ ๋๋ฌธ์, ์ด๋ฅผ ์จ์ด๋ธ๋ ์ง๊ฐ ๋ถ์์ ๋ฐ๋ก ์ ์ฉ ์ ์ฑ๋ฅ์ด ์ ํ๋๋ค. ๊ทธ๋ผ์๋ ๋ถ๊ตฌํ๊ณ , ๊ทธ ๋์์ ์ฐ๊ตฌ์์๋ ์ง๊ฐ ๋ถ๋ฅ(texture classification)๋ฅผ ์ํ ์จ์ด๋ธ๋ ์ง๊ฐ ๋ถ์๊ธฐ๋ฐ ๋ฒ ์ด์์ค ํ์ ๋ฐฉ๋ฒ๋ก ์ด ์ ๋๋ก ์ฐ๊ตฌ๋์ง ์์๋ค.
์ ์๋ ๋ฐฉ๋ฒ๋ก ์ ์ฒ ํ ์ด๋ฏธ์ง์ ํ์ง ๋ฐ์ดํฐ๋ฅผ ํตํด ์ฑ๋ฅ์ ๊ฒ์ฆํ์๋ค. ์ด๋ฅผ ํตํด, ์จ์ด๋ธ๋ ํจํท ๋ณํ์ด ์ด์ฐ ์จ์ด๋ธ๋ ๋ณํ์ ๋นํด ํ๋ณ ์ฑ๋ฅ์ด ํฅ์๋๋ค๋ ๊ฒ์ ์ฆ๋ช
ํ์๋ค. ํน์ฑ ์ ๋ณ ๊ณผ์ ์์๋ ๊ธฐ์กด์ ์ ๊ท์ง๊ต(orthonormal)์ ์ ์ฝ์กฐ๊ฑด์ ์ง๋ ๋ฒ ์ด์์ค ์ ํ๋ฐฉ๋ฒ์ ์จ์ด๋ธ๋ ์ง๊ฐ ๋ถ์์ ๋ง์ง ์์ผ๋ฉฐ, ์ ๊ท์ง๊ต ์ ์ฝ์กฐ๊ฑด์ ์ ๊ฑฐ๋ก ์ฑ๋ฅ์ ํฅ์์ํฌ ์ ์์์ ๋ณด์ฌ์ฃผ์๋ค. ์ด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก, ์ต์ ํจํท ๊ตฌ์กฐ๋ฅผ ์ฐพ๊ธฐ ์ํด ํน์ฑ ์ ๋ณ(feature selection)์ ๊ทผ์ ์๋ํ์๋ค. ๊ธฐ์กด์ ๋ฐฉ๋ฒ์ ์์ ํ์ฌ ์ ์ํ ๋ฐฉ๋ฒ๋ก ์ด ์ด์ ์ ๋ฐฉ๋ฒ์ ๋นํด ์ ์ ์ค์ฐจ๋ฅผ ๋ณด์์ ์คํ์ ์ผ๋ก ์ฆ๋ช
ํ์๋ค.
์ ์๋ ํ๋ฉด ํ์ง ํ๋ณ ๊ธฐ๋ฒ์ ์ถ๊ฐ์ ์ธ ์ฐ๊ตฌ๋ฅผ ํตํด ํ๋ฉด ํ์ง ์๋ํ ์์คํ
์ ๊ตฌ์ถ์ ์ด์ฉ๋ ์ ์์ ๊ฒ์ด๋ค. ๋ํ, ์๊ฐ ๊ธฐ๋ฐ ์ง๊ฐ ์ฐ๊ตฌ์ ํน์ฑ ํ๋ณ์ด ์ด๋ ค์ด ์ด๋ฏธ์ง, ํ์ง ๋ถ๋ฅ๊ฐ ๋ณต์กํ ์ค์ ํ์ง ํ๋ณ ์ฐ๊ตฌ์ ์ฑ๋ฅ ํฅ์์ ์ํด ํ์ฉ๋ ์ ์์ ๊ฒ์ด๋ค.Contents_x000D_
_x000D_
CHAPTER 1 : Introduction 1_x000D_
1.1. Research motivation 1_x000D_
1.2. Research objectives 2_x000D_
1.3. Outline of the thesis 3_x000D_
CHAPTER 2 : Image Texture Analysis Techniques 5_x000D_
2.1. Introduction 5_x000D_
2.2. Direct PLS-DA approach 6_x000D_
2.3. GLCM (Gray level co-occurrence matrix) features 9_x000D_
2.4. Multivariate image analysis 12_x000D_
2.5. Wavelet texture analysis 14_x000D_
2.6. Effective image analysis techniques for extracting textural features 16_x000D_
CHAPTER 3 : Application of Texture Analysis Methodology for Surface Quality Determination 18_x000D_
3.1. Description of steel sheets data 18_x000D_
3.2. Preparation of images 19_x000D_
3.3. Surface determination framework based on texture classification method 21_x000D_
3.3.1. Image acquisition 21_x000D_
3.3.2. Feature extraction 21_x000D_
3.3.3. Feature selection 22_x000D_
3.3.4. Quality determination 23_x000D_
CHAPTER 4 : The Use of Wavelet Packet Transform in Characterization of Surface Quality 25_x000D_
4.1. Introduction 25_x000D_
4.2. Methodology for surface quality characterization 27_x000D_
4.2.1. Discrete wavelet transform 27_x000D_
4.2.2. Wavelet packet transform 30_x000D_
4.3. Implementation to steel quality classification 33_x000D_
4.3.1. Determination of decomposition level 33_x000D_
4.3.2. Surface quality classification 33_x000D_
4.4. Results and analysis 35_x000D_
4.4.1. KNN classification performances of DWT and WPT 35_x000D_
4.4.2. Linear classification performances of DWT and WPT 39_x000D_
4.4.3. Bandwidth characteristics 39_x000D_
4.5. Conclusions 44_x000D_
CHAPTER 5 : Bases Selection for Wavelet Texture Analysis based on Wavelet Packets 45_x000D_
5.1. Introduction 45_x000D_
5.2. Bases selection for WPT 47_x000D_
5.3. BB approach 49_x000D_
5.3.1. Selection criterion for discriminate measure 50_x000D_
5.3.2. Non-orthonormal bases selection 51_x000D_
5.3.3. Difference between Non-orthonormal bases and BB 53_x000D_
5.4. Classification performance of different bases selection 56_x000D_
5.4.1. KNN classification results 56_x000D_
5.4.2. Linear classification result of different bases 60_x000D_
5.5. Classification performance of different features 63_x000D_
5.6. Conclusions 67_x000D_
CHAPTER 6 : Feature Selection Approach for Discriminating Packets 68_x000D_
6.1. Introduction 68_x000D_
6.2. Discriminative packet selection for wavelet analysis 70_x000D_
6.2.1. Feature selection for WTA 70_x000D_
6.2.2. Feature selection problem for discrimination 70_x000D_
6.3. Feature selection algorithms for discrimination 71_x000D_
6.3.1. Individual selection 71_x000D_
6.3.2. Sequential forward selection 71_x000D_
6.3.3. Sequential backward selection 72_x000D_
6.3.4. Sequential forward floating selection 72_x000D_
6.4. Classification performance of different feature selection 74_x000D_
6.4.1. KNN classification performance 74_x000D_
6.4.2. Linear classification performance 77_x000D_
6.5. Comparison of feature selection with all methods 80_x000D_
6.6. Conclusions 83_x000D_
CHAPTER 7 : Concluding Remarks 84_x000D_
7.1. Conclusions 84_x000D_
7.2. Future works 85_x000D_
Nomenclature 87_x000D_
Literature cited 90_x000D_
Abstract in Korean (์ ์ฝ) 94_x000D_
_x000D_
โ_x000D_
List of Figures_x000D_
_x000D_
Figure 2 1. Schematic for PLS-DA approach for image analysis 8_x000D_
Figure 2 2. GLCM features for analysis of (a) intensity image array with 3 gray scale, (b) GLCM of intensity array12 11_x000D_
Figure 2 3. Multivariate image by spatial shifting and staked13 13_x000D_
Figure 3 1. Sample images of steel surfaces; quality was determined as (a) excellent, (b) good, (c) medium, and (d) bad; all original images were divided as shown in (a) 20_x000D_
Figure 3 2. Framework for surface quality determination 24_x000D_
Figure 4 1. A separable structure for 2-D DWT at the j-th decomposition stage 29_x000D_
Figure 4 2. Structures of filter bank of (a) pyramid- structured wavelet decomposition (b) tree-structured wavelet decomposition where A is the approximation and D is the detail section 32_x000D_
Figure 4 3. KNN classification comparison of DWT and WPT 38_x000D_
Figure 4 4. Comparison of linear classification result DWT with WPT 42_x000D_
Figure 4 5. Time (or Space) โ Frequency tiling of (a) octave-band tree structured filter bank or wavelet transform and (b) full-tree structured filter bank or wavelet packet transform 43_x000D_
Figure 5 1. Example wavelet packet decomposition tree structure of orthonormal bases (a) and non-orthonormal bases (b) 55_x000D_
Figure 5 2. Comparison of KNN classification of different bases selection 59_x000D_
Figure 5 3. Comparison of linear classification for different bases selection 62_x000D_
Figure 5 4. KNN classification errors of different features 65_x000D_
Figure 5 5. Linear classification errors of different features 66_x000D_
Figure 6 1. Comparison of feature selection approach in KNN classification 76_x000D_
Figure 6 2. Comparison of different feature selection in linear classification 79_x000D_
Figure 6 3. Comparison of KNN classification errors for all methods 81_x000D_
Figure 6 4. Linear classification errors for all methods 82_x000D_
_x000D_
โ_x000D_
List of Tables_x000D_
_x000D_
Table 4 1. Leave one out KNN classification errors for DWT 36_x000D_
Table 4 2. Leave one out KNN classification errors for WPT 37_x000D_
Table 4 3. Linear classification results for DWT and WPT 41_x000D_
Table 5 1. KNN classification for Best Bases (BB), Local Discriminant Bases(LDB) and Non-orthonormal bases 58_x000D_
Table 5 2. Linear classification results for different bases 61_x000D_
Table 6 1. KNN classification results for feature selection approach 75_x000D_
Table 6 2. Linear classification for feature selection approach 78_x000D_
_x000D_
โ_x000D_Docto
์จ์ด๋ธ๋ ํจํท ๋ณํ์ ์ด์ฉํ ์ฒ ํ ํ์ง ๋ชจ๋ํฐ๋ง
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ํ์ :ํํ์๋ฌผ๊ณตํ๋ถ,2007.Maste
๊ด์ ์ ์์ ์ ์์ ์ํ InGaAsP์ MOCVD์ ์ํ ์ฑ์ฅ ๋ฐ ๋ถ์
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๋ฌด๊ธฐ์ฌ๋ฃ๊ณตํ๊ณผ,1997.Maste
Routing Algorithm and Routability Analysis in Very-large-scale Integration
Master๋ณธ ํ์๋
ผ๋ฌธ์ ์ด์ง์ ํ๋ก ๊ตฌํ์ ํ์ํ ๋ผ์ฐํ
์๊ณ ๋ฆฌ์ฆ๊ณผ ๋ผ์ฐํ
๊ฐ๋ฅ์ฑ๋ถ์ ๋ชจ๋ธ์ ๋ํ์ฌ ๋ค๋ฃฌ๋ค. Heterogeneous ์์คํ
๊ตฌํ์ ์ํ 2.5D ์ธํฐํฌ์ ํจํค์ง ๋จ๊ณ์์์ ๋ฒ์ค๋ฅผ ํจ์จ์ ์ผ๋ก ๋ผ์ฐํ
ํ๋ ์๊ณ ๋ฆฌ์ฆ๊ณผ ๋ฐ์ดํฐ ๊ตฌ์กฐ๋ฅผ ์ ์ํ๊ณ , ๋จธ์ ๋ฌ๋ ๊ธฐ๋ฐ ์ด๊ธฐ ๋จ๊ณ ๊ฒฐ๊ณผ ์์ธก ๋ชจ๋ธ์ ๊ตฌ์ถํ๊ธฐ์ํ ์ธ๊ณต ๋ท๋ฆฌ์คํธ ์์ฑ๊ธฐ๋ฅผ ์ ์ํ์ฌ ๋ผ์ฐํ
๊ฐ๋ฅ์ฑ ๋ถ์ ๋ชจ๋ธ์ ๊ตฌํํ์๋ค. ๋ฒ์ค ๋ผ์ฐํ
์์, ๋ฒ์ค ๊ตฌ์กฐ์ ์ ํธ ๋นํธ๊ฐ ๊ณตํต ๋ผ์ฐํ
ํ ํด๋ก์ง๋ฅผ ๊ณต์ ํ๋ ๊ฒฝ์ฐ, ๋คํ๋ฆฐ ํจํด๊ณผ ๋ณ๋ ๋ด์ฑ์ ํผํ์ฌ ๋ผ์ฐํ
์ฑ์ด ์ฆ๊ฐํ๋ค. ๊ณ ๊ธ ๊ธฐ์ ์์ ๋ค์ค ์นฉ ๋ชจ๋, I/O ํ ๋๋ ์จ ์นฉ ๋ฉ๋ชจ๋ฆฌ์ ๋ฒ์ค ๊ตฌ์กฐ๊ฐ ์ ์ ๋ณต์กํด์ง์ ๋ฐ๋ผ ๋ฒ์ค ๋ผ์ฐํ
๋ฌธ์ ๊ฐ ์๋นํ ์ค์ํด์ก๋ค. ๋ณธ ๋
ผ๋ฌธ ์ฑํฐ 2 ์์๋ ๋ฒ์ค ๋ฐ๋๊ฐ ๋๊ณ ์ ๋ก ํ์ฉ๋๊ฐ ๋์ ์ค๊ณ์์๋ ๋ฒ์ค์ ๋ผ์ฐํ
ํ ํด๋ก์ง๋ฅผ ์ฝคํฉํธํ๊ฒ ํฉ์ฑํ๊ณ ์ค๊ณ ๊ท์น ์๋ฐ์ ์ต์ํํ ์ ์๋ ์ฝคํฉํธ ์์ ์ธ์ ๋ฒ์ค ๋ผ์ฐํ
๋ฐฉ๋ฒ์ ์ ์ํ๊ณ ํ๊ฐํ๋ค. ์ ์๋ ๋ฐฉ๋ฒ์ ICCAD-2018 ๋ํ์ ๋ฐํ์ ์ ํ์์ ๋ฒ์ค ๋ผ์ฐํ
์ ์๋ฃํ๊ณ , ๊ทธ ๋ํ์ ์ฐ์น์์ ๋น๊ตํ์ฌ ์ด ๋น์ฉ์ 66% ์ ๊ฐํ๋ค.
์ฒจ๋จ ๊ธฐ์ ๋
ธ๋์์ ์ด๊ธฐ ๋จ๊ณ์ ๊ฒฐ๊ณผ(QoR) ์์ธก์ ๋ฌผ๋ฆฌ์ ์ค๊ณ์ ๋ฐํ์์ ์ค์ด๋ ์ฃผ์ ์์ธ ์ค ํ๋๊ฐ ๋์๋ค. ๊ทธ๋ฌ๋ ๋ง์ ๋ค๋ฅธ ์ค๊ณ ์ต์
์์๋ ์ ํํ ์์ธก์ด ์ด๋ ต๋ค. ์ด๋ฌํ ๊ณผ์ ๋ฅผ ๊ทน๋ณตํ๊ธฐ ์ํด ๊ธฐ๊ณํ์ต ์ ๊ทผ๋ฐฉ์์ ๋งค์ฐ ์ ํํ ์กฐ๊ธฐ ์์ธก ๋ชจ๋ธ๋ก ๋ฑ์ฅํ๊ณ ์๋ค. ๋ณธ ๋
ผ๋ฌธ ์ฑํฐ 2์์๋ ์ด๊ธฐ ๋จ๊ณ์ QoR ์์ธก์ ์ํ ๊ธฐ๊ณ ํ์ต ํ๋ ์์ํฌ๋ฅผ ์ ์ํ๋ฉฐ, ์ด๋ฅผ ํตํด ๋ฌผ๋ฆฌ์ ์ค๊ณ์ โ์ต์์โ ๊ตฌํ ์ต์
์ ๊ถ์ฅํ ์ ์๋ค. ๋์ ํ๋ก์ ๋ค์ํ ๋ฌผ๋ฆฌ์ ํน์ฑ์ ๊ต์กํ๊ธฐ ์ํด ํ์ค์ ์ธ ์ธ๊ณต ๋ท๋ฆฌ์คํธ๋ฅผ ์์ฑํ๊ณ ์ถฉ๋ถํ ๊ธฐ๊ณ ํ์ต ๋ฐ์ดํฐ ์ธํธ๋ฅผ ๊ตฌ์ถํ๋ ๋ฐฉ๋ฒ์ ์ ์ํ๋ค. ์ฐ๋ฆฌ์ ์ธ๊ณต ๋ฐ์ดํฐ ์ธํธ์ ์ํด ํ๋ จ๋ ๊น์ ์ ๊ฒฝ ๋คํธ์ํฌ๋ ์ค์ ์ด๋ฆฐ ๋ฒค์น๋งํฌ๋ก ๊ฒ์ฆ๋์๋ค. Top1๊ณผ Top2์ ํ๋ จ ์ ํ๋๋ ๊ฐ๊ฐ 65.1%์ 85.9%์ด๋ค. ์ฐ๋ฆฌ์ ์ต์ข
ํ๋ จ ๋ชจ๋ธ์ 55.6%์ ๋งค์นญ๊ณผ 100%์ ํํฐ๋ง ํ๋ฅ ์ ๊ฐ์ง ์์1 PDN์ ํจ๊ณผ์ ์ผ๋ก ์์ธกํ
์๊ถ๊ฒฝ๋ถ ์ ์์์ ์ธ์ ๋์ข ๋ฐ์ด๋ฌ์ค์ ๊ฐ์ผ ์์๊ณผ p53 ๋จ๋ฐฑ์ ๋ฐํ์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ์ฐ๋ถ์ธ๊ณผํ์ ๊ณต,1998.Maste
์ ์์ ์ฅ ์ ๊ฒฝ์ ์ธํฌ์์ cathepsin D ๋ฐํ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ์ธ๊ณผํ์ ๊ณต,1999.Maste
A fast and scalable qubit-mapping method for noisy intermediate-scale quantum computers
This paper presents an efficient qubit-mapping method that redesigns a quantum circuit to overcome the limitations of qubit connectivity. We propose a recursive graph-isomorphism search to generate the scalable initial mapping. In the main mapping, we use an adaptive look-ahead window search to resolve the connectivity constraint within a short runtime. Compared with the state-of-the-art method [15], our proposed method reduced the number of additional gates by 23% on average and the runtime by 68% for the three largest benchmark circuits. Furthermore, our method improved circuit stability by reducing the circuit depth and thus can be a step forward towards fault tolerance.1