

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

OpenDNN: An Open-source,

cuDNN-like Deep Learning

Primitive Library

cuDNN과 유사한 인터페이스를 갖는

오픈소스 딥 러닝 프리미티브 라이브러리

February 2019

Graduate School of Seoul National University

Computer Science and Engineering

Daeyeon Kim

Abstract

OpenDNN: An Open-source,

cuDNN-like Deep Learning
Primitive Library

Daeyeon Kim

Department of Computer Science and Engineering

The Graduate School

Seoul National University

Deep neural networks (DNNs) are a key enabler of today’s intelligent applications

and services. cuDNN is the de-facto standard library of deep learning primitives,

which makes it easy to develop sophisticated DNN models. However, cuDNN is a

propriatary software from NVIDIA, and thus does not allow the user to customize

it based on her needs. Furthermore, it only targets NVIDIA GPUs and cannot sup-

port other hardware devices such as manycore CPUs and FPGAs. In this thesis we

propose OpenDNN, an open-source, cuDNN-like DNN primitive library that can flex-

ibly support multiple hardware devices. In particular, we demonstrate the portability

and flexibility of OpenDNN by porting it to multiple popular DNN frameworks and

hardware devices, including GPUs, CPUs, and FPGAs.

Keywords: Deep learning, Library, Open-source, Accelerators, Performance, Porta-

bility

Student Number: 2017-23840

i

Contents

Abstract i

Contents iii

List of Tables iv

List of Figures vi

Chapter 1 Introduction 1

Chapter 2 Background 4

2.1 Deep Neural Networks . 4

2.2 Heterogeneous Architectures . 6

Chapter 3 OpenDNN API 9

3.1 Overview . 9

3.2 Context Manager . 10

3.3 Descriptor Manager . 11

3.4 Computation Functions . 12

3.5 Summary . 13

Chapter 4 Backend Devices 15

4.1 CPU . 15

4.2 GPU . 17

ii

4.3 FPGA . 20

Chapter 5 OpenDNN-enabled DNN Frameworks 24

5.1 Caffe . 24

5.2 TensorFlow . 27

5.3 DarkNet . 32

Chapter 6 Evaluation 35

6.1 Programmable Effort . 35

6.2 Performance . 36

Chapter 7 Related Work 39

Chapter 8 Conclusion 40

Bibliography 41

국문초록 45

Acknowledgements 46

iii

List of Tables

Table 3.1 Summary of OpenDNN API . 14

Table 6.1 Modified code lines for each framework 35

Table 6.2 API Coverage comparison OpenDNN with cuDNN 36

Table 6.3 Experiment environment . 37

iv

List of Figures

Figure 2.1 Multi-layer perceptron . 5

Figure 2.2 The structure of Cuda-convnet [26] 6

Figure 2.3 Illustration of homogeneous and heterogeneous architectures . 7

Figure 3.1 Layered structure of DNN systems 10

Figure 3.2 Overall structure of context manager 11

Figure 3.3 Convolution forward API with one-to-one argument and descriptor-

based argument . 12

Figure 4.1 Intel Xeon Phi coprocessor block design 16

Figure 4.2 Setting the layer parameters getting from descriptors 16

Figure 4.3 Sequential C convolution kernel code 17

Figure 4.4 NVIDIA Volta 100 arcutectire 18

Figure 4.5 Convolution lowering mechanism 19

Figure 4.6 Host code that calls the OpenCL kernel function 20

Figure 4.7 Efficient FPGA-based accelerators 21

Figure 4.8 FPGA convolution layer code 23

Figure 5.1 Addition code at Caffe Makefile and its configuration 24

Figure 5.2 Header file modification to run OpenDNN in Caffe 25

Figure 5.3 The difference between original and OpenDNN code. 26

Figure 5.4 Parameters to build OpenDNN-ported TensorFlow 29

v

Figure 5.5 Macro setting to build OpenDNN with bazel 30

Figure 5.6 Source code modification to run OpenDNN in TensorFlow . . 31

Figure 5.7 Makefile and header file modification to port OpenDNN in

DarkNet . 32

Figure 5.8 Convolution forward running OpenDNN-ported DarkNet . . . 33

Figure 5.9 OpenDNN API usage in DarkNet convolution layer 34

Figure 6.1 Performance of CPU, GPU, and FPGA with different DNNs . 37

Figure 6.2 Time portion to run one batch on CPU, GPU, and FPGA . . 38

vi

Chapter 1

Introduction

Deep neural networks (DNNs) are a key enabler of today’s AI-based applications and

services. Unlike the traditional rule-based AI systems, DNNs solve complex problems

by stacking various artificial neural network layers. For example, convolution neural

networks (CNNs) achieve high accuracy in image classification [14, 16, 22], object

detection [23, 28] and image captioning. Besides, Recurrent neural networks (RNNs),

long short-term memory (LSTM), and memory augmented neural networks (MANNs)

provide superior performance in various natural language processing area like question

answering [15, 24, 31]. Furthermore, Google uses multi-layer perceptrons (MLPs) to

customize their advertisements.

As the complexity of DNNs grows, the computational requirements for running

them also have grown significantly. Generally, because the number of layers heavily

affects the DNN performance, today’s sophisticated DNNs often employ many layers

to spend a lot of time to train and validate them. For example, AlexNet [22] requires

62.38 million parameters and 2.5 giga-operations (GOPs) to classify a single image.

VGG-19 [30], one of the most complex CNNs, has 138.36 million parameters and

requires 38.5 GOPs to do the same. RNNs and LSTMs also have additional parameters

to save cell state and function parameters.

To satisfy this demand GPUs and domain-specific architectures (DSAs) are widely

used for both training and inference to provide many computation resources and large

1

on-chip memory. At the time of this writing GPUs are the de-facto standard for run-

ning DNNs. For example, NVIDIA V100 [25] provides not only CUDA cores for

general-purpose GPU computing, but also tensor cores to accelerate tensor multipli-

cations. It also has 16GB HBM2 to maximize memory bandwidth, which is essential to

provide good DNN performance. Besides, DSAs are also becoming commonplace for

both performance and energy efficiency. Google TPUv2 [18] can perform 45 TFLOPS

using 16GB HBM with 600GB/s memory bandwidth and uses its own custom floating-

point type, called bfloat16. Cambricon-X [32] accelerates DNNs by skipping the zero

computation to reduce energy as well as increase the overall speeds as the DNNs are

generally sparse and a significant portion of the weights and activations values are

zero.

To make DNN programming easier, NVIDIA provides cuDNN, a deep learning

primitive library targeting its GPUs. cuDNN offers an easy-to-use API, unified vir-

tual memory, and C++-style standard template library. However, there is no stadard

library for DSAs and FPGAs. As a result, DSA developers should not only write cus-

tom drivers but also port popular DNNs themselves. This is done in an ad-hoc manner

and often not reuseable across multiple devices and frameworks. As for cuDNN it is

not a free software, and the user cannot customize it as she wishes.

To address this problem, we propose OpenDNN, an open-source, cuDNN-like

primitive library that can flexibly support multiple hardware devices and frameworks

(e.g., Caffe [17], TensorFlow [7]) with low programmer effort. OpenDNN API often

has one-to-one correspondence to the cuDNN API, to make it easy to port popular

DNN frameworks based on cuDNN to the new hardware device. We demonstrate

the versatility of OpenDNN by building an end-to-end prototype for three different

hardware devices: CPU, GPU, and PCIe-based FPGA. Furthermore, OpenDNN is

successfully ported to popular DNN frameworks, including Caffe and TensorFlow.

Last but not least, OpenDNN is a free software soon to be open-sourced for the

2

benefits of the research community.

In summary OpenDNN satisfies the following design objectives:

• Portability - The C++ API provides a simple interface that can flexibly support

multiple DNN frameworks and hardware platforms.

• Versatility - The open source code is released and users can customize the

internal structure and algorithm to optimize their own hardware architecture

and specific framework.

• Ease of use - It requires little programmer effort to port a new DNN framework

to OpenDNN. The API format is similar as cuDNN, so programmers can easily

modify and use with OpenDNN.

3

Chapter 2

Background

2.1 Deep Neural Networks

A DNN is an artifcial neural network with multiple layers between the input and

output data. There are several kinds of DNNs that performs well in specific area. For

example, MLP has been widely used in approximation and recommender algorithm. It

is organized with input, output, and hidden layers. Figure 2.1 depicts the structure of

common MLP. The circle in the layers is called as node and each circles is mapped to

the data. The arrow between the layers named edge and it saves the weight how much

does the input data affects the output data. Starting from input layer, the hidden layer

takes the input data and sends the output data as the next hiddn layer’s input data.

In the process, the input data is vector structure and weight is matrix. Therefore,

they run the matrix-vector multiplication and return the intermediate vector which

the next layer uses. The output layer receives the input that is computed via hidden

layers and gives the output that is usually the approximation value such as score or

probability. MLP utilizes a supervised learning called backpropagation for training,

hence requiring the non-linear activation. As the hidden layer goes deeper, the amount

of weight values that stores between for each layers increases and the computation

time and data storage cost is also increasd.

In early days, MLP worked well to classify MNIST dataset, a large database

of handwritten digits that is commonly used for training various image processing

4

...

Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 2.1: Multi-layer perceptron

systems, as it consists of simple black-and-write images of a small size. As the image

size is larger and try to colored RGB images, however, MLP is difficult to train the

image dataset. As researchers want to increase the accuracy, they stacked additional

hidden layers in the MLP and the network size is huge. Also, MLP reconfigures

an image as linear vector, which vanishes the relation of image pixels so takes low

accuracy in the image datasets. To arrange with the two issues, CNNs, organized by

convolution layer and pooling layer mainly, are widely used and success to get high

accuracy for the CIFAR-10 [20] and imagenet [9] dataset. Convolution layer is the key

factor to get high accuracy in the image dataset as it maintains the characteristics of

input image by computing the small kernel filter and configuration of input and output

data. Furthermore, the small kernel filter, which is called as weight, can reuses during

the convolution layer computation so it reduces the size of weight tremendously.

Suppose the Hout×Wout×Cout output resulted from multiplication of Hin×Win×Cin

input and weight. The size of weight in MLP should be Hin ×Hout ×Win ×Wout ×

Cin × Cout as it computes general matrix vector multiplication. On the other hand,

CNN uses only F × F × Cin × Cout weight, as the weight replicates and the kernel

size F is much smaller than Hin, Hout, Win or Wout. Pooling layer reduces the feature

5

maps and emphasize the specific data by selecting maximum value (max pooling) or

computing average in the windows (average pooling).

conv1 conv2 conv3pool1 pool2 pool3 fc1

32x32x3

input

32x32x32
16x16x32 8x8x32

8x8x64
4x4x64

16x16x32

0.8172

output

10

Figure 2.2: The structure of Cuda-convnet [26]

Figure 2.2 shows the structure of Cuda-convnet, which is used for image classifi-

cation. It takes as input an image file of 32×32 pixels with three input channels (for

RGB color components). The image passes through a pipeline of layers, composed of

three alternating pairs of convolution and pooling layers, followed by a FC layer at

the end. Each layer performs distinct matrix computations to extract more complex

features toward the end of the pipeline. Finally, the FC layer is a classifier layer,

which computes a vector of the probability for each of the 10 classes. In CNNs the

convolution layers are known to be the most compute-intensive (consuming over 90%

of total GOPs), while the FC layer accounts for a disproportionally large share of

network parameters due to their full connectivity [21].

2.2 Heterogeneous Architectures

In PC era, the processor tried to take high performance by sophiscated and fast

clock frequency. After the clock frequency was restricted because of thermal issue,

researchers increased the number of cores with proper clock frequency. This concepts

were used in the interconnect system or server system. Figure 2.3 (a) shows the con-

ventional homogeneous computers that consists of one kind of processor like CPU.

6

In this figure, each CPU links anothers as 2-D mesh structure so CPU communi-

cates with the nearest CPUs. For this reason, old-fashioned supercomputers used

many CPU and researches about the topology of CPUs to increase the overall per-

formance. Though homogeneous computers had good performance in the general, it

spent resources inefficiently to process more than million addition and multiplication

because CPU optimized running sophiscated and sequential program, not the parallel

program.

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

(a) Homogeneous architecture

CPU

CPU

FPGA

FPGA

G
PU

G
PU

(b) Heterogeneous architecture

Figure 2.3: Illustration of homogeneous and heterogeneous architectures

As the demands of deep learning increase significantly, parallel architectures are

popular and the heterogeneous computers organized by more than two kinds of ar-

chitectures are required. People found that the graphic cards for gaming show good

performance in the simple computation parallel because they multiply and accumu-

late a lot of floating point numbers, sends the data to the monitor and scatter it.

As the graphic cards use for the general purpose, it spends little time to compute

lots of simple computation compared to use priceless and sophiscated processor unit.

Figure 2.3 (b) shows the example of deep learning specific heterogeneous computers,

7

which consists of two CPU, two GPU, and two customizable FPGA. In deep learning

working system, GPUs are exploited to process parallel computing, which ecient to

executes compute-intensive deep learning like CNNs. On the other hand, FPGAs have

an advantage of efficient energy usage and custom design and implementation, hence

maximizing the specific DNNs’ characters with low energy consumption.

Unfortunately, there is no general deep learning library to support general het-

erogeneous computers. NVIDIA provides CUDA and cuDNN but they target only

NVIDIA GPU and proprietary library not to customizing the internal code. Simi-

larly, Intel is implementing their own library to run the Intel Xeon Phi processor as

Intel MPI [5], and AMD recently releases ROCm [6] to support deep learning accel-

erator based on their heterogeneous computers, which is the coupling of AMD Ryzen

and Radeon. These libraries are proprietary so users can neither customize them, or

run them on various DNN architectures. For example, to support an FPGA-based

accelerator, the developer should implement a software stack from scratch. It is not

practical for a model developer to understand the details of a target hardware and

port his model to it. OpenDNN serves as an abstraction layer to support a variety of

hardware architectures without requiring intrusive changes to the DNN framework.

The OpenDNN API has nearly one-to-one correspondence to the industry-standard

cuDNN API on which most popular DNN frameworks are based. Thus, it is easy

to port an existing DNN framework to OpenDNN to support multiple architectures

and/or customize algorithms.

8

Chapter 3

OpenDNN API

3.1 Overview

Figure 3.1 shows the overall system classified by four layers: application, library,

driver, and device. The application layer offers users the comfort interface to model

DNNs graph and control the hyper parameters such as learning rate and the number

of step. The library layer is arbiter that communicate with hardware devices through

driver and sends the computation result by getting the DNNs structure and param-

eters from the applications. Finally, the device layer runs the core kernel functions

defined from library layers with input and weight data, and the driver layer helps to

transfer the data and kernel with kernel-specific parameters such as the number of

threads and the number of blocks. Our work applies to the library layers. We explain

the OpenDNN library and its API in this chapter and the rest will discuss in the next

chapters in detail.

Similar as other deep learning primitive libraries, OpenDNN provides the primitive

functions of deep learning: convolution, pooling, activation, normalization, softmax,

etc. OpenDNN is mainly implemented as OpenCL and C++ to support heterogeneous

computers such as Intel Xeon Phi, NVIDIA and AMD GPUs, and FPGA-based ac-

celerator. When the library is built, programmers can control what architecture they

target so it supports all hardware with an unique source code. Besides, programmers

can easily replace the cuDNN to OpenDNN since the format of OpenDNN API is

9

CPU FPGA AcceleratorGPU

OpenDNN cuDNNBLAS libs

Framework

Library

Device

Figure 3.1: Layered structure of DNN systems

similar to cuDNN. It currently supports most of the popular APIs in cuDNN that is

frequently used in other frameworks (e.g., Caffe [17] and Tensorflow [7]).

OpenDNN consists of three components for efficient and clear usage during DNN

programming. As users run the deep learning framework on the heterogeneous com-

puters usually, we provides the abstraction to manage these system. Also, OpenDNN

tries to reduce the number of argument for each layers and executes lots of computa-

tion by the kernel functions. We explain the components in the following sections in

detail.

3.2 Context Manager

To control and execute the heterogeneous computers, OpenDNN provides the cross-

platform abstraction that is used to OpenCL. This constructs when the handler cre-

ates. Figure 3.2 shows the components of handler: platform, device, context, etc. The

handler first gathers the information of hardware platforms including general CPU.

When selecting the platform, handler finds the devices that match the platform to

10

Platform

Host OpenCL system Device

Command queue 1

Command queue 2

Command queue N

...

Compute Unit

Compute Unit

Compute Unit

Issue

Figure 3.2: Overall structure of context manager

make the context that the environment to execute kernel. Context manages the other

objects and system processes memory management and synchronization on the con-

text level. Finally, it makes the queues and compiles the kernel objects that are sent

to devices. By doing so, the context manager makes the environment to communicate

with devices and reports the device or kernel errors.

3.3 Descriptor Manager

Generally, each layers of DNNs requires so many arguments that programmers are

hard to set the argument, which increases the chance to make a mistake when entering

it. For example, traditional convolution layer requires a lot of arguments including

4-D tensor structured data (input, weight, and output) and the characteristics of

convolution layers such as stride, padding, and dilation options. If these parameters

are managed as single argument, programmers will release from a laborious task.

Figures 3.3 shows the conventional and descriptor-based argument style. We im-

plement OpenDNN’s descriptor as following. The opendnnTensorDescriptor stores

11

1 void conv2d(

2 int i_n , int i_c , int i_h , int i_w , /* Input Arguments */

3 int o_n , int o_c , int o_h , int o_w , /* Output Arguments */

4 int f_o , int f_i , int f_h , int f_w , /* Filter Arguments */

5 int p_h , int p_w , int s_h , int s_w , /* Convolution */

6 int d_h , int d_w , /* Arguments */

7 Dtype* i, Dtype* w, Dtype* o /* Data */

8);

9

10 void conv2d_desc(

11 opendnnTensorDescriptor i_desc , /* Input Descriptor */

12 opendnnTensorDescriptor o_desc , /* Output Descriptor */

13 opendnnFilterDescriptor f_desc , /* Filter Descriptor */

14 opendnnConvolutionDescriptor c_desc ,/* Convolution Descriptor */

15 Dtype* i, Dtype* w, Dtype* o /* Data */

16);

Figure 3.3: Convolution forward API with one-to-one argument and descriptor-based

argument

the input and output 4-D data structure with its strides that is calculated during set-

ting descriptor. The opendnnFilterDescriptor saves the filter structure that con-

sists of kernel size (f h and f w), dimension (f i) and the number of filter (f o).

Finally, opendnnConvolutionDescriptor records the padding size (p h and p w),

kernel stride (s h and s w) and dilation (d h and d w). The descriptor is defined auto-

matically when stacking the layer and the variables use in the computation methods

getting from the descriptor.

3.4 Computation Functions

With the abstraction supported by context manager and the layer structure based

on the information stored at descriptor manager, the computation kernel runs the

feedforward or backpropagation. It is implemented to OpenCL and C++ kernel to

run the system not just the heterogeneous system but also the homogeneous one. The

name of computation API is similar as cuDNN API like cudnnConvolutionForward

to reduce the programmer’s effort porting at deep learning frameworks. Internally,

12

the API gets the information from the descriptor received from argument and set the

computation environment. After setting, the context manager give the built kernel

and dataset to the OpenCL-runtime command queue and it wait issuing to the archi-

tecture such as GPU and FPGA-based accelerators. If the computation is finished,

the data is sent to the host, synchronized in the host DRAM, and layer deallocates

the buffer that mapped to the device.

3.5 Summary

Table 3.1 summarise the OpenDNN API with three categories with its name and

description. We skip the return type since all methods return opendnnStatus that

checks the kernel status such as success, out of memory, and so on. OpenDNN provides

the API for CNN mainly and will be implemented for other kinds of DNNs like RNN

or LSTM.

13

API Explanation

Context Manager Methods

opendnnCreate
Create handler including the status of platform,

device and context to communicate with hardware.

opendnnDestroy
Free the handler with platform, driver

and context information.

Descriptor Manager Methods

opendnnCreate[U]Descriptor

Create the descriptor that matches for each parts.

For example, pooling descriptor saves the size of

window, stride, padding, and the strategy of pooling

such as maximum and average.

opendnnSet[U]Descriptor

Set the parameters to the descriptors when the layer

is declared and reshaped. Each parameters receives by

I/O file and the APIs parses it and set the parameters

declared in the descriptors.

opendnnGet[U]Descriptor

Get the parameters from the descriptors when they run

the computation methods to calcuate the output data.

The arguments of APIs are pointer type so users can

receive all parameters at one-time.

Computation Methods

opendnn[T]Forward

Run the computation methods for each parts. Each

methods is implemented by C++ to get the parameters

from the descriptor and OpenCL to execute the kernel

on the device parallel.

U = [Convolution|Pooling|Activation|Norm|Tensor|Filter]

T = [Convolution|Pooling|Activation|Norm|Softmax|InnerProduct]

Table 3.1: Summary of OpenDNN API

14

Chapter 4

Backend Devices

OpenDNN supports various architectures and deep learning frameworks with char-

acteristic programming languages such as C++ and OpenCL. In this section, we

introduce what code is run on the each backend hardware.

4.1 CPU

Since processor development is limited due to the power wall, developers try to in-

crease the number of cores for parallel processing. Nowadays, Intel Xeon Phi processor

is a bootable host processor that delivers massive parallelism and vectorization to sup-

port the most demanding high-performance computing applications. Recent Xeon Phi

Processor has 72 cores, 36 MB L2 Cache with 1.7 GHz max turbo frequency, so it is

proper to train the DNNs.

Figure 4.1 shows the Intel Xeon Phi coprocessor block diagram. description of

Intel Xeon Phi. As the CPU can shows similar performance with GPU, it uses on the

server system to training specific DNNs. For example, Facebook AI announces that

they train the News Feed ranking and Sigma on the CPU [13]. News Feed ranking

algorithms help people see the stories that matter most to them first, every time

they visit Facebook. General models are trained to determine various user and envi-

ronmental factors that should ultimately determine the rank order of content. Later,

when a person visits Facebook, the model is used to generate a personalized set of

15

M
em

or
y

I/O GDDR5
Memory

Controllers

GDDR5
Memory

Controllers

M
em

ory I/O

PCIe I/O
Logic

PCIe I/O
Core

L2
cache

Core

L2
cache

Core

L2
cache

Core

L2
cache

Core

L2
cache

Core

L2
cache

Core

L2
cache

Core

L2
cache

...

...

Figure 4.1: Intel Xeon Phi coprocessor block design

the best posts, images, and other. Sigma is the general classification and anomaly

detection framework that is used for a variety of internal applications including site

integrity, spam detection, payments, registration, unauthorized employee access, and

event recommendations. Sigma includes hundreds of distinct models running in pro-

duction everyday, and each model is trained to detect anomalies or more generally

classify content.

1 // bot , top , fil , conv: descriptor

2 // The rest arguments : integer pointer

3

4 opendnnGetTensorDescriptor(bot , &in_n , &in_c , &in_h , &in_w , ...);

5 opendnnGetTensorDescriptor(top , &out_n , &out_c , &out_h , &out_w , ...);

6 opendnnGetFilterDescriptor(fil , &fil_o , &fil_i , &fil_h , &fil_w , ...);

7 opendnnGetConvDescriptor(conv , &pad_h , &pad_w , &str_h , &str_w , ...);

Figure 4.2: Setting the layer parameters getting from descriptors

When the computation API calls, it first sets the layer parameter from the de-

scriptors received from the argument (depicted as Figure 4.2) and run the kernel.

16

1 // input , filter , output: data

2 for (int c=0;c<out_c;c++) {

3 for (int h=0;h<out_h;h++) {

4 for (int w=0;w<out_w;w++) {

5 float sum=0.f;

6 for (int k=0;k<in_c;k++) {

7 for (int fh=0;fh <fil_h;fh++) {

8 for (int fw=0;fw<fil_w;fw++) {

9 int ih=h*str_h -pad_h+fh;

10 int iw=w*str_w -pad_w+fw;

11 if (iw >=0&&iw<in_w&&ih >=0&&ih <in_h) {

12 sum+=input[k][ih][iw]* filter[c][k][fh][fw];

13 }}}}

14 output[c][h][w]=sum;

15 }}}

Figure 4.3: Sequential C convolution kernel code

Figure 4.3 describes the sequential code to run convolution kernel. Suppose that the

kernel computes an image. The outer loop (Lines 1-3) indicates the output index to

store the accumulated values, while the inner loop (Lines 5-7) indicates the filter and

computed input index to multiply filter and input in the kernel windows (fil h ×

fil w). Programmers can customize the kernel by changing the order of loop, using

vector instructions, and multi-processing using OpenMP pragma.

4.2 GPU

As deep learning requires the ability of large computation in a short time, the demands

of parallel architectures like GPUs is significantly increased. NVIDIA, which is already

developed programming language for their hardware system, called CUDA, has grown

from gaming graphic card company to deep learning architecture company. Recently,

they release Tesla V100 showing extreme performance for AI and high performance

computer. Figure 4.4 shows the Volta GV100 full with 84 SM units that are 50% more

energy efficient than the previous generation Pascal design, enabling major boosts in

FP32 and FP64 performance in the same power envelope [25]. Also, NVLink high-

17

speed interconnect delivers higher bandwidth, more links, and improved scalability for

multi-GPU and multi-GPU/CPU system configurations with 16 GB HBM2 memory

subsystem.

PCI Express 3.0 Host Interface
GigaThread Engine

PCI Express 3.0 Host Interface

M
em

ory C
ontroller

NVLink NVLink NVLink NVLink NVLink NVLink

M
em

ory C
ontroller

M
em

ory C
ontroller

M
em

ory C
ontroller

M
em

or
y

C
on

tro
lle

r
M

em
or

y
C

on
tro

lle
r

M
em

or
y

C
on

tro
lle

r
M

em
or

y
C

on
tro

lle
r

H
B

M
2

H
B

M
2

H
B

M
2

H
B

M
2

GPC GPCGPC

GPC GPCGPC

L2 Cache

TPC
SM

TPC TPC TPC TPC TPC TPC
SM SM SM SM SM SM

SM SM SM SM SM SM SM

TPC
SM

TPC TPC TPC TPC TPC TPC
SM SM SM SM SM SM

SM SM SM SM SM SM SM

TPC
SM

TPC TPC TPC TPC TPC TPC
SM SM SM SM SM SM

SM SM SM SM SM SM SM

TPC
SM

TPC TPC TPC TPC TPC TPC
SM SM SM SM SM SM

SM SM SM SM SM SM SM

TPC
SM

TPC TPC TPC TPC TPC TPC
SM SM SM SM SM SM

SM SM SM SM SM SM SM

TPC
SM

TPC TPC TPC TPC TPC TPC
SM SM SM SM SM SM

SM SM SM SM SM SM SM

Figure 4.4: NVIDIA Volta 100 arcutectire

Likewise other layers, convolution layer shows the limitation to parallelize if users

try to parallel the sequential version code. To maximize the parallelism, it gathers the

maximum number of local and global workers and uses them. Especially, convolution

layer uses the convolution lowering [8] that transforms the 4-D tensor to 2-D matrix.

Figure 4.5 shows the convolution lowering about input, weight and output data. It

is done by reshaping the filter tensor F into a matrix Fm with dimensions K ×

CRS, and gathering a data matrix by duplicating the original input data into a

matrix Dm with dimensions CRS ×NPQ. The computation can then be performed

18

with a single matrix multiply to form an output matrix Om with dimension K ×

NPQ. Lowering convolutions to matrix multiplication can be efficient, since matrix

multiplication is highly optimized. Matrix multiplication is fast because it has a high

ratio of floating-point operations per byte of data transferred. This ratio increases as

the matrices get larger, meaning that matrix multiplication is less efficient on small

matrices. Accordingly, this approach to convolution is most effective when it creates

large matrices for multiplication.

D0 D1 D2

D3 D4 D5

D6 D7 D8

D0 D1 D2

D3 D4 D5

D6 D7 D8

D0 D1 D2

D3 D4 D5

D6 D7 D8

F0 F1

F2 F3

F0 F1

F2 F3

F0 F1

F2 F3

G0 G1

G2 G3

G0 G1

G2 G3

G0 G1

G2 G3

F0 F1 F2 F3 F0 F1 F2 F3 F0 F1 F2 F3

G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3

D4 D5 D7 D8

D3 D4 D6 D7

D1 D2 D4 D5

D0 D1 D3 D4

D4 D5 D7 D8

D3 D4 D6 D7

D1 D2 D4 D5

D0 D1 D3 D4

D4 D5 D7 D8

D3 D4 D6 D7

D1 D2 D4 D5

D0 D1 D3 D4

O0 O1 O2 O3

O4 O5 O6 O7

Input data

Filter data

Fm

Dm

Om

N = 1
C = 3
H = 3
W = 3
K = 2
R = 2
S = 2

u= v = 1
pad_h = 0

pad_w = 0

D[0,0,:,:] D[0,1,:,:] D[0,2,:,:]

F[0,:,:,:]

F[1,:,:,:]

Figure 4.5: Convolution lowering mechanism

Figure 4.6 describes the code of convolution lowering after getting the layer pa-

rameters (same as CPU initialization at Figure 4.2). First, OpenDNN sets the im2col

function arguments (Lines 2-6) to run the kernel that makes the 3-D and 4-D ten-

sor to 2-D matrix (Lines 7-10). Second, it runs the matrix multiplication function

19

to compute the output (Lines 17-20) with set arguments based on the convolution

lowering parameters (Lines 13-16). When the OpenCL kernel issues from the devices,

the devices runs the built kernel code at each processing elements (PE) to maximize

the parallelism. NVIDIA has adopted the Winograd algorithm since cuDNN 5 to

implement the convolution layer. Winograd reduces the number of 3×3 convolution

operations, thus significantly improving performance. Currently, OpenDNN does not

have this feature yet to show much lower performance (some 10× slowdown over

cuDNN), but can be improved in the future without breaking the software stack

above.

1 // im2col

2 int height_col =(in_h +2*pad_h -fil_h)/str_h +1;

3 int width_col =(in_w +2*pad_w -fil_w)str+w+1;

4 int num_kernels=in_c*height_col*width_col;

5 const int local =1024; // max num.of work items per group

6 const int global =(num_kernels+local -1)/local*local;

7 q->enqueueNDRangeKernel(im2col ,

8 cl::NullRange ,

9 cl:: NDRange(global),

10 cl:: NDRange(local));

11

12 // matmul

13 const int M = out_c;

14 const int N = out_h*out_w;

15 const int K = in_c*fil_h*fil_w;

16 const int B = sqrt(local);

17 q->enqueueNDRangeKernel(matmul ,

18 cl::NullRange ,

19 cl:: NDRange ((N+B-1)/B*B,(M+B-1)/B*B,1),

20 cl:: NDRange(B,B,1));

Figure 4.6: Host code that calls the OpenCL kernel function

4.3 FPGA

FPGA-based accelerator provides users to customize architecture with the charac-

teristics of DNNs, even though the performance is generally low compared to the

GPU. Also, the energy consumption is significantly low that it is very efficient when

20

measuring performance per watt. For example, EIE [12] takes the sparsity of DNNs

and skips the zero-related computation (depicted as Figure 4.7 (a)) to speed up the

overall data process, which is called pruning. On the other hand, Stripes [19] shows

that there is little accuracy loss but achieves high speeds with low precision data type

and bit-serial multiplication PE called SIP (4.7 (b)). Microsoft Brainwave (BW) team

announces that they train the overall networks using FPGA-based accelerator [10] as

you see in the Figure 4.7 (c) with customizable number type called ms-fp-8 with multi

function units and vector arbitration networks.

(a) The architecture of Leading non-zero detection node and PE [12]

(b) Stripes Tile [19] (c) BW microarchitecture [10]

Figure 4.7: Efficient FPGA-based accelerators

OpenDNN supports the FPGA-based accelerator for two ways. First is that user

21

customize their own architecture manually and port it on the OpenDNN. Program-

mers implement it using hardware-level languages such as VHDL or Verilog and link

following the layer parameters. The other method is using automatically generated

code that is built by OpenCL and compiler provided by vendors. For example, Xilinx

supports SDAccel program that makes the bitstream running on the Xilinx FPGA

and driver linking host and devices automatically. In this case, we explain the inter-

connected code that used to SDAccel compiler and OpenDNN API.

Figure 4.8 (a) shows the kernel code optimized by loop unrolling with the pragma

option. With this option, SDAccel automatically unrolls the loop and maximize the

number of PE that determines the parallelism and performance. Figure 4.8 (b) shows

the host code that uses loop tiling optimization automatically that devides whole loop

iteration into small size windows to match the size of cache. In this code, the offset is

set (Lines 2-4) and data is allocated as a degree of offset in the FPGA memory (Lines

10, 11 and 15). While the kernel is built on run-time in GPU, it is built on compile

time when using SDAccel because it should also make the drivers automatically.

22

1 /* The buffer is tiled */

2 __kernel __attribute__ ((opencl_unroll_hint (4)) void compute (

3 global const float* f_buf ,

4 global const float* i_buf ,

5 global float* o_buf ,

6 const int str_h , const int str_w ,

7 const int Tr_i , const int Tc_i ,

8 const int Ti , const int Tr ,

9 const int Tc , const int To , const int K) {

10 for (int fh=0;fh<K;++fh) {

11 for (int fw=0;fw<K;++fw) {

12 for (int h=0;h<Tr;++h) {

13 for (int w=0;w<Tc;++w) {

14 for (int c=0;c<To;++c) {

15 for (int k=0;k<Ti;++k) {

16 o_buf[c][h][w]+=

17 i_buf[k*Tc_i*Tr_i+(h*str_h+fh)*Tc_i+w*str_w+fw]*

18 f_buf[c][k][fh][fw];

19 }}}}}}}

(a) FPGA kernel that runs with loop unrolling

1 /* To , Ti , Tc , and Tr are customizable value */

2 size_t f_size = To*Ti*K*K;

3 size_t i_size = Ti*Tr_i*Tc_i;

4 size_t o_size = To*Tr*Tc;

5

6 for (int row=0;row <out_h;row+=Tr) {

7 for (int col=0;col <out_w;col+=Tc) {

8 for (int to=0;to <out_c;to+=To) {

9 for (int ti=0;ti <in_c;ti+=Ti) {

10 load_mem_input(i_buf , input , isize);

11 load_mem_filger(f_buf , filter , fsize);

12 ...

13 q->enqueueTask(kenl_conv);

14 ...

15 store_mem_output(output , o_buf , osize);

16 }}}}

(b) FPGA host code calling kernel with loop tiling

Figure 4.8: FPGA convolution layer code

23

Chapter 5

OpenDNN-enabled DNN Frameworks

5.1 Caffe

Caffe [17] is a deep learning framework made with expression, speed, and modularity

in mind. It is developed by Berkeley AI Research (BAIR) and by community con-

tributors. As a C++-based deep learning framework, the speed is faster than other

framework so it was widely used in research experiments. Also, the extensible code

forsters active development such as Intel Caffe, which is optimized to run on their

Xeon Phi, and Caffe-Ristretto [11] that emulates hardware-oriented approximation of

quantized DNN. We port OpenDNN in the Caffe easily with a few code modification.

1 # In Makefile.config

2 OPENDNN := 1

(a) Caffe Makefile.config

1 # In Makefile

2 ifeq ($(OPENDNN), 1)

3 LIBRARIES += opendnn OpenCL

4 COMMON_FLAGS += -DOPENDNN

5 endif

(b) Caffe Makefile

Figure 5.1: Addition code at Caffe Makefile and its configuration

To link the OpenDNN on the Caffe, programmers should add the Figure 5.1 (a)

code in the Makefile.config that uses Makefile. Also, they add the Figure 5.1 (b)

code in the Makefile to link the OpenDNN and OpenCL library and set the OPENDNN

flag that is used in the Caffe layer functions such as convolution layer, pooling layers,

24

and so on.

1 /* API added on conventional layer methods */

2 ...

3 #include <opendnn.h>

4 ...

5 template <typenape Dtype >

6 class CuDNNConvolutionLayer : public ConvolutionLayer <Dtype > {

7 ...

8 opendnnHandle_t* handle_;

9 vector <opendnnTensorDescriptor_t > bottom_descs_ , top_descs_;

10 opendnnFilterDescriptor_t filter_desc;

11 vector <opendnnConvolutionDescriptor_t > conv_descs_;

12 ...

13 }

Figure 5.2: Header file modification to run OpenDNN in Caffe

In this example, we explain the OpenDNN-based convolution layer function that

is portion of 80 ∼ 90% of CNNs. Figure 5.2 shows the additional code to declare and

define the OpenDNN API. Users do not have to use #ifdef macro if you use only

OpenDNN API; In other words, you can use both OpenDNN and other library like

cuDNN.

Figure 5.3 shows the difference between original code and OpenDNN-ported one

(the grey box). As you see, the OpenDNN try to maintain the cuDNN format for

easy programming and portability. There is some difference on the API. First, we

remove the one and zero arguments since they are almost constant values. Second,

OpenDNN runs the group loop in the API that is exposed in the cuDNN API (Line

7 in Figure 5.3). In this code, programmers can use OpenDNN API with the effort

of removing loop iteration. This method is same as other layers such as pooling,

activation, and so on.

25

1 void CuDNNConvolutionLayer :: Forward_gpu(

2 vector <Blob <Dtype >* >& bottom , vector <Blob <Dtype >* >& top) {

3 Dtype* weight = this ->blobs_[0]-> gpu_data ();

4 for (int i = 0; i < bottom.size(); ++i) {

5 Dtype* bottom_data = bottom[i]->gpu_data ();

6 Dtype* top_data = top[i]->mutable_gpu_data ();

7 for (int g = 0; g < this ->group_; g++) {

8 cudnnConvolutionForward(handle_[g],

9 cudnn::dataType <Dtype >::one ,

10 bottom_descs_[i], bottom_data + bottom_offset_ * g,

11 filter_desc_ , weight + weight_offset_ * g,

12 conv_descs_[i],

13 fwd_algo_[i], workspace[g], workspace_fwd_sizes_[i],

14 cudnn::dataType <Dtype >::zero ,

15 top_descs_[i], top_data + top_offset_ * g);

16 }

17 // Skip

18 }}}

(a) Original Caffe code

1 void CuDNNConvolutionLayer :: Forward_gpu(

2 vector <Blob <Dtype >* >& bottom , vector <Blob <Dtype >* >& top) {

3 Dtype* weight = this ->blobs_[0]-> gpu_data ();

4 for (int i = 0; i < bottom.size(); ++i) {

5 Dtype* bottom_data = bottom[i]->gpu_data ();

6 Dtype* top_data = top[i]->mutable_gpu_data ();

7 opendnnConvolutionForward(handle_ ,

8 bottom_descs_[i], bottom_data ,

9 filter_desc_ , weight ,

10 conv_descs_[i], workspace ,

11 top_descs_[i], top_data);

12 }

13 // Skip

14 }}}

(b) Modified Caffe code

Figure 5.3: The difference between original and OpenDNN code.

26

5.2 TensorFlow

TensorFlow (TF) [7] is an open-source software library for high performance numerical

computation. Its flexible architecture allows easy deployment of computation across

a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers

to mobile and edge devices. Also, TF includes powerful linear algebra compiler called

XLA which helps TF code on the embedded processor and other hardware platforms

as fast as possible. In contrast to Caffe, the interface language is python so users can

start the framework easily. However, the core functions are designed by C++ and

CUDA and the python package is built by google internal build program called bazel.

Bazel is the open-source tool that build and test software of any size, quickly and

reliably. It only rebuilds what is necessary and supports for a lot of languages such

as Java, C++, Android and runs on Windows, macOS, and Linux. As the TF source

code is large, it was difficult to find the proper configuraion setting on the overall

code but we success to build it. We explain how to set the build configuration for the

Bazel. The gray box of Figure 5.4 (a) shows the BUILD file modification and the one

of Figure 5.4 (b) shows the bazel configuration file that is similar as python format.

With the compiled libopendnn, bazel starts to build the OpenDNN-ported TF and

spends a long time to build it.

After setting the build configuration, we change the TF core function to connect

OpenDNN. Figure 5.5 shows the macro code that wrapping the OpenDNN on the

TF API. To enter this code, TF can show the encapsulated code to use only in TF,

hence guarantee of tight security. This is common procedure to port the customized

library on the TF.

Figure 5.6 describes the ported code of convolution layer in TF that uses OpenDNN

API. First, it creates the handler (Lines 4-5) and set the input, output, filter, and

convolution descriptors (Lines 6-34). Next, it runs the computation function (Lines

27

36-40) that defined on the OpenDNN API. In this code, you can see the wrap scope

that is declared by the Figure 5.5.

28

1 # tensorflow / stream_executor /BUILD

2 # at Line 77

3 cc_library(

4 "// tensorflow/core:cuda",

5 ...

6 "@local_config_cuda //cuda:opendnn",

7 "@local_config_cuda //cuda:cudnn",

8 ...

9)

10

11 # third_party /gpus/cuda/BUILD.tpl

12 cc_libary(

13 name="opendnn",

14 srcs=["cuda/lib/%{ opendnn_lib}"],

15 data=["cuda/lib/%{ opendnn_lib}"],

16 includes =[

17 ".", "cuda/include",

18],

19 linkstatic =1,

20 visibility =["// visibility:public"],

21)

(a) BUILD file modification

1 # third_party /gpus/ cuda_configure .bzl

2 # at line 588

3 def _find_libs(repository_ctx , cuda_config):

4 "opendnn": _find_cuda_lib(

5 "opendnn", repository_ctx , cpu_value ,

6 cuda_config.cudnn_install_basedir , cuda_config.cudnn_version),

7 ...

8

9 # at line 963

10 def _create_local_cuda_repository(repository_ctx):

11 "%{ opendnn_lib}": cuda_libs["opendnn"].file_name ,

12 ...

(b) Bazel configuration file modification

Figure 5.4: Parameters to build OpenDNN-ported TensorFlow

29

1 /* tensorflow / stream_executor /cuda/cuda_dnn.cc */

2 ...

3 #include "cuda/include/opendnn.h"

4 ...

5 #define OPENDNN_DNN_ROUTINE_EACH_ARC(__macro) \

6 __macro(opendnnSetStream) \

7 __macro(opendnnCreateTensorDescriptor) \

8 __macro(opendnnSetTensor4dDescriptor) \

9 __macro(opendnnCreateFilterDescriptor) \

10 __macro(opendnnSetFilter4dDescriptor) \

11 __macro(opendnnCreateConvolutionDescriptor) \

12 __macro(opendnnSetConvolution2dDescriptor) \

13 __macro(opendnnGetConvolutionForwardWorkspaceSize) \

14 __macro(opendnnConvolutionForward)

15 OPENDNN_DNN_ROUTINE_EACH_ARC(PERFTOOLS_GPUTOOLS_OPENDNN_WRAP_ARC)

16 ...

Figure 5.5: Macro setting to build OpenDNN with bazel

30

1 // Define the openDNN parameter and API

2 bool CudnnSupport :: DoConvolveImpl (...) {

3 ...

4 opendnnHandle_t handle;

5 opendnnCreate (& handle);

6 // Set input parameters

7 std::vector <int64 > input_dims =

8 batch_descriptor.full_dims(dnn:: DataLayout :: kBatchDepthYX);

9 opendnnTensorDescriptor_t input_desc;

10 wrap:: opendnnCreateTensorDescriptor(parent_ , &input_desc);

11 wrap:: opendnnSetTensor4dDescriptor(parent_ , input_desc ,

12 input_dims [0], input_dims [1], input_dims [2], input_dims [3]);

13 // Set output parameters

14 std::vector <int64 > output_dims =

15 output_descriptor.full_dims(dnn:: DataLayout :: kBatchDepthYX);

16 opendnnTensorDescriptor_t output_desc;

17 wrap:: opendnnCreateTensorDescriptor(parent_ , &output_desc);

18 wrap:: opendnnSetTensor4dDescriptor(parent_ , output_desc ,

19 output_dims [0], output_dims [1], output_dims [2], output_dims [3]);

20 // Set filter parameters

21 opendnnFilterDescriptor_t filter_desc;

22 const auto& spatial_dims = filter_descriptor.input_filter_dims ();

23 wrap:: opendnnCreateFilterDescriptor(parent_ , &filter_desc);

24 wrap:: opendnnSetFilter4dDescriptor(parent_ , filter_desc ,

25 filter_descriptor.output_feature_map_count (),

26 filter_descriptor.input_feature_map_count (),

27 spatial_dims [0], spatial_dims [1]);

28 // Set convolution parameters

29 opendnnConvolutionDescriptor_t conv_desc;

30 const auto& strides = convolution_descriptor.strides ();

31 const auto& padding = convolution_descriptor.padding ();

32 wrap:: opendnnCreateConvolutionDescriptor(parent_ , &conv_desc);

33 wrap:: opendnnSetConvolution2dDescriptor(parent_ , conv_desc ,

34 padding [0], padding [1], strides [0], strides [1], 1, 1);

35 ...

36 wrap:: opendnnConvolutionForward(parent_ , handle ,

37 input_desc , (float*) input_data.opaque (),

38 filter_desc , (float*) filter_data.opaque (), conv_desc ,

39 (float*) scratch.opaque (), scratch.size(),

40 output_desc , (float*) output_data ->opaque ());

41 ...

42 }

Figure 5.6: Source code modification to run OpenDNN in TensorFlow

31

5.3 DarkNet

DarkNet [29] is an open-source neural network framework written in C and CUDA.

It is fast, easy to install, and supports CPU and GPU computation. Based on this

projects, many works are designed in the computer vision and deep learning area.

For example, YOLO [28] project that is already widely used in image detection is

improved recently. Also, XNOR-Net [27], reducing lots of multiplication by using a

few XNOR logical computation, is DarkNet-based project. As DarkNet is based on

C language, we add extern C code in the OpenDNN to interconvert it.

1 # In Makefile

2 OPENDNN =1

3 ifeq ($(OPENDNN), 1)

4 COMMON += -DOPENDNN

5 CFLAGS += -DOPENDNN

6 endif

(a) DarkNet Makefile

1 /* convolutional_layer .h */

2 void opendnn_convolutional_setup(layer *l);

3

4 /* darknet.h */

5 #ifdef GPU

6 ...

7 #include "opendnn.h"

8 ...

9 #endif

10 ...

11 opendnnHandle_t opendnn_handle;

12 opendnnTensorDescriptor_t srcTensorDesc;

13 opendnnTensorDescriptor_t dsrcTensorDesc;

14 opendnnTensorDescriptor_t dstTensorDesc;

15 opendnnTensorDescriptor_t ddstTensorDesc;

16 opendnnTensorDescriptor_t normTensorDesc;

17 opendnnFilterDescriptor_t weightDesc;

18 opendnnFilterDescriptor_t dweightDesc;

19 opendnnConvolutionDescriptor_t convDesc;

20 ...

(b) DarkNet framework header file

Figure 5.7: Makefile and header file modification to port OpenDNN in DarkNet

In DarkNet Makefile we add some code as Figure 5.7 (a) to set the flags. Also,

we declare the OpenDNN API on the darknet.h as you see in the Figure 5.7 (b). The

variables starting as d mean the differentiation and they are used to back propagation.

Figure 5.9 describes the initialization of convolution layers using OpenDNN API.

32

1 /* convolutional_kernels .cu */

2 void forward_convolutional_layer_gpu(

3 convolutional_layer l, network net) {

4 ...

5 opendnnConvolutionForward(l.opendnn_handle ,

6 l.srcTensorDesc ,

7 net.input_gpu ,

8 l.weightDesc ,

9 l.weights_gpu ,

10 l.convDesc ,

11 l.dstTensorDesc ,

12 l.output_gpu ,

13 net.index);

14 ...

15 }

Figure 5.8: Convolution forward running OpenDNN-ported DarkNet

The handler is initialized at GPU-related code (Lines 2-9) and other elements such

as tensors, filter, and convolution are initialized on the convolution layer code (Lines

16-24). After creating and initializing, the handler and elements are set from the con-

volution setup functions (Line 25) that is defined on the OpenDNN API (Lines 29-46).

This process is same as constructor and reshaping. DarkNet uses this defined convo-

lution layer to execute the convolution forward function as you see in the Figure 5.8

that runs on the GPU.

33

1 /* cuda.c */

2 opendnnHandle_t opendnn_handle () {

3 static int init = 0;

4 static opendnnHandle_t handle;

5 if(!init) {

6 opendnnCreate (& handle);

7 init = 1;

8 }

9 return handle;

10 }

11

12 /* convolutional_layer .c */

13 convolutional_layer make_convolutional_layer (...) {

14 convolutional_layer l;

15 ...

16 l.opendnn_handle = opendnn_handle ();

17 opendnnCreateTensorDescriptor (&l.normTensorDesc);

18 opendnnCreateTensorDescriptor (&l.srcTensorDesc);

19 opendnnCreateTensorDescriptor (&l.dstTensorDesc);

20 opendnnCreateFilterDescriptor (&l.weightDesc);

21 opendnnCreateTensorDescriptor (&l.dsrcTensorDesc);

22 opendnnCreateTensorDescriptor (&l.ddstTensorDesc);

23 opendnnCreateFilterDescriptor (&l.dweightDesc);

24 opendnnCreateConvolutionDescriptor (&l.convDesc);

25 opendnn_convolutional_setup (&l);

26 ...

27 }

28 void opendnn_convolutional_setup(layer *l) {

29 opendnnSetTensor4dDescriptor(l->dsrcTensorDesc ,

30 l->batch , l->c, l->h, l->w);

31 opendnnSetTensor4dDescriptor(l->ddstTensorDesc ,

32 l->batch , l->out_c , l->out_h , l->out_w);

33 opendnnSetTensor4dDescriptor(l->srcTensorDesc ,

34 l->batch , l->c, l->h, l->w);

35 opendnnSetTensor4dDescriptor(l->dstTensorDesc ,

36 l->batch , l->out_c , l->out_h , l->out_w);

37 opendnnSetTensor4dDescriptor(l->normTensorDesc , 1, l->out_c , 1, 1);

38 opendnnSetFilter4dDescriptor(l->dweightDesc ,

39 l->n, l->c/l->groups , l->size , l->size);

40 opendnnSetFilter4dDescriptor(l->weightDesc ,

41 l->n, l->c/l->groups , l->size , l->size);

42 opendnnSetConvolution2dDescriptor(l->convDesc ,

43 l->pad , l->pad , l->stride , l->stride , 1, 1);

44 opendnnSetConvolutionGroupCount(l->convDesc , l->groups);

45 }

Figure 5.9: OpenDNN API usage in DarkNet convolution layer

34

Chapter 6

Evaluation

6.1 Programmable Effort

Framework
Modification of Existing Code LoC for LoC for

Added Modified Deleted Total Conv.Layers Framework

Caffe 26 4 1 31 380 63,733

TensorFlow 64 22 196 296 4454 1,889,608

DarkNet 43 4 1 48 380 25,144

Table 6.1: Modified code lines for each framework

We try to reduce the code lines in original framework as modifying many lines re-

quires programmer’s efforts. Table 6.1 shows the count of lines to run the OpenDNN’s

convolution API for each framework. Caffe and DarkNet require 31 and 48 code re-

vision at the convolution layer code, while TF shows much code modification as 296.

For the percentage of code, however, OpenDNN provides the environment that mod-

ify a few code for all frameworks. Especially, the modified TF code lines is 296, which

is 6.65% of convolution layer code lines and only 0.016% of total framework that is

approximately 1.9 million lines.

Table 6.2 shows the library coverage of OpenDNN and cuDNN. OpenDNN sup-

ports six descriptors, which is except for RNN and dropout descriptor from cuDNN.

Since we does not support these descriptor and forward/backward specific algorithm,

35

Library Num.of Descriptor Num.of Datatype Num.of API

cuDNN 8 36 124

OpenDNN 6 10 28

Table 6.2: API Coverage comparison OpenDNN with cuDNN

the number of data type is 10, but cuDNN supports 36 data type including algorithm

settings such as Winograd and FFT. Also, the number of OpenDNN API is 28, but

the number of cuDNN API is 124. Because above 80 percent of DNNs are CNNs,

OpenDNN is concentrated to implement CNN-specific API. MLP, another kinds of

DNNs, does not require complex API as it is calcuated by inner product function.

For this reason, current OpenDNN does not support RNN-based DNNs. Besides, the

three frameworks use cuDNN library only when they run the CNNs, hence no needs

to implement the rest APIs. We will implement other APIs for latest DNNs such as

MANN and LSTM in the future.

6.2 Performance

We evaluate the OpenDNN performance with different architectures (CPU, GPU,

FPGA). Since convolution layer spends dominant computation time in CNNs, we

evaluate only convolution layer. The CPU runs the sequential code, GPU does the

parallel code implemented by convolution lowering, and FPGA does the loop tiling

code with accelerator compiled by OpenCL kernel. Table 6.3 describes the archtec-

tures environment that OpenDNN is measured on.

Before evaluating the performance, we profile the GPU kernel and found that

the im2col is 10 times slower than the one designed by NVIDIA CUDA because

of the OpenCL address space issues. We internally tested to use CUDA im2col and

OpenCL matmul function as usual, and the performance is much higher than previous

36

Hardware Environment Note

CPU Intel R©CoreTMi7-7700K CPU @ 4.20GHz 32GB DDR4, use single-core

GPU NVIDIA Titan Xp @ 1405MHz 12GB GDDR5, 3840 core

FPGA Xilinx Kintex UltraScale FPGA @ 250MHz 16GB on-board DDR4

Table 6.3: Experiment environment

one. We test spended time to test the overall testset of three popular DNNs (LeNet,

Cuda-convnet, AlexNet). As you see in the Figure 6.1, GPU shows best performance

in the three architectures with more than 10x faster than CPU, while FPGA has

low performance even though it is designed to process data parallel. In FPGA, its

bitstream is built using the general-purpose kernel that runs GPU. Since the kernel

is too small to maximize FPGA utilization, SDAccel makes the bitstream, which

includes a tiling PE, small buffer to store the tiled data, and low bandwidth utility to

transport data. The performance would be increased if we implement specific kernel

that targets only FPGA with complex pragma options.

LeNet ConvNet AlexNet

Ex
ec

ut
io

n
tim

e
pe

r i
m

ag
es

 (m
s)

Deep Neural Network Benchmark

CPU GPU FPGA

104

103

102

101

100

10-1

Figure 6.1: Performance of CPU, GPU, and FPGA with different DNNs

37

Figure 6.2 shows the time portion to run the DNNs as a single batch. Note that

CPU and GPU does not require additional command to write opcode to compute

input-weight vector multiplication, while FPGA needs it to do. Generally, the time

to write and read the data on the CPU is similar to the time on GPU. The big

difference is that execution time is reduced more than 10 times on GPU. As the time

is decreased, the ratio is changed, but the absolute time is static. In FPGA, 46% of

time is used to run the hardware, and the rest time is used to read and write the data.

As the hardware executes a single PE the performance could be improved if parallel

PEs are implemented on the FPGA. Also, about the half of total time is used to

transfer weight, input, and output data. OpenDNN allocates the memory and moves

the data from the host to device. This is inefficient compared to the general framework

that allocates the overall workspace at one-shot. Therefore, the performance would

be increased if we add additional API to allocate the data memory at one-shot.

46.06%

11.55%

18.49%

11.51%

12.40%

FPGA

56.82%

14.77%

15.91%

12.50%

GPU

96.19%

1.30%

1.40%
1.10%

CPU

Figure 6.2: Time portion to run one batch on CPU, GPU, and FPGA

38

Chapter 7

Related Work

Nowadays, a lot of open-source projects for DNNs are released and have implemented

by vendors to selling their architecture and server system. NVIDIA CUTLASS [2]

is a set of CUDA C++ template abstractions to implement high performance ma-

trix multiplication at all levels and scales within CUDA. It includes concepts for

hierarchical decomposition and data transformation similar to those used to imple-

ment cuBLAS. The difference is that it decomposes these moving parts into reusable

components abstracted by C++ template classes and can be specialized and tuned

by tiling sizes, data types, and other algorithmic policy. AMD MIOpen [3] targets

for CNN acceleration built to run on top of the ROCm software stack. It suuports

for OpenCL and HIP enabled frameworks. With ROCm, it optimized convolutions

including Winograd,FFT transformations, and GEMM. Intel clDNN [1] is an open-

source performance library for deep learning applications intended for acceleration of

deep learning inference on Intel HD Graphics Driver and Intel Iris graphics. clDNN

includes highly optimized building blocks to implement CNNs with C and C++ inter-

faces. Intel MKL-DNN [4] is capable of programming from general Intel CPU to their

manycore architecture such as Intel Atom and Xeon Phi series and programmed as

OpenCL. While these open-source projects target their own devices, OpenDNN sup-

ports all these devices without hardware discriminations, needless to say the superior

compatibility of deep learning framework.

39

Chapter 8

Conclusion

This thesis introduces OpenDNN, an open-source library with cuDNN-like API sup-

porting multiple hardware devices. cuDNN offers high performance for DNNs, but it

is not open-source and targets NVIDIA GPUs only. By using OpenDNN, users can

easily develop and accelerate DNNs on the CPUs, GPUs and FPGAs. Furthermore,

DNN experts can customize it as they wish, to improve performance. OpenDNN is

successfully ported to popular deep learning frameworks on different architectures.

Even though the performance is not good compared to hardware-specific libraries, we

have an opportunity to improve the performance with different optimization method-

ology. We leave such optimization as future work, including Winograd convolution

and n-bit quantization.

40

Bibliography

[1] Compute library for deep neural networks (cldnn). https://github.com/

intel/clDNN, 2018.

[2] Cuda templates for linear algebra subroutines.

https://github.com/NVIDIA/cutlass, 2018.

[3] Amd’s library for high performance machine learning primitives. https://

github.com/ROCmSoftwarePlatform/MIOpen, 2018.

[4] Intel(r) math kernel library for deep neural networks (intel(r) mkl-dnn). https:

//github.com/intel/mkl-dnn, 2018.

[5] Deliver flexible, efficient, and scalable cluster messaging on intel architecture.

https://software.intel.com/en-us/mpi-library, 2018.

[6] Rocm, a new era in open gpu computing. https://rocm.github.io/, 2018.

[7] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: a system for large-scale machine learning. In OSDI, 2016.

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John

Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for

deep learning, 2014.

41

https://github.com/intel/clDNN
https://github.com/intel/clDNN
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://software.intel.com/en-us/mpi-library
https://rocm.github.io/

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[10] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Al-

kalay, M. Haselman, L. Adams, M. Ghandi, et al. A configurable cloud-scale

dnn processor for real-time ai. In Proceedings of the 45th Annual International

Symposium on Computer Architecture, 2018.

[11] Philipp Gysel. Ristretto: Hardware-oriented approximation of convolutional neu-

ral networks, 2016.

[12] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,

and William J. Dally. Eie: Efficient inference engine on compressed deep neu-

ral network. In Proceedings of the 43rd International Symposium on Computer

Architecture, 2016.

[13] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,

M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, et al. Applied machine

learning at facebook: A datacenter infrastructure perspective. In 2018 IEEE

International Symposium on High Performance Computer Architecture, 2018.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition, 2015.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 1997.

[16] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.

Densely connected convolutional networks. In The IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR’17, 2017.

42

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of the 22Nd ACM Inter-

national Conference on Multimedia, MM ’14, 2014.

[18] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.

In-datacenter performance analysis of a tensor processing unit. In Computer

Architecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium

on, 2017.

[19] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos. Stripes:

Bit-serial deep neural network computing. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture, 2016.

[20] Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

[21] Alex Krizhevsky. cuda-convnet: High-performance c++/cuda implementation of

convolutional neural networks. https://code.google.com/p/cuda-convnet/,

2012.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in Neural Information

Processing Systems 25. Curran Associates, Inc., 2012.

[23] Wei Liu and Dragomir Anguelov et al. Ssd: Single shot multibox detector. In

Computer Vision - ECCV 2016 - 14th European Conference, 2016.

[24] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-

danpur. Recurrent neural network based language model. In Eleventh Annual

Conference of the International Speech Communication Association, 2010.

43

https://code.google.com/p/cuda-convnet/

[25] NvidiaTM. Nvidia tesla v100 tensor core gpu. http://images.nvidia.com/

content/volta-architecture/pdf/volta-architecture-whitepaper.pdf,

2017.

[26] Young H. Oh, Quan Quan, Daeyeon Kim, Seonghak Kim, Jun Heo, Sungjun

Jung, Jaeyoung Jang, and Jae W. Lee. A portable, automatic data qantizer for

deep neural networks. In Proceedings of the 27th International Conference on

Parallel Architectures and Compilation Techniques, 2018.

[27] Mohammad Rastegari and others. Xnor-net: Imagenet classification using binary

convolutional neural networks. CoRR, 2016.

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,

real-time object detection. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR’17, 2016.

[29] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.

com/darknet/, 2013–2016.

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition, 2014.

[31] Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. End-to-end

memory networks. In Advances in neural information processing systems. 2015.

[32] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,

Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for sparse neural

networks. In The 49th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, 2016.

44

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

국문초록

심층 신경망은 오늘날의 지능형 어플리케이션과 서비스의 핵심 요소로 각광받고 있다.

NVIDIA에서개발한 cuDNN은딥러닝프리미티브라이브러리의표준으로,정교한심층

신경망 모델을 쉽게 개발하도록 돕는다. 그러나, cuDNN은 NVIDIA의 특허 소프트웨

어로 유저들이 자신들의 요구에 맞게 제작하는 것을 허용하지 않는다. 게다가 NVIDIA

GPU만을 지원하기 때문에 멀티코어 CPU나 타 FPGA를 지원하지 않는다. 이 논문에

서는 다양한 하드웨어 장치를 유연하게 지원하고, cuDNN과 유사한 인터페이스를 가진

딥 러닝 프리미티브 라이브러리인 OpenDNN을 소개한다. 특히, 다양한 심층 신경망 프

레임워크와 CPU, GPU, 그리고 FPGA와 같은 하드웨어 장치들에 연동하여 OpenDNN

의 이식성과 유연성을 입증한다.

주요어: 딥 러닝, 라이브러리, 오픈소스, 가속기, 성능, 이식성

학번: 2017-23840

45

Acknowledgements

길게만 느껴지던 2년의 대학원 석사과정이 어느덧 끝이 났습니다. 2년의 시간동안 많은

사람들의 도움이 있었기에 지금 이 학위논문을 쓰고 있는게 아닐까 싶습니다.

우선 대학원 과정 기간 중에서 가장 많은 도움을 주신 제 지도교수님인 이재욱 교수

님께 감사를 표합니다. 저에게 적합한 연구 주제와 과제를 배정해 주신 것은 물론, 여러

사람들과 함께 아이디어를 논의해야 하는 팀 워크에 대해서 깨달음을 주시고, 학자와 교

육자의 태도가 무엇인가에 대해 보여주셔서 많은 것을 배울 수 있는 기회를 얻었습니다.

또한 약간의 부족함이 있는 저를 이끌어주셔서 감사합니다.

다음으로 뉴럴 네트워크 팀원들에게 감사를 표합니다. 팀장인 영환이형은 많은 과제

들이 있는 팀에서 홀로 박사과정을 진행하면서 많이 힘들었을 텐데, 그 와중에도 불평

없이 팀원들을 케어해 주어서 감사했습니다. 같은 팀원인 천이 누나와 성학이, 그리고

성준이형도 팀에서 각자의 몫을 맡아 주셨고, 늦게 팀에 합류했지만 뛰어난 능력으로

연구의 방향을 제시해 주신 함태준 박사님에게도 감사를 표합니다.

이외에도 아키텍쳐와 프로그래밍에서 뛰어난 재능을 보유한 찬노형, 주말에도 나

오셔서 열심히 하는 재영이형, 술을 자주 마시던 학범이형과 문경누나, 신이라 불리는

종현이형, 같이 서버를 담당한 준이형, 먼저 졸업한 상진이 형과 기태형, 정말 하고 싶은

공부를 시작하는 초석사 남호형, 마지막 학기 같이 조교를 한 예진이, 현업에서 종사하

고 오셔서 새로운 시야를 깨워주신 김신 책임님과 강석용 책임님, 그리고 꼼꼼한 행정

업무를 해 주시는 최미림 선생님께 감사드립니다.

마지막으로, 대학원 생활동안 항상 응원하고 잘 끝낼 수 있도록 도와주신 아버지와

어머니, 그리고 동생에게 감사하다는 말을 전합니다.

46

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Deep Neural Networks .
	2.2 Heterogeneous Architectures .

	Chapter 3 OpenDNN API
	3.1 Overview .
	3.2 Context Manager .
	3.3 Descriptor Manager .
	3.4 Computation Functions .
	3.5 Summary .

	Chapter 4 Backend Devices
	4.1 CPU .
	4.2 GPU .
	4.3 FPGA .

	Chapter 5 OpenDNN-enabled DNN Frameworks
	5.1 Caffe .
	5.2 TensorFlow .
	5.3 DarkNet .

	Chapter 6 Evaluation
	6.1 Programmable Effort .
	6.2 Performance .

	Chapter 7 Related Work
	Chapter 8 Conclusion
	Bibliography
	국문초록
	Acknowledgements

<startpage>9
Chapter 1 Introduction 1
Chapter 2 Background 4
 2.1 Deep Neural Networks . 4
 2.2 Heterogeneous Architectures . 6
Chapter 3 OpenDNN API 9
 3.1 Overview . 9
 3.2 Context Manager . 10
 3.3 Descriptor Manager . 11
 3.4 Computation Functions . 12
 3.5 Summary . 13
Chapter 4 Backend Devices 15
 4.1 CPU . 15
 4.2 GPU . 17
 4.3 FPGA . 20
Chapter 5 OpenDNN-enabled DNN Frameworks 24
 5.1 Caffe . 24
 5.2 TensorFlow . 27
 5.3 DarkNet . 32
Chapter 6 Evaluation 35
 6.1 Programmable Effort . 35
 6.2 Performance . 36
Chapter 7 Related Work 39
Chapter 8 Conclusion 40
Bibliography 41
국문초록 45
Acknowledgements 46
</body>

