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Abstract

OpenDNN: An Open-source,

cuDNN-like Deep Learning
Primitive Library

Daeyeon Kim
Department of Computer Science and Engineering
The Graduate School

Seoul National University

Deep neural networks (DNNs) are a key enabler of today’s intelligent applications
and services. cuDNN is the de-facto standard library of deep learning primitives,
which makes it easy to develop sophisticated DNN models. However, cuDNN is a
propriatary software from NVIDIA, and thus does not allow the user to customize
it based on her needs. Furthermore, it only targets NVIDIA GPUs and cannot sup-
port other hardware devices such as manycore CPUs and FPGAs. In this thesis we
propose OpenDNN, an open-source, cuDNN-like DNN primitive library that can flex-
ibly support multiple hardware devices. In particular, we demonstrate the portability
and flexibility of OpenDNN by porting it to multiple popular DNN frameworks and
hardware devices, including GPUs, CPUs, and FPGAs.

Keywords: Deep learning, Library, Open-source, Accelerators, Performance, Porta-
bility
Student Number: 2017-23840



Contents

Contents

[List of Tables|

|[List of Figures|

|[Chapter 1 Introduction|

|[Chapter 2 Background|

2.1 Deep Neural Networks| . . . . . . .. ... ... .. ... ... .....

[2.2  Heterogeneous Architectures|. . . . . . . . . ... ... ... ... ...

[Chapter 3 OpenDNN APIT]|

3.2 Context Manager| . . . . . .. . . ... .. L

3.3 Descriptor Manager| . . . . .. ... ... ... L.

3.4 Computation Functions| . . .. ... ... ... ... ... .......

3.5 Summary|l . . ... . L

|[Chapter 4 Backend Devices|

ii

| i P
 —

iii

iv

vi

10
11
12
13



|[Chapter 5 OpenDNN-enabled DNN Frameworks| 24
BEI _Caffd. . . . . . 24
B2 TensorFlowl . . . . . . . . ... 27
5.3 DarkNetl . . . . . . . . . 32

[Chapter 6 Evaluation| 35
6.1  Programmable Effort|. . . . . . ... ... ... 0000 35
6.2 Performancel. . . . . . . . ... 36

|[Chapter 7 Related Work| 39

[Chapter 8 Conclusion| 40

|Bibliography| 41

TEEE 45

|Acknowledgements| 46

iii

A eT)sta



List of Tables

[Table 3.1  Summary of OpenDNN API}. . . .. ... ... ... ..... 14
(Table 6.1  Modified code lines for each frameworkl. . . . . . . ... .. .. 35
[Table 6.2  API Coverage comparison OpenDNN with caDNN| . . . . . . . 36
[Table 6.3  Experiment environment|. . . . . . . ... .. ... .. ..... 37

v 2 X2t &ty



List of Figures

|[Figure 2.1  Multi-layer perceptron| . . . . . . . .. ... ... ... .... )
[Figure 2.2 The structure of Cuda-convnet [26]] . . . . . . ... ... ... 6
[Figure 2.3 Illustration of homogeneous and heterogeneous architectures| . 7
|[Figure 3.1  Layered structure of DNN systems| . . . ... ... ... ... 10
[Figure 3.2 Overall structure of context manager| . . . . . .. .. ... .. 11
[Figure 3.3  Convolution torward API with one-to-one argument and descriptor- |

based argument| . . . . . ... 12
|[Figure 4.1  Intel Xeon Phi coprocessor block design| . . . .. .. ... .. 16
[Figure 4.2 Setting the layer parameters getting from descriptors| . . . . . 16
[Figure 4.3 Sequential C convolution kernel code] . . . . . . . .. ... .. 17
|[Figure 4.4  NVIDIA Volta 100 arcutectire| . . . . . . . . ... .. ... .. 18
[Figure 4.5  Convolution lowering mechanism| . . . .. ... ... ... .. 19
[Figure 4.6  Host code that calls the OpenCL kernel function| . . . .. .. 20
|[Figure 4.7 Etficient FPGA-based accelerators|. . . . . . . ... ... ... 21
|[Figure 4.8  FPGA convolution layer code| . . . . . . . .. ... ... ... 23
|[Figure 5.1  Addition code at Cafte Makefile and its configuration| . . . . 24
[Figure 5.2  Header file modification to run OpenDNN in Cafte] . . . . . . 25
[Figure 5.3 'The difference between original and OpenDNN code.| . . . . . 26
|[Figure 5.4  Parameters to build OpenDNN-ported TensorFlow| . . . . .. 29

V 5 4 &) 8 7



|[Figure 5.5  Macro setting to build OpenDNN with bazell . . . . . . .. .. 30
|[Figure 5.6  Source code modification to run OpenDNN in TensorkFlow| . . 31
|[Figure 5.7 Makefile and header file modification to port OpenDNN in |
DarkNetl . . . . . . . . . 32
|[Figure 5.8  Convolution forward running OpenDNN-ported DarkNet| . . . 33
[Figure 5.9  OpenDNN API usage in DarkNet convolution layer| . . . . . . 34
|[Figure 6.1  Performance of CPU, GPU, and FPGA with different DNNs| . 37
[Figure 6.2 Time portion to run one batch on CPU, GPU, and FPGA| . . 38
v S R ki)
= 7 -



Chapter 1

Introduction

Deep neural networks (DNNs) are a key enabler of today’s Al-based applications and
services. Unlike the traditional rule-based AI systems, DNNs solve complex problems
by stacking various artificial neural network layers. For example, convolution neural
networks (CNNs) achieve high accuracy in image classification [14], [16, 22], object
detection [23, 28] and image captioning. Besides, Recurrent neural networks (RNNs),
long short-term memory (LSTM), and memory augmented neural networks (MANNSs)
provide superior performance in various natural language processing area like question
answering [15, 24, 3T]. Furthermore, Google uses multi-layer perceptrons (MLPs) to
customize their advertisements.

As the complexity of DNNs grows, the computational requirements for running
them also have grown significantly. Generally, because the number of layers heavily
affects the DNN performance, today’s sophisticated DNNs often employ many layers
to spend a lot of time to train and validate them. For example, AlexNet [22] requires
62.38 million parameters and 2.5 giga-operations (GOPs) to classify a single image.
VGG-19 [30], one of the most complex CNNs, has 138.36 million parameters and
requires 38.5 GOPs to do the same. RNNs and LSTMs also have additional parameters
to save cell state and function parameters.

To satisfy this demand GPUs and domain-specific architectures (DSAs) are widely

used for both training and inference to provide many computation resources and large



on-chip memory. At the time of this writing GPUs are the de-facto standard for run-
ning DNNs. For example, NVIDIA V100 [25] provides not only CUDA cores for
general-purpose GPU computing, but also tensor cores to accelerate tensor multipli-
cations. It also has 16GB HBM2 to maximize memory bandwidth, which is essential to
provide good DNN performance. Besides, DSAs are also becoming commonplace for
both performance and energy efficiency. Google TPUv2 [I8] can perform 45 TFLOPS
using 16GB HBM with 600GB/s memory bandwidth and uses its own custom floating-
point type, called bfloat16. Cambricon-X [32] accelerates DNNs by skipping the zero
computation to reduce energy as well as increase the overall speeds as the DNNs are
generally sparse and a significant portion of the weights and activations values are
zZero.

To make DNN programming easier, NVIDIA provides cuDNN, a deep learning
primitive library targeting its GPUs. cuDNN offers an easy-to-use API, unified vir-
tual memory, and C++-style standard template library. However, there is no stadard
library for DSAs and FPGAs. As a result, DSA developers should not only write cus-
tom drivers but also port popular DNNs themselves. This is done in an ad-hoc manner
and often not reuseable across multiple devices and frameworks. As for cuDNN it is
not a free software, and the user cannot customize it as she wishes.

To address this problem, we propose OpenDNN, an open-source, cuDNN-like
primitive library that can flexibly support multiple hardware devices and frameworks
(e.g., Caffe [I7], TensorFlow [7]) with low programmer effort. OpenDNN API often
has one-to-one correspondence to the cuDNN API, to make it easy to port popular
DNN frameworks based on cuDNN to the new hardware device. We demonstrate
the versatility of OpenDNN by building an end-to-end prototype for three different
hardware devices: CPU, GPU, and PCle-based FPGA. Furthermore, OpenDNN is
successfully ported to popular DNN frameworks, including Caffe and TensorFlow.

Last but not least, OpenDNN is a free software soon to be open-sourced for the



benefits of the research community.

In summary OpenDNN satisfies the following design objectives:

e Portability - The C++ API provides a simple interface that can flexibly support

multiple DNN frameworks and hardware platforms.

o Versatility - The open source code is released and users can customize the
internal structure and algorithm to optimize their own hardware architecture

and specific framework.

e Fase of use - It requires little programmer effort to port a new DNN framework
to OpenDNN. The API format is similar as cuDNN, so programmers can easily
modify and use with OpenDNN.



Chapter 2

Background

2.1 Deep Neural Networks

A DNN is an artifcial neural network with multiple layers between the input and
output data. There are several kinds of DNNs that performs well in specific area. For
example, MLP has been widely used in approximation and recommender algorithm. It
is organized with input, output, and hidden layers. Figure depicts the structure of
common MLP. The circle in the layers is called as node and each circles is mapped to
the data. The arrow between the layers named edge and it saves the weight how much
does the input data affects the output data. Starting from input layer, the hidden layer
takes the input data and sends the output data as the next hiddn layer’s input data.
In the process, the input data is vector structure and weight is matrix. Therefore,
they run the matrix-vector multiplication and return the intermediate vector which
the next layer uses. The output layer receives the input that is computed via hidden
layers and gives the output that is usually the approximation value such as score or
probability. MLP utilizes a supervised learning called backpropagation for training,
hence requiring the non-linear activation. As the hidden layer goes deeper, the amount
of weight values that stores between for each layers increases and the computation
time and data storage cost is also increasd.

In early days, MLP worked well to classify MNIST dataset, a large database

of handwritten digits that is commonly used for training various image processing
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Figure 2.1: Multi-layer perceptron

systems, as it consists of simple black-and-write images of a small size. As the image
size is larger and try to colored RGB images, however, MLP is difficult to train the
image dataset. As researchers want to increase the accuracy, they stacked additional
hidden layers in the MLP and the network size is huge. Also, MLP reconfigures
an image as linear vector, which vanishes the relation of image pixels so takes low
accuracy in the image datasets. To arrange with the two issues, CNNs, organized by
convolution layer and pooling layer mainly, are widely used and success to get high
accuracy for the CIFAR-10 [20] and imagenet [9] dataset. Convolution layer is the key
factor to get high accuracy in the image dataset as it maintains the characteristics of
input image by computing the small kernel filter and configuration of input and output
data. Furthermore, the small kernel filter, which is called as weight, can reuses during
the convolution layer computation so it reduces the size of weight tremendously.
Suppose the H gy X Wy X Coye output resulted from multiplication of H;y, X Wiy, X Cip
input and weight. The size of weight in MLP should be H;, X Hour X Wip X Wy X
Cin X Cout as it computes general matrix vector multiplication. On the other hand,
CNN uses only F' x F x Cy, x Cyye weight, as the weight replicates and the kernel

size F' is much smaller than Hy,, Hout, Win or Woye. Pooling layer reduces the feature



maps and emphasize the specific data by selecting maximum value (max pooling) or

computing average in the windows (average pooling).

conv1 pool1 conv2 pool2 conv3 pool3 fc1
input
32x32x3 16x16x32 8x8x32 4x4x64
32x32x32 16x16x32 8x8x64 10

Figure 2.2: The structure of Cuda-convnet [26]

Figure shows the structure of Cuda-convnet, which is used for image classifi-
cation. It takes as input an image file of 32x32 pixels with three input channels (for
RGB color components). The image passes through a pipeline of layers, composed of
three alternating pairs of convolution and pooling layers, followed by a FC layer at
the end. Each layer performs distinct matrix computations to extract more complex
features toward the end of the pipeline. Finally, the FC layer is a classifier layer,
which computes a vector of the probability for each of the 10 classes. In CNNs the
convolution layers are known to be the most compute-intensive (consuming over 90%
of total GOPs), while the FC layer accounts for a disproportionally large share of

network parameters due to their full connectivity [21].

2.2 Heterogeneous Architectures

In PC era, the processor tried to take high performance by sophiscated and fast
clock frequency. After the clock frequency was restricted because of thermal issue,
researchers increased the number of cores with proper clock frequency. This concepts
were used in the interconnect system or server system. Figure (a) shows the con-

ventional homogeneous computers that consists of one kind of processor like CPU.



In this figure, each CPU links anothers as 2-D mesh structure so CPU communi-
cates with the nearest CPUs. For this reason, old-fashioned supercomputers used
many CPU and researches about the topology of CPUs to increase the overall per-
formance. Though homogeneous computers had good performance in the general, it
spent resources inefficiently to process more than million addition and multiplication

because CPU optimized running sophiscated and sequential program, not the parallel

program.
CPU || CPU | | CPU || CPU
FPGA
[ T Ik
o
CPU || CPU [{ CPU [ CPU -
cPU [ |{cpul|cpul | cpu cPU
| | | | .
&
CPU || CPU || CPU || CPU B
(a) Homogeneous architecture (b) Heterogeneous architecture

Figure 2.3: Illustration of homogeneous and heterogeneous architectures

As the demands of deep learning increase significantly, parallel architectures are
popular and the heterogeneous computers organized by more than two kinds of ar-
chitectures are required. People found that the graphic cards for gaming show good
performance in the simple computation parallel because they multiply and accumu-
late a lot of floating point numbers, sends the data to the monitor and scatter it.
As the graphic cards use for the general purpose, it spends little time to compute
lots of simple computation compared to use priceless and sophiscated processor unit.

Figure (b) shows the example of deep learning specific heterogeneous computers,



which consists of two CPU, two GPU, and two customizable FPGA. In deep learning
working system, GPUs are exploited to process parallel computing, which ecient to
executes compute-intensive deep learning like CNNs. On the other hand, FPGAs have
an advantage of efficient energy usage and custom design and implementation, hence
maximizing the specific DNNs’ characters with low energy consumption.
Unfortunately, there is no general deep learning library to support general het-
erogeneous computers. NVIDIA provides CUDA and cuDNN but they target only
NVIDIA GPU and proprietary library not to customizing the internal code. Simi-
larly, Intel is implementing their own library to run the Intel Xeon Phi processor as
Intel MPI [5], and AMD recently releases ROCm [6] to support deep learning accel-
erator based on their heterogeneous computers, which is the coupling of AMD Ryzen
and Radeon. These libraries are proprietary so users can neither customize them, or
run them on various DNN architectures. For example, to support an FPGA-based
accelerator, the developer should implement a software stack from scratch. It is not
practical for a model developer to understand the details of a target hardware and
port his model to it. OpenDNN serves as an abstraction layer to support a variety of
hardware architectures without requiring intrusive changes to the DNN framework.
The OpenDNN API has nearly one-to-one correspondence to the industry-standard
cuDNN API on which most popular DNN frameworks are based. Thus, it is easy
to port an existing DNN framework to OpenDNN to support multiple architectures

and/or customize algorithms.



Chapter 3

OpenDNN API

3.1 Overview

Figure [3.1] shows the overall system classified by four layers: application, library,
driver, and device. The application layer offers users the comfort interface to model
DNNSs graph and control the hyper parameters such as learning rate and the number
of step. The library layer is arbiter that communicate with hardware devices through
driver and sends the computation result by getting the DNNs structure and param-
eters from the applications. Finally, the device layer runs the core kernel functions
defined from library layers with input and weight data, and the driver layer helps to
transfer the data and kernel with kernel-specific parameters such as the number of
threads and the number of blocks. Our work applies to the library layers. We explain
the OpenDNN library and its API in this chapter and the rest will discuss in the next
chapters in detail.

Similar as other deep learning primitive libraries, OpenDNN provides the primitive
functions of deep learning: convolution, pooling, activation, normalization, softmax,
etc. OpenDNN is mainly implemented as OpenCL and C++ to support heterogeneous
computers such as Intel Xeon Phi, NVIDIA and AMD GPUs, and FPGA-based ac-
celerator. When the library is built, programmers can control what architecture they
target so it supports all hardware with an unique source code. Besides, programmers

can easily replace the cuDNN to OpenDNN since the format of OpenDNN API is
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Figure 3.1: Layered structure of DNN systems

similar to cuDNN. It currently supports most of the popular APIs in cuDNN that is
frequently used in other frameworks (e.g., Caffe [I7] and Tensorflow [7]).

OpenDNN consists of three components for efficient and clear usage during DNN
programming. As users run the deep learning framework on the heterogeneous com-
puters usually, we provides the abstraction to manage these system. Also, OpenDNN
tries to reduce the number of argument for each layers and executes lots of computa-
tion by the kernel functions. We explain the components in the following sections in

detail.

3.2 Context Manager

To control and execute the heterogeneous computers, OpenDNN provides the cross-
platform abstraction that is used to OpenCL. This constructs when the handler cre-
ates. Figure [3.2 shows the components of handler: platform, device, context, etc. The
handler first gathers the information of hardware platforms including general CPU.

When selecting the platform, handler finds the devices that match the platform to

10



Platform

Host OpenCL system Device

Figure 3.2: Overall structure of context manager

make the context that the environment to execute kernel. Context manages the other
objects and system processes memory management and synchronization on the con-
text level. Finally, it makes the queues and compiles the kernel objects that are sent
to devices. By doing so, the context manager makes the environment to communicate

with devices and reports the device or kernel errors.

3.3 Descriptor Manager

Generally, each layers of DNNs requires so many arguments that programmers are
hard to set the argument, which increases the chance to make a mistake when entering
it. For example, traditional convolution layer requires a lot of arguments including
4-D tensor structured data (input, weight, and output) and the characteristics of
convolution layers such as stride, padding, and dilation options. If these parameters
are managed as single argument, programmers will release from a laborious task.
Figures [3.3] shows the conventional and descriptor-based argument style. We im-

plement OpenDNN'’s descriptor as following. The opendnnTensorDescriptor stores

) kA AT
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1 wvoid conv2d(

2 int i_n, int i_c, int i_h, int i_w, /* Input Arguments */
3 int o_n, int o_c, int o_h, int o_w, /¥ Output Arguments */
4 int f_o, int f_i, int f_h, int f_w, /* Filter Arguments */
5 int p_h, int p_w, int s_h, int s_w, /¥ Convolution */

6 int d_h, int d_w, /% Arguments */

7 Dtype* i, Dtype* w, Dtype* o /* Data */

8

9

10 void conv2d_desc(

11 opendnnTensorDescriptor i_desc, /% Input Descriptor */
12 opendnnTensorDescriptor o_desc, /% Output Descriptor x/
13 opendnnFilterDescriptor f_desc, /% Filter Descriptor */
14 opendnnConvolutionDescriptor c_desc,/* Convolution Descriptor */
15 Dtype* i, Dtype* w, Dtype* o /* Data */

16 );

Figure 3.3: Convolution forward API with one-to-one argument and descriptor-based

argument

the input and output 4-D data structure with its strides that is calculated during set-
ting descriptor. The opendnnFilterDescriptor saves the filter structure that con-
sists of kernel size (f.h and f_w), dimension (f_i) and the number of filter (f_o).
Finally, opendnnConvolutionDescriptor records the padding size (p_h and p_w),
kernel stride (s_h and s_w) and dilation (d-h and d_w). The descriptor is defined auto-
matically when stacking the layer and the variables use in the computation methods

getting from the descriptor.

3.4 Computation Functions

With the abstraction supported by context manager and the layer structure based
on the information stored at descriptor manager, the computation kernel runs the
feedforward or backpropagation. It is implemented to OpenCL and C++ kernel to
run the system not just the heterogeneous system but also the homogeneous one. The
name of computation API is similar as cuDNN API like cudnnConvolutionForward

to reduce the programmer’s effort porting at deep learning frameworks. Internally,

12
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the API gets the information from the descriptor received from argument and set the
computation environment. After setting, the context manager give the built kernel
and dataset to the OpenCL-runtime command queue and it wait issuing to the archi-
tecture such as GPU and FPGA-based accelerators. If the computation is finished,
the data is sent to the host, synchronized in the host DRAM, and layer deallocates

the buffer that mapped to the device.

3.5 Summary

Table [3.I] summarise the OpenDNN API with three categories with its name and
description. We skip the return type since all methods return opendnnStatus that
checks the kernel status such as success, out of memory, and so on. OpenDNN provides
the API for CNN mainly and will be implemented for other kinds of DNNs like RNN
or LSTM.

13



API Explanation

Context Manager Methods

Create handler including the status of platform,
opendnnCreate
device and context to communicate with hardware.

Free the handler with platform, driver
opendnnDestroy
and context information.

Descriptor Manager Methods

Create the descriptor that matches for each parts.
For example, pooling descriptor saves the size of

opendnnCreate [U]Descriptor
window, stride, padding, and the strategy of pooling

such as maximum and average.

Set the parameters to the descriptors when the layer

is declared and reshaped. Each parameters receives by
opendnnSet [U]Descriptor
I/0 file and the APIs parses it and set the parameters

declared in the descriptors.

Get the parameters from the descriptors when they run
the computation methods to calcuate the output data.

opendnnGet [U]Descriptor
The arguments of APIs are pointer type so users can

receive all parameters at one-time.

Computation Methods

Run the computation methods for each parts. Each

methods is implemented by C++ to get the parameters
opendnn [T']Forward
from the descriptor and OpenCL to execute the kernel

on the device parallel.

U = [Convolution|Pooling|Activation|Norm|Tensor|Filter]

T = [Convolution|Pooling|Activation|Norm|Softmax|InnerProduct]

Table 3.1: Summary of OpenDNN API

14
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Chapter 4

Backend Devices

OpenDNN supports various architectures and deep learning frameworks with char-
acteristic programming languages such as C+4 and OpenCL. In this section, we

introduce what code is run on the each backend hardware.

4.1 CPU

Since processor development is limited due to the power wall, developers try to in-
crease the number of cores for parallel processing. Nowadays, Intel Xeon Phi processor
is a bootable host processor that delivers massive parallelism and vectorization to sup-
port the most demanding high-performance computing applications. Recent Xeon Phi
Processor has 72 cores, 36 MB L2 Cache with 1.7 GHz max turbo frequency, so it is
proper to train the DNNs.

Figure shows the Intel Xeon Phi coprocessor block diagram. description of
Intel Xeon Phi. As the CPU can shows similar performance with GPU, it uses on the
server system to training specific DNNs. For example, Facebook AI announces that
they train the News Feed ranking and Sigma on the CPU [13]. News Feed ranking
algorithms help people see the stories that matter most to them first, every time
they visit Facebook. General models are trained to determine various user and envi-
ronmental factors that should ultimately determine the rank order of content. Later,

when a person visits Facebook, the model is used to generate a personalized set of

15 -
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Figure 4.1: Intel Xeon Phi coprocessor block design

the best posts, images, and other. Sigma is the general classification and anomaly

detection framework that is used for a variety of internal applications including site

integrity, spam detection, payments, registration, unauthorized employee access, and

event recommendations. Sigma includes hundreds of distinct models running in pro-

duction everyday, and each model is trained to detect anomalies or more generally

classify content.

N OO Ae WN -

// bot, top, fil, conv: descriptor
// The rest arguments: integer pointer

opendnnGetTensorDescriptor (bot, &in_n, &in_c, &in_h, &in_w, ...);
opendnnGetTensorDescriptor (top, &out_n, &out_c, &out_h, &out_w, ...);
opendnnGetFilterDescriptor (fil, &fil_o, &fil_i, &fil_h, &fil_w, )
opendnnGetConvDescriptor (conv, &pad_h, &pad_w, &str_h, &str_w, ...);

Figure 4.2: Setting the layer parameters getting from descriptors

When the computation API calls, it first sets the layer parameter from the de-

scriptors received from the argument (depicted as Figure [4.2)) and run the kernel.

16



1 // dnput, filter, output: data

2 for (int c=0;c<out_cj;c++) {

3 for (int h=0;h<out_h;h++) {

4 for (int w=0;w<out_w;w++) {

5 float sum=0.f;

6 for (int k=0;k<in_c;k++) {

7 for (int fh=0;fh<fil_h;fh++) {

8 for (int fw=0;fw<fil_w;fw++) {

9 int ih=hx*str_h-pad_h+fh;

10 int iw=w*str_w-pad_w+fw;

11 if (iw>=0&&iw<in_w&&ih>=0&&ih<in_h) {
12 sum+=input [k] [ih] [iw]*filter [c][k] [fh] [fw];
13 Fr3}

14 output [c] [h] [w]l=sum;

15  }}}

Figure 4.3: Sequential C convolution kernel code

Figure describes the sequential code to run convolution kernel. Suppose that the
kernel computes an image. The outer loop (Lines 1-3) indicates the output index to
store the accumulated values, while the inner loop (Lines 5-7) indicates the filter and
computed input index to multiply filter and input in the kernel windows (fil h X
fil w). Programmers can customize the kernel by changing the order of loop, using

vector instructions, and multi-processing using OpenMP pragma.

4.2 GPU

As deep learning requires the ability of large computation in a short time, the demands
of parallel architectures like GPUs is significantly increased. NVIDIA, which is already
developed programming language for their hardware system, called CUDA, has grown
from gaming graphic card company to deep learning architecture company. Recently,
they release Tesla V100 showing extreme performance for Al and high performance
computer. Figure[4.4]shows the Volta GV100 full with 84 SM units that are 50% more
energy efficient than the previous generation Pascal design, enabling major boosts in

FP32 and FP64 performance in the same power envelope [25]. Also, NVLink high-

17



speed interconnect delivers higher bandwidth, more links, and improved scalability for

multi-GPU and multi-GPU/CPU system configurations with 16 GB HBM2 memory

subsystem.
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Figure 4.4: NVIDIA Volta 100 arcutectire

Likewise other layers, convolution layer shows the limitation to parallelize if users

try to parallel the sequential version code. To maximize the parallelism, it gathers the

maximum number of local and global workers and uses them. Especially, convolution

layer uses the convolution lowering [8] that transforms the 4-D tensor to 2-D matrix.

Figure shows the convolution lowering about input, weight and output data. It

is done by reshaping the filter tensor F' into a matrix F;, with dimensions K x

CRS, and gathering a data matrix by duplicating the original input data into a

matrix D,, with dimensions CRS x N P(Q. The computation can then be performed
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with a single matrix multiply to form an output matrix O,, with dimension K X

NPQ. Lowering convolutions to matrix multiplication can be efficient, since matrix

multiplication is highly optimized. Matrix multiplication is fast because it has a high

ratio of floating-point operations per byte of data transferred. This ratio increases as

the matrices get larger, meaning that matrix multiplication is less efficient on small

matrices. Accordingly, this approach to convolution is most effective when it creates

large matrices for multiplication.

DI[0,2,:,:]

Input data
DO | D1 | D2 DO | D1 | D2
D3 | D4 | D5 D3 | D4 | D5
D6 | D7 | D8 D6 | D7 | D8
DJ[0,0,:,:] DI0,1,:,:]
Filter data
FO | F1 FO | F1
F2 | F3 F2 | F3
F[0,:,:,:]
GO | G1 GO | G1
G2 | G3 G2 | G3
Fl1,:,:,:]
FO | F1 [ F2 | F3 | FO | F1 | F2
GO|G1|G2[G3|GO|G1T|G2
Fy,

Figure 4.5: Convolution lowering mechanism
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D8
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D4

D6

D7

D1

D2
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D5

DO

D1

D3

D4

Figure describes the code of convolution lowering after getting the layer pa-

rameters (same as CPU initialization at Figure. First, OpenDNN sets the im2col

function arguments (Lines 2-6) to run the kernel that makes the 3-D and 4-D ten-

sor to 2-D matrix (Lines 7-10). Second, it runs the matrix multiplication function
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to compute the output (Lines 17-20) with set arguments based on the convolution
lowering parameters (Lines 13-16). When the OpenCL kernel issues from the devices,
the devices runs the built kernel code at each processing elements (PE) to maximize
the parallelism. NVIDIA has adopted the Winograd algorithm since cuDNN 5 to
implement the convolution layer. Winograd reduces the number of 3x3 convolution
operations, thus significantly improving performance. Currently, OpenDNN does not
have this feature yet to show much lower performance (some 10x slowdown over

cuDNN), but can be improved in the future without breaking the software stack

above.
1 // im2col
2 int height_col=(in_h+2%pad_h-fil_h)/str_h+1;
3 int width_col=(in_w+2*pad_w-fil_w)str+w+1;
4 int num_kernels=in_c*height_col*width_col;
5 const int local=1024; // maz num.of work items per group
6 const int global=(num_kernels+local-1)/local*local;
7 q->enqueueNDRangeKernel (im2col,
8 cl::NullRange,
9 cl::NDRange (global),
10 cl::NDRange (local));
11
12 // matmul
13 const int M = out_c;
14 const int N = out_h*out_w;
15 const int K = in_c*fil_hx*xfil_w;
16 const int B = sqrt(local);
17 q->enqueueNDRangeKernel (matmul,
18 cl::NullRange,
19 cl::NDRange ((N+B-1)/B*B, (M+B-1) /B*B,1),
20 cl::NDRange(B,B,1));
Figure 4.6: Host code that calls the OpenCL kernel function
4.3 FPGA

FPGA-based accelerator provides users to customize architecture with the charac-
teristics of DNNs, even though the performance is generally low compared to the

GPU. Also, the energy consumption is significantly low that it is very efficient when
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measuring performance per watt. For example, EIE [12] takes the sparsity of DNNs
and skips the zero-related computation (depicted as Figure (a)) to speed up the
overall data process, which is called pruning. On the other hand, Stripes [19] shows
that there is little accuracy loss but achieves high speeds with low precision data type
and bit-serial multiplication PE called SIP (4.7 (b)). Microsoft Brainwave (BW) team
announces that they train the overall networks using FPGA-based accelerator [10] as
you see in the Figure (¢) with customizable number type called ms-fp-8 with multi

function units and vector arbitration networks.

Encoded
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Odd Ptr SRAM Bank
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(a) The architecture of Leading non-zero detection node and PE [12]
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Figure 4.7: Efficient FPGA-based accelerators

OpenDNN supports the FPGA-based accelerator for two ways. First is that user
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customize their own architecture manually and port it on the OpenDNN. Program-
mers implement it using hardware-level languages such as VHDL or Verilog and link
following the layer parameters. The other method is using automatically generated
code that is built by OpenCL and compiler provided by vendors. For example, Xilinx
supports SDAccel program that makes the bitstream running on the Xilinx FPGA
and driver linking host and devices automatically. In this case, we explain the inter-
connected code that used to SDAccel compiler and OpenDNN API.

Figure (a) shows the kernel code optimized by loop unrolling with the pragma
option. With this option, SDAccel automatically unrolls the loop and maximize the
number of PE that determines the parallelism and performance. Figure (b) shows
the host code that uses loop tiling optimization automatically that devides whole loop
iteration into small size windows to match the size of cache. In this code, the offset is
set (Lines 2-4) and data is allocated as a degree of offset in the FPGA memory (Lines
10, 11 and 15). While the kernel is built on run-time in GPU, it is built on compile

time when using SDAccel because it should also make the drivers automatically.
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/* The buffer is tiled */
_kernel attribute ((opencl_unroll_hint (4)) void compute (

global const float* f_buf,
global const float* i_buf,
global float* o_buf,
const int str_h, const int str_w,
const int Tr_i, const int Tc_i,
const int Ti, const int Tr,
const int Tc, const int To, const int K) {
for (int fh=0;fh<K;++fh) {
for (int fw=0;fw<K;++fw) {
for (int h=0;h<Tr;++h) {
for (int w=0;w<Tc;++w) {
for (int c=0;c<To;++c) {
for (int k=0;k<Ti;++k) {
o_buf [c][h][w]l+=
i_buf [k*Tc_i*Tr_i+(h*str_h+fh)*Tc_i+wxstr_w+fw]*
f_bufl[cl[k]l[fh][fw];
FIIFF

(a) FPGA kernel that runs with loop unrolling

/* To, Ti, Tc, and Tr are customizable value */

size_t f_size = ToxTixKx*K;
size_t i_size = Ti*xTr_i*Tc_i;
size_t o_size = ToxTrxTc;

for (int row=0;row<out_h;row+=Tr) {
for (int col=0;col<out_w;col+=Tc) {
for (int to=0;to<out_c;to+=To) {
for (int ti=0;ti<in_c;ti+=Ti) {
load_mem_input (i_buf, input, isize);
load_mem_filger (f_buf, filter, fsize);

gq->enqueueTask (kenl_conv);

store_mem_output (output, o_buf, osize);

333}

(b) FPGA host code calling kernel with loop tiling

Figure 4.8: FPGA convolution layer code
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Chapter 5

OpenDNN-enabled DNN Frameworks

5.1 Caffe

Caffe [17] is a deep learning framework made with expression, speed, and modularity
in mind. It is developed by Berkeley AI Research (BAIR) and by community con-
tributors. As a C++-based deep learning framework, the speed is faster than other
framework so it was widely used in research experiments. Also, the extensible code
forsters active development such as Intel Caffe, which is optimized to run on their
Xeon Phi, and Caffe-Ristretto [11] that emulates hardware-oriented approximation of

quantized DNN. We port OpenDNN in the Caffe easily with a few code modification.

1 # In Makefile
2 ifeq ($(OPENDNN), 1)
3 LIBRARIES += opendnn OpenCL
1 # In Makefile.config 4 COMMON_FLAGS += -DOPENDNN
2 OPENDNN := 1 5 endif
(a) Caffe Makefile.config (b) Caffe Makefile

Figure 5.1: Addition code at Caffe Makefile and its configuration

To link the OpenDNN on the Caffe, programmers should add the Figure (a)
code in the Makefile.config that uses Makefile. Also, they add the Figure (b)
code in the Makefile to link the OpenDNN and OpenCL library and set the OPENDNN

flag that is used in the Caffe layer functions such as convolution layer, pooling layers,
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and so on.

/* API added on conventional layer methods */

‘#include <opendnn.h>

class CuDNNConvolutionLayer : public ConvolutionLayer <Dtype> {

1

2

3

4 ...

5 template <typenape Dtype>
6

7

8

opendnnHandle_t* handle_;
9 vector<opendnnTensorDescriptor_t> bottom_descs_, top_descs_;
10 opendnnFilterDescriptor_t filter_desc;
11 vector<opendnnConvolutionDescriptor_t> conv_descs_;
12
13 %

Figure 5.2: Header file modification to run OpenDNN in Caffe

In this example, we explain the OpenDNN-based convolution layer function that
is portion of 80 ~ 90% of CNNs. Figure shows the additional code to declare and
define the OpenDNN API. Users do not have to use #ifdef macro if you use only
OpenDNN API; In other words, you can use both OpenDNN and other library like
cuDNN.

Figure shows the difference between original code and OpenDNN-ported one
(the grey box). As you see, the OpenDNN try to maintain the cuDNN format for
easy programming and portability. There is some difference on the API. First, we
remove the one and zero arguments since they are almost constant values. Second,
OpenDNN runs the group loop in the APT that is exposed in the cuDNN API (Line
7 in Figure . In this code, programmers can use OpenDNN API with the effort
of removing loop iteration. This method is same as other layers such as pooling,

activation, and so on.
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void CuDNNConvolutionLayer::Forward_gpu/(
vector<Blob<Dtype>* >& bottom, vector<Blob<Dtype>* >& top) {
Dtype* weight = this->blobs_[0]->gpu_data();
for (int i = 0; i < bottom.size(); ++i) {

Dtype* bottom_data = bottom[i]l->gpu_data();

Dtype* top_data = top[i]->mutable_gpu_data();

for (int 0; < this->group_; g++) {

// Skip
3}

(a) Original Caffe code

void CuDNNConvolutionLayer::Forward_gpu(
vector <Blob<Dtype>* >& bottom, vector<Blob<Dtype>* >& top) {
Dtype* weight = this->blobs_[0]->gpu_data();
for (int i = 0; i < bottom.size(); ++i) {

Dtype* bottom_data = bottom[i]l->gpu_data();

Dtype* top_data = topl[il->mutable_gpu_data();

// Skip

133

(b) Modified Caffe code

Figure 5.3: The difference between original and OpenDNN code.
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5.2 TensorFlow

TensorFlow (TF) [7] is an open-source software library for high performance numerical
computation. Its flexible architecture allows easy deployment of computation across
a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers
to mobile and edge devices. Also, TF includes powerful linear algebra compiler called
XLA which helps TF code on the embedded processor and other hardware platforms
as fast as possible. In contrast to Caffe, the interface language is python so users can
start the framework easily. However, the core functions are designed by C++ and
CUDA and the python package is built by google internal build program called bazel.

Bazel is the open-source tool that build and test software of any size, quickly and
reliably. It only rebuilds what is necessary and supports for a lot of languages such
as Java, C++, Android and runs on Windows, macOS, and Linux. As the TF source
code is large, it was difficult to find the proper configuraion setting on the overall
code but we success to build it. We explain how to set the build configuration for the
Bazel. The gray box of Figure (a) shows the BUILD file modification and the one
of Figure (b) shows the bazel configuration file that is similar as python format.
With the compiled libopendnn, bazel starts to build the OpenDNN-ported TF and
spends a long time to build it.

After setting the build configuration, we change the TF core function to connect
OpenDNN. Figure shows the macro code that wrapping the OpenDNN on the
TF API. To enter this code, TF can show the encapsulated code to use only in TF,
hence guarantee of tight security. This is common procedure to port the customized
library on the TF.

Figure[5.6]describes the ported code of convolution layer in TF that uses OpenDNN
API. First, it creates the handler (Lines 4-5) and set the input, output, filter, and

convolution descriptors (Lines 6-34). Next, it runs the computation function (Lines
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36-40) that defined on the OpenDNN API. In this code, you can see the wrap scope
that is declared by the Figure [5.5]
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# tensorflow/stream_ezecutor/BUILD

# at Line 77

cc_library(
"//tensorflow/core:cuda",

"@local_config_cuda//cuda:cudnn",

# third_party/gpus/cuda/BUILD.tpl

(a) BUILD file modification

# third_party/gpus/cuda_configure.bzl
# at line 588
def _find_libs(repository_ctx, cuda_config):

# at line 963

def _create_local_cuda_reiositori(reiositori_ctx):

(b) Bazel configuration file modification

Figure 5.4: Parameters to build OpenDNN-ported TensorFlow
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/% tensorflow/stream_exzecutor/cuda/cuda_dnn.cc */

#include "cuda/include/opendnn.h"

Figure 5.5: Macro setting to build OpenDNN with bazel
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// Define the openDNN parameter and API
bool CudnnSupport::DoConvolveImpl(...) {

Figure 5.6: Source code modification to run OpenDNN in TensorFlow
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5.3 DarkNet

DarkNet [29] is an open-source neural network framework written in C and CUDA.
It is fast, easy to install, and supports CPU and GPU computation. Based on this
projects, many works are designed in the computer vision and deep learning area.
For example, YOLO [28] project that is already widely used in image detection is
improved recently. Also, XNOR-Net [27], reducing lots of multiplication by using a
few XNOR logical computation, is DarkNet-based project. As DarkNet is based on

C language, we add extern C code in the OpenDNN to interconvert it.

1 /* convolutional_layer.h */
2 lvoid opendnn_convolutional_setup(layer *1); [
3
4 /* darknet.h */
5 #ifdef GPU
6 ..
7 #include "opendnn.h"
8 A
9 #endif
10 ...
11 |opendnnHandle_t opendnn_handle;
12 |opendnnTensorDescriptor_t srcTensorDesc;
13 |opendnnTensorDescriptor_t dsrcTensorDesc;
14 |opendnnTensorDescriptor_t dstTensorDesc;
1 # In Makefile 15 |opendnnTensorDescriptor_t ddstTensorDesc;
9  OPENDNN=1 16 |opendnnTensorDescriptor_t normTensorDesc;
3 ifeq ($(OPENDNN), 1) 17 |opendnnFilterDescriptor_t weightDesc;
4 COMMON+= -DOPENDNN 18 |opendnnFilterDescriptor_t dweightDesc;
5 CFLAGS+= -DOPENDNN 19 |opendnnConvolutionDescriptor_t convDesc;
6 endif 20
(a) DarkNet Makefile (b) DarkNet framework header file

Figure 5.7: Makefile and header file modification to port OpenDNN in DarkNet

In DarkNet Makefile we add some code as Figure (a) to set the flags. Also,
we declare the OpenDNN API on the darknet.h as you see in the Figure[5.7] (b). The
variables starting as d mean the differentiation and they are used to back propagation.

Figure describes the initialization of convolution layers using OpenDNN API.
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/% convolutional_kernels.cu */
void forward_convolutional_layer_gpu(
convolutional_layer 1, network net) {
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Figure 5.8: Convolution forward running OpenDNN-ported DarkNet

The handler is initialized at GPU-related code (Lines 2-9) and other elements such
as tensors, filter, and convolution are initialized on the convolution layer code (Lines
16-24). After creating and initializing, the handler and elements are set from the con-
volution setup functions (Line 25) that is defined on the OpenDNN API (Lines 29-46).
This process is same as constructor and reshaping. DarkNet uses this defined convo-
lution layer to execute the convolution forward function as you see in the Figure

that runs on the GPU.
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38
39
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41
42
43
44
45

/% cuda.c */

/* convolutional_layer.c */
convolutional_layer make_convolutional_layer (...) {
convolutional_layer 1;

}

Figure 5.9: OpenDNN API usage in DarkNet convolution layer
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Chapter 6

Evaluation

6.1 Programmable Effort

Modification of Existing Code LoC for LoC for
Framework
Added | Modified | Deleted | Total | Conv.Layers | Framework
Calffe 26 4 1 31 380 63,733
TensorFlow 64 22 196 296 4454 1,889,608
DarkNet 43 4 1 48 380 25,144

Table 6.1: Modified code lines for each framework

We try to reduce the code lines in original framework as modifying many lines re-
quires programmer’s efforts. Table[6.1]shows the count of lines to run the OpenDNN’s
convolution API for each framework. Caffe and DarkNet require 31 and 48 code re-
vision at the convolution layer code, while TF shows much code modification as 296.
For the percentage of code, however, OpenDNN provides the environment that mod-
ify a few code for all frameworks. Especially, the modified TF code lines is 296, which
is 6.656% of convolution layer code lines and only 0.016% of total framework that is
approximately 1.9 million lines.

Table shows the library coverage of OpenDNN and cuDNN. OpenDNN sup-
ports six descriptors, which is except for RNN and dropout descriptor from cuDNN.

Since we does not support these descriptor and forward/backward specific algorithm,
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Library Num.of Descriptor | Num.of Datatype | Num.of API

cuDNN 8 36 124

OpenDNN 6 10 28

Table 6.2: API Coverage comparison OpenDNN with cuDNN

the number of data type is 10, but cuDNN supports 36 data type including algorithm
settings such as Winograd and FFT. Also, the number of OpenDNN API is 28, but
the number of cuDNN APT is 124. Because above 80 percent of DNNs are CNNs,
OpenDNN is concentrated to implement CNN-specific API. MLP, another kinds of
DNNs, does not require complex API as it is calcuated by inner product function.
For this reason, current OpenDNN does not support RNN-based DNNs. Besides, the
three frameworks use cuDNN library only when they run the CNNs, hence no needs
to implement the rest APIs. We will implement other APIs for latest DNNs such as
MANN and LSTM in the future.

6.2 Performance

We evaluate the OpenDNN performance with different architectures (CPU, GPU,
FPGA). Since convolution layer spends dominant computation time in CNNs, we
evaluate only convolution layer. The CPU runs the sequential code, GPU does the
parallel code implemented by convolution lowering, and FPGA does the loop tiling
code with accelerator compiled by OpenCL kernel. Table describes the archtec-
tures environment that OpenDNN is measured on.

Before evaluating the performance, we profile the GPU kernel and found that
the im2col is 10 times slower than the one designed by NVIDIA CUDA because
of the OpenCL address space issues. We internally tested to use CUDA im2col and

OpenCL matmul function as usual, and the performance is much higher than previous
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Hardware | Environment Note

CPU Intel ®Core™i7-7700K CPU @ 4.20GHz 32GB DDR4, use single-core
GPU NVIDIA Titan Xp @ 1405MHz 12GB GDDRS5, 3840 core
FPGA Xilinx Kintex UltraScale FPGA @ 250MHz | 16GB on-board DDR4

Table 6.3: Experiment environment

one. We test spended time to test the overall testset of three popular DNNs (LeNet,
Cuda-convnet, AlexNet). As you see in the Figure GPU shows best performance
in the three architectures with more than 10x faster than CPU, while FPGA has
low performance even though it is designed to process data parallel. In FPGA, its
bitstream is built using the general-purpose kernel that runs GPU. Since the kernel
is too small to maximize FPGA utilization, SDAccel makes the bitstream, which
includes a tiling PE, small buffer to store the tiled data, and low bandwidth utility to
transport data. The performance would be increased if we implement specific kernel
that targets only FPGA with complex pragma options.

oCPU mGPU = FPGA
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Figure 6.1: Performance of CPU, GPU, and FPGA with different DNNs
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Figure shows the time portion to run the DNNs as a single batch. Note that
CPU and GPU does not require additional command to write opcode to compute
input-weight vector multiplication, while FPGA needs it to do. Generally, the time
to write and read the data on the CPU is similar to the time on GPU. The big
difference is that execution time is reduced more than 10 times on GPU. As the time
is decreased, the ratio is changed, but the absolute time is static. In FPGA, 46% of
time is used to run the hardware, and the rest time is used to read and write the data.
As the hardware executes a single PE the performance could be improved if parallel
PEs are implemented on the FPGA. Also, about the half of total time is used to
transfer weight, input, and output data. OpenDNN allocates the memory and moves
the data from the host to device. This is inefficient compared to the general framework
that allocates the overall workspace at one-shot. Therefore, the performance would

be increased if we add additional API to allocate the data memory at one-shot.

130%_ ~1.10%

20

m HW execution Write input = Write weight = Write OP Read output

FPGA GPU 1405 CPU
2.50%

Figure 6.2: Time portion to run one batch on CPU, GPU, and FPGA
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Chapter 7

Related Work

Nowadays, a lot of open-source projects for DNNs are released and have implemented
by vendors to selling their architecture and server system. NVIDIA CUTLASS [2]
is a set of CUDA C++4 template abstractions to implement high performance ma-
trix multiplication at all levels and scales within CUDA. It includes concepts for
hierarchical decomposition and data transformation similar to those used to imple-
ment cuBLAS. The difference is that it decomposes these moving parts into reusable
components abstracted by C++ template classes and can be specialized and tuned
by tiling sizes, data types, and other algorithmic policy. AMD MIOpen [3] targets
for CNN acceleration built to run on top of the ROCm software stack. It suuports
for OpenCL and HIP enabled frameworks. With ROCm, it optimized convolutions
including Winograd,FFT transformations, and GEMM. Intel cIDNN [I] is an open-
source performance library for deep learning applications intended for acceleration of
deep learning inference on Intel HD Graphics Driver and Intel Iris graphics. cIDNN
includes highly optimized building blocks to implement CNNs with C and C++ inter-
faces. Intel MKL-DNN [4] is capable of programming from general Intel CPU to their
manycore architecture such as Intel Atom and Xeon Phi series and programmed as
OpenCL. While these open-source projects target their own devices, OpenDNN sup-
ports all these devices without hardware discriminations, needless to say the superior

compatibility of deep learning framework.
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Chapter 8

Conclusion

This thesis introduces OpenDNN, an open-source library with cuDNN-like API sup-
porting multiple hardware devices. cuDNN offers high performance for DNNs, but it
is not open-source and targets NVIDIA GPUs only. By using OpenDNN, users can
easily develop and accelerate DNNs on the CPUs, GPUs and FPGAs. Furthermore,
DNN experts can customize it as they wish, to improve performance. OpenDNN is
successfully ported to popular deep learning frameworks on different architectures.
Even though the performance is not good compared to hardware-specific libraries, we
have an opportunity to improve the performance with different optimization method-
ology. We leave such optimization as future work, including Winograd convolution

and n-bit quantization.
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