59 research outputs found

    - Hydrogen Storage Materials and Anodes Materials for Solid-state LIB

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2019. 2. ์˜ค๊ทœํ™˜.This thesis deals with on microstructural effects on a reversible charging/discharging behavior of energy carriers in solid-state energy storage media, hydrogen storage materials and solid-state lithium ion battery. The first part is a study of gas back pressure effect on enhancing dehydrogenation reaction of either LiBH4-YH3 (8.5 wt% H2) or LiBH4-MgH2 (11.4 wt% H2) hydrogen storage composite by suppressing the formation of unfavorable Li2B12H12 intermediate phases. These two composites are known as LiBH4-based reactive hydride composites where YH3 and MgH2 are added to LiBH4, respectively. Despite their hydrogen capacities lower than 17.4 wt% H2 of LiBH4, the composites can be dehydrogenated or rehydrogenated at lower temperature and pressure conditions together with higher hydrogen-sorption reversibility than pure LiBH4. It is because that the addition of YH3 and MgH2 destabilizes LiBH4, and yields YB4 or MgB2 instead of free boron in the dehydrogenation reaction of LiBH4-YH3 and LiBH4-MgH2, respectively. However, the literatures have reported that both two composites exhibit retarded hydrogen desorption behavior, which is regarded as drawback of hydrogen storage materials. They claimed that the reaction between LiBH4 and YH3 and LiBH4 and Mg, which is the respective intended reaction releasing hydrogen release of LiBH4-YH3 and LiBH4-MgH2 composite, was accomplished after unexpected reaction incubation periods. In this study, we found that the increase in hydrogen back pressure promotes the dehydrogenation of both LiBH4-YH3 and LiBH4-MgH2 composite by shortening their reaction incubation periods. In case of the LiBH4-YH3 dehydrogenated at 350 ยบC, the reaction between LiBH4 and YH3 was rarely achieved under static vacuum condition and was achieved after ~12 hour incubation period under 0.1 MPa H2, whereas the incubation period was shorter as the hydrogen back pressure was higher and eventually, no incubation period was observed under 0.7 MPa H2. The fact that the dehydrogenation of hydride can be accelerated by increasing hydrogen back pressure is an unusual phenomenon contrary to Le Chatelier's principle. More interestingly, we found that the increase of not only hydrogen but also argon, neon and helium back pressure similarly promotes the dehydrogenation of LiBH4-YH3 by shortening the reaction incubation period. To our knowledge, this is the first report demonstrating the fact that the inert gas back pressure, which does not participate in any chemical reactions, can improve the dehydrogenation reaction of hydrides. Similar to the dehydrogenation of LiBH4-YH3, the increase in hydrogen or argon back pressure was found to be able to eliminate the reaction incubation period prior to the 2nd hydrogen release through the reaction of LiBH4 and Mg in the LiBH4-MgH2. Through systematic analysis, we noticed that the reaction incubation period is associated with the unexpected formation of Li2B12H12 phase. At the pressure condition where the dehydrogenation of LiBH4-YH3 and LiBH4-MgH2 was not achieved or achieved after long incubation period, we clearly detected the presence of Li2B12H12 phase in their dehydrogenated products, whereas we couldnt detect any evidences for the presence of Li2B12H12 in the case of that the LiBH4-YH3 and LiBH4-MgH2 was dehydrogenated without any reaction incubation periods, respectively. The reason why the Li2B12H12 phase hinders or retards the reaction between YH3 and LiBH4 in the dehydrogenation of LiBH4-YH3 is concerned with the high stability of Li2B12H12. (ฮ”H=125 kJ/mol H2) At 400 ยบC and static vacuum condition, we verified that the Li2B12H12 phases are rapidly formed within a few minutes in the early stage of dehydrogenation and they are stably remained without any decomposition until the end of subsequent dehydrogenation. In the consideration of the fact that the Li2B12H12 phases distribute on the surface of YH3 and greatly increase the activation energy for the reaction between LiBH4 and YH3, we concluded that the stable Li2B12H12 membrane on the YH3 surface limits the heterogeneous nucleation sites for the formation of YB4. On the other hand, the increase of gas back pressure effectively reduces the amount of Li2B12H12 in the dehydrogenation of LiBH4-YH3 and the less Li2B12H12 on the YH3 surface lead to more sites for YB4 nucleation, resulting in shorter length of incubation periods. The mechanisms of hydrogen and argon back pressure hindering the Li2B12H12 formation seems to be different. The hydrogen back pressure effect is a thermodynamic tuning. When the hydrogen back gas pressure is higher than 0.2 MPa at 350 ยบC, the pressure atmosphere in the reactor is higher than the equilibrium pressure for the following reaction, LiBH4 โ†’ 1/12 Li2B12H12 + 5/6 LiH + 13/12 H2 (g) and accordingly, the LiBH4 is stable not decomposed to Li2B12H12. In the case that the gas species is not hydrogen, the gas back pressure effect is probably to suppress B2H6 gas decomposition from LiBH4. The suppression of B2H6 gas decomposition is of importance since the B2H6 may form Li2B12H12 by reacting with undecomposed LiBH4 through the following reaction, 2 LiBH4 + 5 B2H6 (g) โ†’ Li2B12H12 + 13 H2 (g) at above 200 ยบC. By building up the compressive stress on the surface of each LiBH4 particle, the inert gas back pressure suppresses the B2H6 emission from LiBH4 and this suppression enables LiBH4-YH3/LiBH4-MgH2 to release hydrogen without Li2B12H12 formation and reaction incubation period. This finding implies that the construction of favorable microstructure is important for the LiBH4-YH3 and LiBH4-MgH2 composite to achieve a consistent hydrogen release without any kinetic restriction. The second part of this thesis is a study on the development of Si/C fibers as anode active materials for solid-state lithium ion batteries. In order to apply high capacity (3,579 mAh g-1) silicon anode materials to solid-state lithium ion battery, we here construct various Si/C nanofibers where 50 nm size Si particles are embedded in carbon fibers. The expected positive roles of the carbon fiber matrix are four: firstly, it plays a conductive agent role to facilitate electron transfer into Si. Secondly, carbon fiber itself can be lithiated/delithiated and contributes to increase the overall electrode capacity. Thirdly, the carbon fiber matrix accommodates the massive volume change of Si when it alloys or de-alloys with Li. The carbon fiber undergoes ~10 % volume expansion in its lithiation and the volume expansion acts to apply a compressive stress to suppress the massive volume expansion of Si. Lastly, The Si-encapsulated carbon matrix can prevent unnecessary lithium consumption for continuous SEI layer formation on the silicon particle surface that can be continuously exposed to SSE due to repeated Sis volume changes during the cycling test. As a result, it is confirmed that our anode electrode with ~100 nm Si/C fibers exhibits reversible capacity of 700 mAh g-1 normalized to electrode composite mass up to 70 discharge-charge cycles (1,000 mAh g-1 for Si/C mass) To our knowledge, this is the highest reversible capacity of Si-based anode electrode composite in solid electrolyte lithium ion battery system. To investigate the correlation between fiber diameter and electrochemical performance, we prepared three electrodes (A, B, C), containing Si/C fibers with ~2 ยตm, ~1 ยตm and ~0.1 ยตm diameters, respectively. Our results revealed that although the composition of all three electrodes was nearly the same, the Si/C fiber based electrodes exhibited better capacity retention when their fiber diameters were smaller. The preparation of Si/C fibers with the thin diameter of ~0.1 ฮผm designed considering the Si particle size (~50 nm) was effective in mitigating the increase of the internal resistance and the formation of lithium concentration imbalance in each fiber during the subsequent cycling test. This finding implies that the design of Si/C fibers with a proper diameter is important to improve the electrochemical performance of Si/C anodes in Li2S-P2S5 electrolyte-based solid-state lithium ion battery.๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ์ „๊ณ ์ฒด ์—๋„ˆ์ง€ ์ €์žฅ ๋งค์ฒด์ธ ์ˆ˜์†Œ ์ €์žฅ ์žฌ๋ฃŒ์™€ ์ „๊ณ ์ฒด ๋ฆฌํŠฌ ์ด์˜จ ์ „์ง€ ๋‚ด ์—๋„ˆ์ง€ ์บ๋ฆฌ์–ด์˜ ๋†’์€ ๊ฐ€์—ญ์ ์ธ ์ถฉ๋ฐฉ์ „ ๊ฑฐ๋™์„ ์œ„ํ•œ ๋ฐ˜์‘ ์ œ์–ด ์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ๋ฒˆ์งธ ํŒŒํŠธ๋Š” ์ˆ˜์†Œ ์ €์žฅ ๋ณตํ•ฉ ์žฌ๋ฃŒ์ธ LiBH4-YH3 (8.5 wt% H2) ์™€ LiBH4-MgH2 (11.4 wt% H2) ์˜ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์„ ํ–ฅ์ƒ ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ์ด ๋‘ ๋ณตํ•ฉ ์žฌ๋ฃŒ๋Š” LiBH4์— YH3์™€ MgH2๊ฐ€ ๊ฐ๊ฐ ์ฒจ๊ฐ€๋œ ํ˜•ํƒœ์˜ LiBH4-based reactive hydride composite๋“ค๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. LiBH4์˜ 17.4 wt% H2 ๋ณด๋‹ค ๋‚ฎ์€ ์ˆ˜์†Œ ์ €์žฅ ์šฉ๋Ÿ‰์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด ๋ณตํ•ฉ ์žฌ๋ฃŒ๋“ค์€ LiBH4๊ฐ€ ๋‹จ๋…์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ์„ ๋•Œ์— ๋น„ํ•ด ๋” ๋‚ฎ์€ ์˜จ๋„ ๋ฐ ์••๋ ฅ ์กฐ๊ฑด์—์„œ ๋” ๋†’์€ ์ˆ˜์†Œ ํก๋ฐฉ์ถœ ๊ฐ€์—ญ์„ฑ๊ณผ ํ•จ๊ป˜ ์ˆ˜์†Œ๋ฅผ ๋ฐฉ์ถœํ•˜๊ฑฐ๋‚˜ ํก์ˆ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” YH3์™€ MgH2์˜ ์ฒจ๊ฐ€๊ฐ€ LiBH4๋ฅผ ๋ถˆ์•ˆ์ •ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘ ์ดํ›„ LiBH4์˜ ๋ถ„ํ•ด ์ƒ์„ฑ๋ฌผ์ธ boron ๋Œ€์‹  YB4์™€ MgB2๋ฅผ ๊ฐ๊ฐ ์ƒ์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ๋ฌธํ—Œ์—์„œ, ๋‘ ๋ณตํ•ฉ ์žฌ๋ฃŒ ๋ชจ๋‘ ์ˆ˜์†Œ ์ €์žฅ ์žฌ๋ฃŒ๋กœ์„œ ๋ฌธ์ œ์ ์œผ๋กœ ์ธ์‹๋˜๋Š” ์ง€์—ฐ๋œ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๊ฑฐ๋™์„ ๋ณด์ธ๋‹ค๋Š” ๊ฒƒ์ด ๋ณด๊ณ ๋˜์–ด ์™”๋‹ค. ๊ทธ๋“ค์€ LiBH4-YH3์™€ LiBH4-MgH2์˜ ์˜๋„๋œ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์ธ LiBH4์™€ YH3๊ฐ„, ๊ทธ๋ฆฌ๊ณ  LiBH4์™€ Mg๊ฐ„ ๋ฐ˜์‘์ด ์˜ˆ๊ธฐ์น˜ ์•Š์€ ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ๋ฅผ ๊ฑฐ์นœ ํ›„์— ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ฃผ์žฅํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ, ์šฐ๋ฆฌ๋Š” ์ˆ˜์†Œ ๋ฐฐ์••์˜ ์ฆ๊ฐ€๊ฐ€ ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ๋ฅผ ๋‹จ์ถ• ์‹œํ‚ค๋ฉด์„œ LiBH4-YH3์™€ LiBH4-MgH2์˜ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์„ ์ด‰์ง„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. 350 ยบC ์—์„œ LiBH4-YH3์˜ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์ด ์ง„ํ–‰๋  ๊ฒฝ์šฐ, LiBH4์™€ YH3๊ฐ„ ๋ฐ˜์‘์ด ๊ฑฐ์˜ ์ผ์–ด๋‚˜์ง€ ์•Š์€ ์ง„๊ณต ๋ถ„์œ„๊ธฐ๋‚˜ 12์‹œ๊ฐ„์˜ ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ ํ›„ ์ˆ˜์†Œ๋ฅผ ๋ฐฉ์ถœํ•œ 0.1 MPa ์ˆ˜์†Œ ๋ฐฐ์•• ์กฐ๊ฑด์— ๋น„ํ•ด, ์ˆ˜์†Œ ๋ฐฐ์••์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ๋Š” ์ ์  ์งง์•„์ ธ 0.7 MPa์—์„œ๋Š” ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ๊ฐ€ ํ™•์ธ๋˜์ง€ ์•Š์•˜๋‹ค. ์ˆ˜์†Œํ™”๋ฌผ์—์„œ์˜ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์ด ์ˆ˜์†Œ ๋ฐฐ์••์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๊ฐ€์†ํ™”๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ ๋ฅด ์ƒคํ‹€๋ฆฌ์—์˜ ์›๋ฆฌ์— ๋ฐ˜ํ•˜๋Š” ๋งค์šฐ ์ด๋ก€์ ์ธ ํ˜„์ƒ์ด๋‹ค. ๋” ํฅ๋ฏธ๋กœ์šด ์‚ฌ์‹ค์€, ์ˆ˜์†Œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์•„๋ฅด๊ณค, ๋„ค์˜จ ๊ทธ๋ฆฌ๊ณ  ํ—ฌ๋ฅจ ๋ฐฐ์••์˜ ์ฆ๊ฐ€ ๋˜ํ•œ ์œ ์‚ฌํ•˜๊ฒŒ LiBH4-YH3์˜ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์„ ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ๋ฅผ ๋‹จ์ถ•์‹œํ‚ค๋ฉด์„œ ์ด‰์ง„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์ด๋‹ค. ํ™”ํ•™ ๋ฐ˜์‘์— ์ „ํ˜€ ์ฐธ์—ฌ ํ•˜์ง€ ์•Š๋Š” ๋ถˆํ™œ์„ฑ ๊ธฐ์ฒด ์••๋ ฅ ์กฐ๊ฑด์ด ์ˆ˜์†Œํ™”๋ฌผ์—์„œ์˜ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์„ ์ด‰์ง„ํ•œ๋‹ค๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ฐํ˜€๋‚ธ ์‚ฌ์‹ค์€ ๋ถˆํ™œ์„ฑ ๊ธฐ์ฒด ํšจ๊ณผ์— ๋Œ€ํ•ด ๋ณด๊ณ ํ•˜๋Š” ์„ธ๊ณ„ ์ตœ์ดˆ์˜ ๊ฒฐ๊ณผ์ด๋‹ค. LiBH4-YH3์™€ ์œ ์‚ฌํ•˜๊ฒŒ, LiBH4-MgH2์˜ 2๋ฒˆ์งธ ์ˆ˜์†Œ ๋ฐฉ์ถœ์ธ LiBH4์™€ Mg ๊ฐ„ ๋ฐ˜์‘ ์ „ ํ™•์ธ๋˜์—ˆ๋˜ ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ ๋˜ํ•œ ์ˆ˜์†Œ๋‚˜ ์•„๋ฅด๊ณค ๋ฐฐ์••์˜ ์ฆ๊ฐ€๋ฅผ ํ†ตํ•ด ์ œ๊ฑฐ๋  ์ˆ˜ ์žˆ์Œ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ฒด๊ณ„์ ์ธ ๋ถ„์„ ๊ฒฐ๊ณผ, ์šฐ๋ฆฌ๋Š” ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ๊ฐ€ ์˜ˆ๊ธฐ์น˜ ์•Š์€ Li2B12H12 ์ƒ์˜ ํ˜•์„ฑ๊ณผ ๊ด€๋ จ ์žˆ์Œ์„ ์•Œ์•„๋ƒˆ๋‹ค. LiBH4-YH3์™€ LiBH4-MgH2์˜ ์ˆ˜์†Œ ๋ฐฉ์ถœ ๋ฐ˜์‘์ด ๊ฑฐ์˜ ์ผ์–ด๋‚˜์ง€ ์•Š๊ฑฐ๋‚˜ ๊ธด ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ ์ดํ›„ ์ผ์–ด๋‚œ ์••๋ ฅ ์กฐ๊ฑด์—์„œ, ์šฐ๋ฆฌ๋Š” ๋ถ„ํ•ด ์ƒ์„ฑ๋ฌผ์—์„œ Li2B12H12์˜ ์กด์žฌ๋ฅผ ๋ถ„๋ช…ํžˆ ํ™•์ธํ•œ ๋ฐ˜๋ฉด, ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ ์—†์ด LiBH4-YH3์™€ LiBH4-MgH2๊ฐ€ ์ˆ˜์†Œ๋ฅผ ๋ฐฉ์ถœํ•œ ๊ฒฝ์šฐ์—์„œ๋Š” Li2B12H12์˜ ์กด์žฌ๊ฐ€ ํ™•์ธ๋˜์ง€ ์•Š์•˜๋‹ค. Li2B12H12๊ฐ€ YH3์™€ LiBH4๊ฐ„ ๋ฐ˜์‘์„ ๋ง‰๊ฑฐ๋‚˜ ์ง€์—ฐ์‹œํ‚ค๋Š” ์ด์œ ๋Š” Li2B12H12์˜ ๋†’์€ ์•ˆ์ •์„ฑ๊ณผ ๊ด€๋ จ์ด ์žˆ๋‹ค. (์ˆ˜์†Œ ๋ถ„ํ•ด ์—”ํƒˆํ”ผ ฮ”H=125 kJ/mol H2) 400 ยบC์™€ ์ง„๊ณต ๋ถ„์œ„๊ธฐ์—์„œ, ์šฐ๋ฆฌ๋Š” Li2B12H12๊ฐ€ ์ˆ˜์†Œ ๋ฐฉ์ถœ ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ ์ˆ˜๋ถ„ ๋‚ด์— ๋น ๋ฅด๊ฒŒ ํ˜•์„ฑ๋˜๊ณ , ๊ทธ ํ˜•์„ฑ๋œ Li2B12H12๋Š” ๋ถ„ํ•ด๋˜์ง€ ์•Š๊ณ  ์ดํ›„ ์ˆ˜์†Œ ๋ถ„ํ•ด ๋ฐ˜์‘์—์„œ ์•ˆ์ •ํ•˜๊ฒŒ ๋‚จ์•„ ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค. Li2B12H12๊ฐ€ YH3 ํ‘œ๋ฉด์— ๋ถ„ํฌํ•˜๊ณ  LiBH4์™€ YH3๊ฐ„ ๋ฐ˜์‘์„ ์œ„ํ•œ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€๋ฅผ ํฌ๊ฒŒ ์ฆ๊ฐ€์‹œํ‚จ ์‚ฌ์‹ค์„ ๊ณ ๋ คํ•˜๋ฉด, ์šฐ๋ฆฌ๋Š” YH3 ํ‘œ๋ฉด์— ์•ˆ์ •ํ•œ Li2B12H12 ํ”ผ๋ง‰์ด YB4์˜ ๋ถˆ๊ท ์ผ ํ•ต์„ฑ์„ฑ์„ ์œ„ํ•œ ์‚ฌ์ดํŠธ๋ฅผ ์ œํ•œํ•œ๋‹ค๊ณ  ๊ฒฐ๋ก ๋‚ด๋ ธ๋‹ค. ๋ฐ˜๋ฉด, ๊ฐ€์Šค ๋ฐฐ์••์˜ ์ฆ๊ฐ€๋Š” ํšจ๊ณผ์ ์œผ๋กœ LiBH4-YH3 ๋ถ„ํ•ด ๋ฐ˜์‘ ์ค‘ Li2B12H12์˜ ์ƒ์„ฑ๋Ÿ‰์„ ์ค„์˜€๊ณ , ๊ทธ YH3 ํ‘œ๋ฉด์— ์ ์€ Li2B12H12 ๋Š” YB4 ํ•ต์„ฑ์„ฑ์„ ์œ„ํ•œ ๋” ๋งŽ์€ ๋ฐ˜์‘ ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Š” ๊ณง ๋” ์งง์€ ๊ธธ์ด์˜ ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚ณ๋Š”๋‹ค. Li2B12H12์˜ ์ƒ์„ฑ์„ ์–ต์ œํ•˜๋Š” ์ˆ˜์†Œ์™€ ์•„๋ฅด๊ณค ๋ฐฐ์•• ํšจ๊ณผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์„œ๋กœ ๋‹ค๋ฅธ ๊ฒƒ์œผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ์ˆ˜์†Œ ๋ฐฐ์•• ํšจ๊ณผ๋Š” ์—ด์—ญํ•™์  ํŠœ๋‹์ด๋‹ค. ์ˆ˜์†Œ ๋ฐฐ์••์ด 350 ยบC ์—์„œ 0.2 MPa๋ณด๋‹ค ํด ๊ฒฝ์šฐ, ๋ฐ˜์‘ ๋ฆฌ์•กํ„ฐ ๋‚ด ์ˆ˜์†Œ ์••๋ ฅ์€ LiBH4 โ†’ 1/12 Li2B12H12 + 5/6 LiH + 13/12 H2 (g) ๋ฐ˜์‘์˜ ํ‰ํ˜• ์ˆ˜์†Œ ์••๋ ฅ ๋ณด๋‹ค ๋†’์•„์ง€๊ณ , ๋”ฐ๋ผ์„œ LiBH4๊ฐ€ Li2B12H12์œผ๋กœ ๋ถ„ํ•ด๋˜๋Š” ์œ„์˜ ๋ฐ˜์‘์ด ํ•ด๋‹น ์˜จ๋„ ๋ฐ ์ˆ˜์†Œ ์••๋ ฅ ์กฐ๊ฑด์—์„œ ๋น„์ž๋ฐœ์ ์ด๋‹ค. ๊ฐ€์Šค์˜ ์ข…๋ฅ˜๊ฐ€ ์ˆ˜์†Œ๊ฐ€ ์•„๋‹ ๊ฒฝ์šฐ์—๋Š”, ๊ฐ€์Šค ์••๋ ฅ ํšจ๊ณผ๋Š” LiBH4๋กœ๋ถ€ํ„ฐ B2H6 ๊ฐ€์Šค์˜ ๋ฐฉ์ถœ์„ ์–ต์ œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. B2H6 ๊ฐ€์Šค๋Š” LiBH4์™€ ๋งŒ๋‚˜ Li2B12H12๋ฅผ 200ยบC ์ด์ƒ์—์„œ 2 LiBH4 + 5 B2H6 (g) โ†’ Li2B12H12 + 13 H2 (g) ๋ฐ˜์‘์„ ํ†ตํ•ด ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— B2H6 ๊ฐ€์Šค ๋ฐฉ์ถœ์˜ ์–ต์ œ๋Š” ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ๊ฐ LiBH4 ์ž…์ž์˜ ํ‘œ๋ฉด์— ์••์ถ• ์‘๋ ฅ์„ ๊ฐ€ํ•˜์—ฌ, ๋ถˆํ™œ์„ฑ ๊ธฐ์ฒด ์••๋ ฅ์€ LiBH4์œผ๋กœ๋ถ€ํ„ฐ B2H6 ๊ฐ€์Šค์˜ ๋ฐฉ์ถœ์„ ๋ง‰๊ณ  ์ด๋Ÿฌํ•œ ์–ต์ œ๋Š” LiBH4-YH3 ๋˜๋Š” LiBH4-MgH2๊ฐ€ ๋ฐ˜์‘ ์ž ๋ณต๊ธฐ ์—†์ด ์ˆ˜์†Œ๋ฅผ ๋ฐฉ์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ๋ฐ˜์‘ ์†๋„ ์  ์ œ์•ฝ ์—†์ด ์ˆ˜์†Œ๋ฅผ ์ง€์†์ ์œผ๋กœ ๋ฐฉ์ถœํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ LiBH4-YH3์™€ LiBH4-MgH2๊ฐ€ ์ˆ˜์†Œ ์ €์žฅ ์žฌ๋ฃŒ๋กœ์„œ ์‹ค์‚ฌ์šฉ ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ๋‘๋ฒˆ์งธ ํŒŒํŠธ๋Š” ์ „๊ณ ์ฒด ์ „์ง€์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” Si/C ํŒŒ์ด๋ฒ„ ์Œ๊ทน ํ™œ๋ฌผ์งˆ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋†’์€ ์—๋„ˆ์ง€ ์ €์žฅ ๋ฐ€๋„๋ฅผ ๊ฐ–๋Š” ์•ˆ์ „ํ•œ ์—๋„ˆ์ง€ ์ €์žฅ ๋งค์ฒด์ธ ์ „๊ณ ์ฒด ๋ฆฌํŠฌ ์ด์˜จ ์ „์ง€์— ์ฐจ์„ธ๋Œ€ ๊ณ ์šฉ๋Ÿ‰ (3,579 mAh g-1) ์‹ค๋ฆฌ์ฝ˜์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „๊ธฐ ๋ฐฉ์‚ฌ์™€ ์ดํ›„ ์—ด์ฒ˜๋ฆฌ ๊ณต์ •์„ ํ†ตํ•ด ์–ป์„ ์ˆ˜ ์žˆ๋Š”, 50 nm ํฌ๊ธฐ์˜ ๋‚˜๋…ธ Si ์ž…์ž๊ฐ€ ์นด๋ณธ ํŒŒ์ด๋ฒ„์— ์‚ฝ์ž…๋œ ํ˜•ํƒœ์ธ Si/C ํŒŒ์ด๋ฒ„๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ๋‚ด๋ถ€์— ์‚ฝ์ž…๋œ Si ์ž…์ž๋ฅผ ๋„“์€ ์ ‘์ด‰ ๋ฉด์ ์„ ๊ฐ€์ง€๋ฉด์„œ ๊ฐ์‹ธ๊ณ  ์žˆ๋Š” ์นด๋ณธ ํŒŒ์ด๋ฒ„ ๊ธฐ์ง€์˜ ๋„์ž…์œผ๋กœ ๊ธฐ๋Œ€๋˜๋Š” ์—ญํ• ์€ ๋„ค ๊ฐ€์ง€๋‹ค. ๋จผ์ € ์นด๋ณธ ํŒŒ์ด๋ฒ„๋Š” ์ „๊ธฐ ์ „๋„๋„๊ฐ€ ์šฐ์ˆ˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์ œ ์ „์ง€ ์‚ฌ์šฉ ํ™˜๊ฒฝ์—์„œ ๋‚ฎ์€ ์ „๊ธฐ์ „๋„๋„๋ฅผ ๊ฐ–๋Š” ์‹ค๋ฆฌ์ฝ˜์— ์ „์ž๋ฅผ ์ „๋‹ฌํ•˜๊ธฐ ์œ„ํ•œ ํ†ต๋กœ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ ์นด๋ณธ ํŒŒ์ด๋ฒ„ ์ž์ฒด๊ฐ€ ๋ฆฌํŠฌ์„ ์ €์žฅํ•  ์ˆ˜ ์žˆ์–ด ์ „์ฒด ์ „๊ทน์˜ ์ „๊ธฐํ™”ํ•™์  ์šฉ๋Ÿ‰์„ ์ฆ๋Œ€ํ•˜๋Š”๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ๋ฒˆ์งธ๋Š” ๋ฆฌํŠฌ ์ถฉ๋ฐฉ์ „ ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ์‹ค๋ฆฌ์ฝ˜์˜ ๊ธ‰๊ฒฉํ•œ ๋ถ€ํ”ผ ๋ณ€ํ™”๋ฅผ ์ˆ˜์šฉํ•˜๋Š” ์—ญํ• ์ด๋‹ค. ์นด๋ณธ ํŒŒ์ด๋ฒ„ ์ž์ฒด๊ฐ€ ๋ฆฌํŠฌํ™” ๋  ๋•Œ ์•ฝ 10%์˜ ๋ถ€ํ”ผ ํŒฝ์ฐฝ์ด ๋ฐœ์ƒํ•˜๋Š”๋ฐ, ์ด ๋ถ€ํ”ผ ํŒฝ์ฐฝ์€ ๋‚ด๋ถ€ ์‹ค๋ฆฌ์ฝ˜์˜ ๋ฆฌํŠฌํ™” ๊ณผ์ • ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€ํ”ผ ํŒฝ์ฐฝ์„ ์–ต์ œํ•  ์ˆ˜ ์žˆ๋Š” ์••์ถ• ์‘๋ ฅ์„ ๊ฐ€ํ•˜๋Š” ์—ญํ• ์„ ํ•˜๊ฒŒ ๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์นด๋ณธ ํŒŒ์ด๋ฒ„ ๊ธฐ์ง€์— ์‹ค๋ฆฌ์ฝ˜์ด ์‚ฝ์ž…๋œ ํ˜•ํƒœ๋Š” ์‹ค๋ฆฌ์ฝ˜ ํ‘œ๋ฉด์ด ์‚ฌ์ดํด ํ…Œ์ŠคํŠธ ๋„์ค‘ ๋ฐ˜๋ณต ๋˜๋Š” ๋ถ€ํ”ผ ๋ณ€ํ™”๋กœ ์ธํ•ด ๊ณ ์ฒด ์ „ํ•ด์งˆ์— ์ง€์†์ ์œผ๋กœ ์ƒˆ๋กœ์ด ๋…ธ์ถœ๋˜์–ด ์ƒ์„ฑ๋  ์ˆ˜ ์žˆ๋Š” SEI ๋ ˆ์ด์–ด ํ˜•์„ฑ์— ์‚ฌ์šฉ๋˜๋Š” ๋ถˆํ•„์š”ํ•œ ๋ฆฌํŠฌ ์†Œ๋ชจ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ~100 nm ์ง€๋ฆ„์„ ๊ฐ–๋Š” Si/C ํŒŒ์ด๋ฒ„๋“ค๋กœ ๊ตฌ์„ฑ๋œ ์šฐ๋ฆฌ์˜ ์Œ๊ทน์ด 70๋ฒˆ์งธ ์ถฉ๋ฐฉ์ „ ์‚ฌ์ดํด๊นŒ์ง€ ์ „๊ทน ์ค‘๋Ÿ‰ ๋Œ€๋น„ 700 mAh g-1์˜ ๊ฐ€์—ญ์ ์ธ ์šฉ๋Ÿ‰์„ ๋ณด์˜€๋‹ค. (Si/C ์ค‘๋Ÿ‰ ๋Œ€๋น„ 1,000 mAh -1) ์ด๊ฒƒ์€ ์ „๊ณ ์ฒด ๋ฆฌํŠฌ ์ด์˜จ ์ „์ง€์—์„œ ์‹ค๋ฆฌ์ฝ˜ ๊ธฐ๋ฐ˜์˜ ์Œ๊ทน ์žฌ๋ฃŒ์— ๊ด€ํ•œ ์ง€๊ธˆ๊นŒ์ง€ ๋ณด๊ณ ๋œ ๊ฒฐ๊ณผ ์ค‘ ๊ฐ€์žฅ ๋†’์€ ๊ฐ€์—ญ ์šฉ๋Ÿ‰์ด๋‹ค. ํŒŒ์ด๋ฒ„ ์ง€๋ฆ„๊ณผ ์ „๊ธฐํ™”ํ•™์  ์„ฑ๋Šฅ ๊ฐ„ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” ~2 ยตm, ~1 ยตm ๊ทธ๋ฆฌ๊ณ  ~0.1 ยตm์˜ ๋‹ค๋ฅธ ์ง€๋ฆ„์„ ๊ฐ–๋Š” Si/C ํŒŒ์ด๋ฒ„๋“ค๋กœ ๊ตฌ์„ฑ๋œ ์„ธ ์ „๊ทน์„ ์ค€๋น„ํ–ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” ์„ธ ์ „๊ทน ๋‚ด ์›์†Œ ๋ณ„ ์กฐ์„ฑ์ด ๊ฑฐ์˜ ๋™์ผ ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , Si/C ํŒŒ์ด๋ฒ„์˜ ์ง€๋ฆ„์ด ์ž‘์„์ˆ˜๋ก ๋” ๋‚˜์€ ์šฉ๋Ÿ‰ ์œ ์ง€์œจ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ์‚ฝ์ž…๋˜๋Š” ๊ฐ ์‹ค๋ฆฌ์ฝ˜ ์ž…์ž์˜ ํฌ๊ธฐ (์•ฝ 50 nm)์„ ๊ณ ๋ คํ•˜์—ฌ ์„ค๊ณ„๋œ ~0.1 ฮผm ์ง€๋ฆ„์€, ์ดํ›„ ์‚ฌ์ดํด ํ…Œ์ŠคํŠธ์—์„œ ๋‚ด๋ถ€ ์ €ํ•ญ์˜ ์ฆ๊ฐ€๋‚˜ ๊ฐ Si/C ํŒŒ์ด๋ฒ„ ๋‚ด ๋ฆฌํŠฌ ๋†๋„ ๊ตฌ๋ฐฐ ํ˜•์„ฑ์„ ์™„ํ™”ํ•˜๋Š”๋ฐ ํšจ๊ณผ๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ์‚ฌ์‹ค์€ ์ „๊ณ ์ฒด ๋ฆฌํŠฌ ์ด์˜จ ์ „์ง€ ์‹œ์Šคํ…œ์— ๊ฐœ์„ ๋œ ๊ฐ€์—ญ ์šฉ๋Ÿ‰์„ ์œ„ํ•ด Si/C ํŒŒ์ด๋ฒ„์˜ ์ง€๋ฆ„์ด ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์—ฐ๊ตฌ๊ฐ€ ์ „๊ณ ์ฒด ๋ฆฌํŠฌ ์ด์˜จ ์ „์ง€์— Si/C ํŒŒ์ด๋ฒ„๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์œ ์ตํ•œ ์ ‘๊ทผ์˜ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค.Abstract i List of Tables viii List of Figures ix Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Research Objective 3 1.3 References 4 Chapter 2. Hydrogen storage materials: Gas back pressure effect on promoting dehydrogenation reaction of LiBH4-YH3 and LiBH4-MgH2 composite 9 2.1 LiBH4-YH3 composite 9 2.1.1 Introduction 9 2.1.2 Experimental procedures 10 2.1.3 Results 14 2.1.3.1 Pressure-enhanced dehydrogenation reaction 14 2.1.3.2 The role of early stage atmosphere in the dehydrogenation reaction 27 2.1.3.3 Microstructural characterization of dehydrogenated products 37 2.1.3.4 Dehydrogenation reaction kinetics promoted by various inert gas atmospheres 47 2.1.4 Conclusion 58 2.1.5 References 60 2.2 LiBH4-MgH2 composite 63 2.2.1 Introduction 63 2.2.2 Experimental procedure 65 2.2.3 Result 66 2.2.3.1 Dehydrogenation reaction pathway of LiBH4-MgH2 composite under various pressure conditions 66 2.2.4 Conclusion 87 2.2.5 Reference 88 Chapter 3. Solid-state lithium ion batteries: nanostructured Si/C fibers as a highly reversible anode material for all-solid-state lithium-ion batteries 93 3.1 Introduction 93 3.2 Experimental procedures 94 3.3 Results 98 3.3.1 Preparation of Si/C fibers with different fiber diameters 98 3.3.2 Fiber diameter influence on electrochemical performance of Si/C fibers in Li2S-P2S5 electrolyte-based SLIB system 101 3.4 Conclusion 120 3.5 Reference 121 Chapter 4. Conclusion 128 Biblography 130 Abstract in Korean 138Docto

    [GATA]n์˜ ๋™์ผํ•œ ๋ฐ˜๋ณต์„œ์—ด์„ ๊ฐ–๋Š” ์„ธ STR ์œ ์ „์ž์ขŒ์— ๋Œ€ํ•œ multiplex PCR ๋ฐ ์ด๋“ค ์œ ์ „์ž์ขŒ์˜ ๋ฒ•์˜ํ•™์  ์ด์šฉ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๋ฒ•์˜ํ•™์ „๊ณต,1997.Maste

    ๊ธˆ์† ์œ ๋„ ์ธก๋ฉด ๊ฒฐ์ •ํ™”์— ์˜ํ•œ ๋‹ค๊ฒฐ์ • ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋ˆ„์„ค์ „๋ฅ˜ ๊ฐ์†Œ ๋ฐ ๊ตฌ๋™ํšŒ๋กœ ์ ์šฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธˆ์†๊ณตํ•™๊ณผ,1999.Maste

    Study on the blends of aromatic polyamide thermoplastic elastomers and nylon 6

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต์—…ํ™”ํ•™๊ณผ,1997.Docto

    ๊ณ ์ฃผํŒŒ ์ฃผ์ž…์„ ์ด์šฉํ•œ ์„ผ์„œ๋ฆฌ์Šค ์ œ์–ด๊ธฐ๋ฒ•์— ์˜ํ•œ ์ „๋™์ฐจ ์‹œ์Šคํ…œ์˜ ์ €์† ํŠน์„ฑ ๊ฐœ์„ 

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐ๊ณตํ•™๋ถ€,2000.Maste

    Review on research diagnostic criteria for temporomandibular disorders(RDC/TMD)

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜ํ•™๊ณผ, 2011.2. ๊น€๊ด€์‹.Maste

    Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films

    No full text
    We have measured the spectral photoresponse of Al/pentacene Schottky junction photodiodes and optical absorptionspectra of pentacene films thermally evaporated on glass. The photoelectric response exhibited the genuine highest occupied molecular orbital (HOMO)โ€“lowest unoccupied molecular orbital (LUMO) transition at 1.97 eV and interband absorption peaks at 2.3 and 2.5 eV. These peaks are also identified in the optical absorptionspectra, but they are dominated by additional strong exciton peaks at 1.82 and 2.1 eV. By comparing these complementary measurements, we determine the HOMOโ€“LUMO gap energy of 1.97 eV and the fundamental exciton binding energy of 0.15 eV for thin solid pentacene.ope

    (A)Study on the effect of dopants on the MILC behavior

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2003.Docto
    • โ€ฆ
    corecore