8 research outputs found

    ์ฐจ์„ธ๋Œ€ ๊ตฌ๋ฆฌ ์ƒ๊ฐ ๊ณต์ •์„ ์œ„ํ•œ ๋ฃจํ…Œ๋Š„ ๋ฐ ์ฝ”๋ฐœํŠธ/๋‹ˆ์ผˆ ํ•ฉ๊ธˆ ํ™•์‚ฐ ๋ฐฉ์ง€๋ง‰ ์ƒ ์ง์ ‘ ๊ตฌ๋ฆฌ ๋„๊ธˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2016. 2. ๊น€์žฌ์ •.๋ฐ˜๋„์ฒด ์ œ์กฐ๊ณต์ •์˜ ๋ฐœ์ „ ๊ณผ์ • ์ค‘ ์ „๋„์ฒด๋กœ์„œ ์•Œ๋ฃจ๋ฏธ๋Š„์„ ๊ตฌ๋ฆฌ๋กœ ๋Œ€์ฒดํ•œ ๊ฒƒ์€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ณ€ํ™” ์ค‘ ํ•˜๋‚˜๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ์ด ๋ณ€ํ™” ๊ณผ์ • ์ค‘ ๋‹ค๋งˆ์‹  ๊ณต์ •์ด๋ผ๋Š” ๊ณต์ •์ด ๋„์ž…๋˜์—ˆ๋Š”๋ฐ, ๋‹ค๋งˆ์‹  ๊ณต์ •์˜ ํŠน์ง•์€ ํŠธ๋ Œ์น˜๋‚˜ ๋น„์•„๊ฐ€ ๋  ๋ถ€๋ถ„์— ๋จผ์ € ์ ˆ์—ฐ์ธต์„ ํ˜•์„ฑํ•˜๊ณ  ํŒจํ„ฐ๋‹ ํ•˜๋Š” ๊ฒƒ์ด ์„ ํ–‰๋œ๋‹ค๋Š” ๋ฐ ์žˆ๋‹ค. ์ดํ›„ ํŒจํ„ด์ด ํ˜•์„ฑ๋œ ์ ˆ์—ฐ์ธต์€ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰๊ณผ ๊ตฌ๋ฆฌ ์”จ์•—์ธต์œผ๋กœ ๋„ํฌ๋˜๊ณ , ์ด ์œ„์— ์ดˆ๋“ฑ๊ฐ ์ „์ฐฉ ๊ธฐ์ˆ ์„ ์ด์šฉํ•ด ํŠธ๋ Œ์น˜๋‚˜ ๋น„์•„ ๋‚ด๋ถ€์— ๊ณต๋™ ์—†์ด ๊ตฌ๋ฆฌ๋ฅผ ์ฑ„์šฐ๊ฒŒ ๋œ๋‹ค. ์ด ๊ณผ์ • ์ค‘, ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰๊ณผ ๊ตฌ๋ฆฌ ์”จ์•—์ธต์€ ํ˜„์žฌ ๋ฌผ๋ฆฌ๊ธฐ์ƒ์ฆ์ฐฉ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ํ˜•์„ฑ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํŠธ๋ Œ์น˜์˜ ํญ์ด ์ ์ฐจ ๊ฐ์†Œํ•จ์— ๋”ฐ๋ผ ๋ฌผ๋ฆฌ๊ธฐ์ƒ์ฆ์ฐฉ ๋ฐฉ๋ฒ•์œผ๋กœ ํ˜•์„ฑ๋œ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰๊ณผ ์”จ์•—์ธต์˜ ๋ถ€์‹คํ•œ ๋‹จ์ฐจ๋„ํฌ์„ฑ์œผ๋กœ ์ธํ•ด ์—ฌ๋Ÿฌ ๋ฌธ์ œ๋“ค์ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฌผ๋ฆฌ๊ธฐ์ƒ์ฆ์ฐฉ์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ๋„๊ธˆ ๋ฐฉ๋ฒ•์œผ๋กœ์จ ํ™”ํ•™๊ธฐ์ƒ์ฆ์ฐฉ, ์›์ž์ธต์ฆ์ฐฉ, ๋ฌด์ „ํ•ด๋„๊ธˆ, ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ ๋“ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๊ณ , ์ด ์ค‘ ํŠนํžˆ ๋ฌด์ „ํ•ด๋„๊ธˆ๊ณผ ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ์€ ์Šต์‹๊ณต์ •์ด ๊ฐ€์ง€๋Š” ์—ฌ๋Ÿฌ ์ด์  ๋•Œ๋ฌธ์— ๋”์šฑ ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐจ์„ธ๋Œ€ ๋ฐ˜๋„์ฒด ์ œ์กฐ๊ณต์ •์„ ์œ„ํ•œ ๊ธˆ์†ํ™” ๊ณต์ •์— ๊ด€๋ จํ•œ ์ „๋ฐ˜์ ์ธ ๊ฐœ์„ ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ๋จผ์ € ๊ธฐ์กด ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์œผ๋กœ ์ด์šฉ๋˜๋Š” ํƒ„ํƒˆ๋ฅจ ๊ธฐํŒ ์œ„์—์„œ๋Š” ํŒ”๋ผ๋“ ๋‚˜๋…ธ์ฝœ๋กœ์ด๋“œ๋ฅผ ๊ตฌ๋ฆฌ ํ•ตํ˜•์„ฑ ์ด‰์ง„์ œ๋กœ ์ด์šฉํ•œ ๊ตฌ๋ฆฌ ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ํŒ”๋ผ๋“ ๋‚˜๋…ธ์ฝœ๋กœ์ด๋“œ๋Š” ํด๋ฆฌ์˜ฌ ๋ฐฉ๋ฒ•์œผ๋กœ ํ˜•์„ฑ๋˜์–ด ์‚ฐํ™”๋ง‰์ด ์ œ๊ฑฐ๋œ ํƒ„ํƒˆ๋ฅจ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ์œ„์— ๋ฌผ๋ฆฌํก์ฐฉ๋ฐฉ๋ฒ•์œผ๋กœ ๋„ํฌ๋˜์—ˆ๊ณ , ์ดํ›„ ํ”ผ๋กœ์ธ์‚ฐ์—ผ ๊ธฐ๋ฐ˜์˜ ์ „ํ•ด์•ก ๋‚ด์—์„œ ๋‘ ๋‹จ๊ณ„ ์ •์ „์•• ๋„๊ธˆ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•ด ํƒ„ํƒˆ๋ฅจ ๊ธฐํŒ ์œ„์— ๊ตฌ๋ฆฌ ์”จ์•—์ธต์„ ํ˜•์„ฑํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ํ˜•์„ฑ๋œ ๊ตฌ๋ฆฌ ์”จ์•—์ธต์€ ํ‘œ๋ฉด์ด ๋งค์šฐ ๋ถˆ๊ท ์ผํ•˜์—ฌ ํ›„์† ์ดˆ๋“ฑ๊ฐ ์ „์ฐฉ์„ ์œ„ํ•œ ์ „ํ•ด๋„๊ธˆ ์‹œ ๊ณต๋™ ๋ฐœ์ƒ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ „ํ•ด์•ก์— ์•Œ๋ฆด ์•Œ์ฝ”์˜ฌ์„ ์ฒจ๊ฐ€ํ•˜์—ฌ ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ์„ ์‹ค์‹œํ•˜์˜€๊ณ , ๊ทธ ๊ฒฐ๊ณผ 55 nm์˜ ํŒจํ„ด์ด ํ˜•์„ฑ๋˜์–ด ํƒ„ํƒˆ๋ฅจ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์ด ๋„ํฌ๋˜์–ด ์žˆ๋Š” ๊ธฐํŒ์— ์šฐ์ˆ˜ํ•œ ๋‹จ์ฐจ๋„ํฌ์„ฑ์„ ๊ฐ–๋Š” ๊ตฌ๋ฆฌ ์”จ์•—์ธต์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ดํ›„ ํ™ฉ์‚ฐ ๊ธฐ๋ฐ˜์˜ ์ „ํ•ด์•ก์—์„œ ์ •์ „๋ฅ˜ ๋„๊ธˆ ๋ฐฉ๋ฒ•์œผ๋กœ ์œ„ ํŒจํ„ด์˜ ์ดˆ๋“ฑ๊ฐ ์ „์ฐฉ์„ ์„ฑ๊ณต์ ์œผ๋กœ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์œผ๋กœ ์ด์šฉ๋˜๋Š” ์ ˆ์—ฐ์ฒด์ธ ์ด์‚ฐํ™”๊ทœ์†Œ ๊ธฐํŒ ์œ„์—์„œ ๋‹ค์–‘ํ•œ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์„ ๋ฌด์ „ํ•ด๋„๊ธˆ ๋ฐฉ๋ฒ•์œผ๋กœ ํ˜•์„ฑํ•จ์œผ๋กœ์จ ๊ธˆ์†ํ™” ๊ณต์ •์„ ์‹ค์‹œํ•˜๋Š” ์ผ๊ด„์Šต์‹๊ณต์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ํ‘œ๋ฉด ์ „์ฒ˜๋ฆฌ, ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๋ฌด์ „ํ•ด๋„๊ธˆ, ๊ทธ๋ฆฌ๊ณ  ๊ตฌ๋ฆฌ ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ์— ์ด๋ฅด๋Š” ๋ชจ๋“  ๊ธˆ์†ํ™” ๊ณต์ •์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ๋จผ์ € ์ด์‚ฐํ™”๊ทœ์†Œ ๊ธฐํŒ์— 3-์•„๋ฏธ๋…ธํ”„๋กœํ•„ํŠธ๋ฆฌ์—ํ†ก์‹œ์‹ค๋ž€์˜ ์ž๊ฐ€์กฐ๋ฆฝ๋‹จ๋ถ„์ž๋ง‰์„ ํ˜•์„ฑํ•˜๊ณ  ํŒ”๋ผ๋“ ๋‚˜๋…ธ์ฝœ๋กœ์ด๋“œ๋ฅผ ํก์ฐฉ์‹œํ‚ด์œผ๋กœ์จ ๊ธฐํŒ์„ ํ™œ์„ฑํ™” ํ•˜์˜€๋‹ค. ํŒ”๋ผ๋“ ๋‚˜๋…ธ์ฝœ๋กœ์ด๋“œ ํก์ฐฉ ๊ณผ์ • ์ค‘์— ์ดˆ์ŒํŒŒ๋ฅผ ์ธ๊ฐ€ํ•˜๋Š” ๊ฒƒ๊ณผ ๋”๋ถˆ์–ด ๋ฌด์ „ํ•ด๋„๊ธˆ ์šฉ์•ก์˜ ์กฐ์„ฑ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ๋ฌด์ „ํ•ด๋„๊ธˆ์„ ํ†ตํ•ด ํ˜•์„ฑ๋˜๋Š” ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์˜ ๋น„์ €ํ•ญ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ์œ„์— ๊ตฌ๋ฆฌ ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์•ž์„œ ์ „ํ•ด์‹ ํ™˜์›๋ฐฉ๋ฒ•์„ ์‹ค์‹œํ•จ์œผ๋กœ์จ ํ›„์† ๊ตฌ๋ฆฌ ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ ์‹œ ๊ตฌ๋ฆฌ์˜ ํ•ตํ˜•์„ฑ๊ณผ ๊ตฌ๋ฆฌ ๋ง‰๊ณผ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ์‚ฌ์ด์˜ ์ ‘์ฐน๋ ฅ์„ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ตฌ๋ฆฌ ์ง์ ‘ ์ „ํ•ด๋„๊ธˆ์€ ๋†’์€ ๊ณผ์ „์••์„ ์ธ๊ฐ€ํ•˜์—ฌ ์–‡์€ ๊ตฌ๋ฆฌ๋ง‰์„ ํ˜•์„ฑํ•œ ํ›„ ๋‚ฎ์€ ๊ณผ์ „์••์„ ์ธ๊ฐ€ํ•˜์—ฌ ๊ตฌ๋ฆฌ ๋ฐ•๋ง‰์„ ์„ฑ์žฅ์‹œํ‚ค๋Š” ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๊ท ์ผํ•˜๊ณ  ํ‘œ๋ฉด ๊ฑฐ์น ๊ธฐ๊ฐ€ ๋‚ฎ์€ ๊ตฌ๋ฆฌ ๋ฐ•๋ง‰์„ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ์œ„์— ์ง์ ‘ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , 120 nm์˜ ๋„ˆ๋น„์— 2.5์˜ ์ข…ํšก๋น„๋ฅผ ๊ฐ€์ง€๋Š” ํŒจํ„ด์ด ํ˜•์„ฑ๋œ ์ด์‚ฐํ™”๊ทœ์†Œ ๊ธฐํŒ์„ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ์ผ๊ด„์Šต์‹๊ณต์ •์œผ๋กœ ์ฑ„์šธ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ํŠน์„ฑ๋„ ์ด ๋ฐฉ๋ฒ•์œผ๋กœ ์ค€๋น„๋œ ๊ธฐํŒ์„ ์ด์šฉํ•ด ์‹ค์‹œํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ์‹ค์ œ ๊ทน์ดˆ๋Œ€ํ˜• ์ง‘์ ํšŒ๋กœ ์ œ์กฐ๊ณต์ •์—์˜ ์ด์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋์œผ๋กœ ์ฐจ์„ธ๋Œ€ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์œผ๋กœ ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋Š” ๋ฃจํ…Œ๋Š„ ๊ธฐํŒ ์œ„์—์„œ๋Š” ๋ฌด์ „ํ•ด๋„๊ธˆ ๊ณผ์ • ์ค‘ ๊ตฌ๋ฆฌ์˜ ์„ฑ์žฅ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ทœ๋ช…ํ•ด ๋ณด์•˜๋‹ค. ํฌ๋ฆ„์•Œ๋ฐํžˆ๋“œ ๊ธฐ๋ฐ˜์˜ ๋„๊ธˆ ์šฉ์•ก๊ณผ ๋‹ฌ๋ฆฌ ํ•˜์ด๋“œ๋ผ์ง„ ๊ธฐ๋ฐ˜์˜ ๋„๊ธˆ ์šฉ์•ก์„ ์ด์šฉํ•œ ๊ฒฝ์šฐ, ๋ฌด์ „ํ•ด ๋„๊ธˆ ์ดˆ๊ธฐ์— ์ž ๋ณต๊ธฐ๋ฅผ ๋ณด์ด์ง€ ์•Š์•„ ์„ฑ์žฅ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ทœ๋ช…์— ๋” ์œ ๋ฆฌํ•˜์˜€๋‹ค. ๋ฃจํ…Œ๋Š„์˜ ๊ฒฝ์šฐ ๊ทธ ์ž์ฒด๋กœ์จ ํ‘œ๋ฉด ์ „์ฒด์—์„œ ๋ฌด์ „ํ•ด๋„๊ธˆ์„ ์ด‰์ง„ํ•˜์˜€๊ณ , ๊ฐœํšŒ๋กœ์ „์•• ์ธก์ •๊ณผ ์ˆ˜์ •์ง„๋™์ž์ €์šธ์„ ํ†ตํ•œ ๋„๊ธˆ๊ณผ์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ ์„ ํ˜•์ „์œ„์ฃผ์‚ฌ ์‹คํ—˜์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ ๋ฌด์ „ํ•ด๋„๊ธˆ์„ ํ†ตํ•ด ๊ตฌ๋ฆฌ๊ฐ€ ๋ฃจํ…Œ๋Š„ ํ‘œ๋ฉด์„ ์ˆ˜์ดˆ ๋‚ด๋กœ ๋„ํฌํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋„๊ธˆ ์ „ยทํ›„ ๋ฉด์ €ํ•ญ ๋ณ€ํ™”๋ฅผ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ ๋„ํฌ๋œ ๊ตฌ๋ฆฌ๋Š” ์—ฐ์†์ ์ธ ๋ง‰์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ๊ณ , ์ด ๊ณผ์ •์„ ์›์ž๊ฐ„๋ ฅํ˜„๋ฏธ๊ฒฝ์œผ๋กœ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ ๋„๊ธˆ ์ดˆ๋ฐ˜์— ๊ตฌ๋ฆฌ๋Š” ๊ธฐ ํ˜•์„ฑ๋œ ๊ตฌ๋ฆฌ๋ณด๋‹ค ๋ฃจํ…Œ๋Š„ ์œ„์— ๋” ์šฐ์„ ์ ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์ด ํ‘œ๋ฉด ์ „์ฒด์—์„œ ์ด‰์ง„๋œ ๋ฌด์ „ํ•ด๋„๊ธˆ์„ ํ†ตํ•ด 55 nm์˜ ํŒจํ„ด ๋‚ด ์ดˆ๋“ฑ๊ฐ ์ „์ฐฉ๋„ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜์—ฌ ๋ณธ ๊ณต์ •์ด ๊ทน์ดˆ๋Œ€ํ˜• ์ง‘์ ํšŒ๋กœ ์ œ์กฐ๊ณต์ •์— ์ด์šฉ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.In semiconductor manufacturing history, the transition of conducting material from Al to Cu was considered one of the most significant changes. Such replacement is accompanied with the introduction of damascene process, which proceeds first by deposition and patterning of the dielectric layer. Then the patterned dielectric is covered with diffusion barrier layer and Cu seed layer. Subsequently, Cu is filled by superfilling techniques, resulting in void-free and seamless filling of trenches and vias with high aspect ratios. Among these steps, the diffusion barrier and Cu seed layer are formed by physical vapor deposition. However, the problem induced by the poor step coverage of the diffusion barrier/Cu seed layer has become serious as trenches are being reduced. Therefore, different deposition methods such as chemical vapor deposition, atomic layer deposition, electroless deposition, and direct electrodeposition are considered as alternatives to physical vapor deposition for the formation of the barrier/seed layer. Specifically, electroless deposition and direct electrodeposition have received much interest due to their various advantages. In this study, the entire metallization processes were modified for the next-generation interconnect fabrication. On Ta barrier layer, direct Cu electrodeposition was developed using Pd nanoparticles as a Cu nucleation promoter. Pd nanoparticles were synthesized by a polyol method and loaded onto a pretreated Ta substrate. Through a two-step potentiostatic electrodeposition process in a pyrophosphate-based electrolyte, a continuous Cu seed layer was deposited on the Ta substrate, although the surface showed irregular morphology. The addition of allyl alcohol improved the surface regularity of the Cu seed layer, allowing the conformal Cu seed layer to be formed successfully on the 55 nm patterned Ta substrate. Cu gap-filling was achieved by galvanostatic ED in a sulfate-based electrolyte on the preformed seed layer. On SiO2 substrate, electroless deposition of various barrier layers was investigated for all-wet Cu interconnect fabrication. In this study, the entire fabrication process including substrate activation, barrier layer electroless deposition, and direct Cu electrodeposition was modified. The SiO2 substrate was activated via Pd nanoparticles that were immobilized on the substrate by using a preformed self-assembled monolayer composed of 3-aminopropyl-triethoxysilane. Reduction of barrier layer resistivity was achieved by applying ultrasound during the substrate activation process and by adjusting the composition of the electroless deposition bath. The Cu electrodeposition was performed directly on the electroless barrier layers after performing coulometric oxide reduction, thus improving the adhesion and nucleation density of Cu on the barrier layer. The electrodeposition process was conducted in two steps: Cu nucleation and Cu thin film formation at a high overpotential followed by additional Cu film growth at a low overpotential. As a result, a uniform, smooth Cu film covered the barrier layer. In addition, bottom-up Cu filling was accomplished on a 120 nm wide, patterned substrate with a 2.5 aspect ratio. Barrier layer performance was evaluated by using a stacked specimen formed by applying the proposed procedure. On Ru substrate which is considered as next-generation barrier material, Cu growth phenomena were investigated during electroless deposition. Different to the formaldehyde based bath, the use of hydrazine based bath facilitated the observation of Cu growth phenomena during the electroless deposition. The whole surface-catalyzed electroless deposition occurred on Ru, and electrochemical quartz crystal microbalance as well as linear sweep voltammetry studies revealed that Cu covered Ru surface within a few seconds of deposition. Measurement of sheet resistance change confirmed that Cu nucleation on Ru was continuous with forming a film. During the period, Cu film growth was monitored by an atomic force microscope imaging, indicating that Cu was deposited on Ru preferentially, rather than on the deposited Cu at the initial stage of the deposition. The whole surface-catalyzed electroless deposition achieved the 55 nm gap-filling, and this showed the possibility of the practical adoption of electroless deposition as a method for metallization in ultralarge-scale integration.CHAPTER I. Introduction and overview 1 1.1. The interconnection technology for ULSI 1 1.1.1. The present and issues of interconnection technology 1 1.1.2. The next-generation interconnection technology 4 1.2. Direct Cu deposition 12 1.2.1. Direct Cu ED 12 1.2.2. Cu ELD 13 1.2.3. Direct Cu ELD 15 1.3. All-wet metallization 19 1.3.1. Electroless Co/Ni alloy as a barrier/capping material 19 1.3.2. All-wet metallization 23 1.4. Concepts of the study 29 CHAPTER II. Experimental 31 2.1. Direct ED of Cu on Ta 31 2.1.1. Preparation of Pd NPs 31 2.1.2. Direct ED of Cu on Ta 32 2.2. Direct ED of Cu on Co/Ni alloy 35 2.2.1. Pretreatment of substrate and SAM-Pd activation 35 2.2.2. ELD of Co/Ni alloy films and direct Cu ED 36 2.3. Direct ELD of Cu on Ru 38 2.3.1. Pretreatment of Ru and direct Cu ELD 38 2.3.2. Preparation of Ru electrode and EQCM monitoring 39 2.4. Instrumentation 41 CHAPTER III. Direct ED of Cu on Ta 44 3.1. Seed layer formation by direct Cu ED on blanket Ta substrate 44 3.1.1. Pd NPs loading on blanket Ta substrate 44 3.1.2. Cu seed layer formation by direct Cu ED on Pd NPs-loaded Ta substrate 45 3.2. Trench filling by direct Cu ED on patterned Ta substrate 56 CHAPTER IV. Direct ED of Cu on Co/Ni alloy 62 4.1. ELD of Co/Ni alloy barrier layer 62 4.1.1. Optimization of substrate activation process 62 4.1.2. Optimization of barrier layer ELD 64 4.2. Direct Cu ED on ELD-barrier layer 76 4.3. Barrier layer performance and trench filling 88 4.3.1. Barrier layer performance investigation 88 4.3.2. Trench filling by all-wet metallization process 89 CHAPTER V. Direct ELD of Cu on Ru 97 5.1. Cu growth phenomena on Ru during ELD 97 5.1.1. Preparation of Ru electrode for EQCM monitoring 97 5.1.2. Observation of Cu growth phenomena on Ru during ELD 98 5.1.3. Determination of Cu growth phenomena on Ru during ELD 103 5.2. Trench filling by direct Cu ELD on patterned Ru substrate 117 CHAPTER VI. Conclusions 120 REFERENCES 122 ๊ตญ๋ฌธ์ดˆ๋ก 133Docto

    A Study on the Fatigue Life Prediction under the Simple Simulated Loads Using the Cumulative Damage Theory

    No full text
    corecore