147 research outputs found

    Novel Dental Poly (Methyl Methacrylate) Containing Phytoncide for Antifungal Effect and Inhibition of Oral Multispecies Biofilm

    Get PDF
    Despite the many advantages of poly (methyl methacrylate) (PMMA) as a dental polymer, its antifungal and antibacterial effects remain limited. Here, phytoncide was incorporated into PMMA to inhibit fungal and biofilm accumulation without impairing the basic and biological properties of PMMA. A variable amount of phytoncide (0 wt % to 5 wt %) was incorporated into PMMA, and the basic material properties of microhardness, flexural strength and gloss were evaluated. In addition, cell viability was confirmed by MTT assay. This MTT assay measures cell viability via metabolic activity, and the color intensity of the formazan correlates viable cells. The fungal adhesion and viability on the PMMA surfaces were evaluated using Candida albicans (a pathogenic yeast). Finally, the thickness of saliva-derived biofilm was estimated. The flexural strength of PMMA decreased with increasing phytoncide contents, whereas there were no significant differences in the microhardness and gloss (p > 0.05) and the cell viability (p > 0.05) between the control and the phytoncide-incorporated PMMA samples. The amounts of adherent Candida albicans colony-forming unit (CFU) counts, and saliva-derived biofilm thickness were significantly lower in the phytoncide-incorporated PMMA compared to the control (p < 0.05). Hence, it was concluded that the incorporation of appropriate amounts of phytoncide in PMMA demonstrated antifungal effects while maintaining the properties, which could be a possible use in dentistry application such as denture base resin.ope

    Incorporation of zwitterionic materials into light-curable fluoride varnish for biofilm inhibition and caries prevention

    Get PDF
    We incorporated zwitterionic materials into light-curable fluoride varnish (LCFV) in order to inhibit biofilm accumulation and prevent dental caries, and the properties of LCFV with three different zwitterionic materials, namely, 2-methacryloyloxyethyl phosphorylcholine (MPC), carboxybetaine methacrylate (CBMA), and sulfobetaine methacrylate (SBMA) polymers (each at a weight percentage of 3%), were compared; unmodified LCFV without any zwitterionic material was used as a control. Material properties including film thickness and degree of conversion (DC) of each type of LCFV were evaluated. In addition, protein-repellent effects and inhibitory effects on Streptococcus mutans adhesion and saliva-derived biofilm accumulation of LCFV were estimated. Finally, the preventive effect of LCFV on enamel demineralization was assessed in vitro on extracted human teeth specimens stored in S. mutans-containing medium. The film thickness of LCFV significantly decreased with the incorporation of zwitterionic materials compared to the control LCFV, whereas there were no significant differences in the DC among all of the LCFV groups. Furthermore, the amount of adsorbed protein, adherent S. mutans colony-forming unit (CFU) counts, and saliva-derived biofilm thickness and biomass were all significantly lower for LCFV with incorporated zwitterionic materials compared with the control. All LCFV groups including the control showed certain preventive effects against enamel demineralization during a 14-day immersion in the medium with S. mutans and sucrose, and the depth of demineralization was significantly lower in LCFV with zwitterionic materials than in the control. Thus, the incorporation of zwitterionic materials such as MPC, CBMA, and SBMA appears to confer superior antifouling effects to LCFV.ope

    Effects of a Non-Thermal Atmospheric Pressure Plasma Jet with Different Gas Sources and Modes of Treatment on the Fate of Human Mesenchymal Stem Cells

    Get PDF
    Despite numerous attempts to use human mesenchymal stem cells (hMSCs) in the field of tissue engineering, the control of their differentiation remains challenging. Here, we investigated possible applications of a non-thermal atmospheric pressure plasma jet (NTAPPJ) to control the differentiation of hMSCs. An air- or nitrogen-based NTAPPJ was applied to hMSCs in culture media, either directly or by media treatment in which the cells were plated after the medium was exposed to the NTAPPJ. The durations of exposure were 1, 2, and 4 min, and the control was not exposed to the NTAPPJ. The initial attachment of the cells was assessed by a water-soluble tetrazolium assay, and the gene expression in the cells was assessed through reverse-transcription polymerase chain reaction and immunofluorescence staining. The results showed that the gene expression in the hMSCs was generally increased by the NTAPPJ exposure, but the enhancement was dependent on the conditions of the exposure, such as the source of the gas and the treatment method used. These results were attributed to the chemicals in the extracellular environment and the reactive oxygen species generated by the plasma. Hence, it was concluded that by applying the best conditions for the NTAPPJ exposure of hMSCs, the control of hMSC differentiation was possible, and therefore, exposure to an NTAPPJ is a promising method for tissue engineering.ope

    In Vitro Effects of Cyclic Dislodgement on Retentive Properties of Various Titanium-Based Dental Implant Overdentures Attachment System

    Get PDF
    The purpose of this study was to evaluate the change in the retentive forces of four different titanium-based implant attachment systems during the simulation of insert-removal cycles in an artificial oral environment. Five types of titanium-based dental implant attachment systems (Locator, Kerator, O-ring, EZ-Lock, and Magnetic) were studied (n = 10). The specimens underwent insert-removal cycles in artificial saliva, and the retentive force was measured following 0, 750, 1500, and 2250 cycles. Significant retention loss was observed in all attachment systems, except the magnetic attachments, upon completion of 2250 insertion and removal cycles, compared to the initial retentive force (p < 0.05). A comparison of the initial retentive forces revealed the highest value for Locator, followed by the Kerator, O-ring, EZ-Lock, and Magnetic attachments. Furthermore, Kerator demonstrated the highest retentive loss, followed by Locator, O-ring, EZ-Lock, and Magnetic attachments after 2250 cycles (p < 0.05). In addition, the Locator and Kerator systems revealed significant decrease in retentive forces at all measurement points (p < 0.05). The retention force according to the insert-removal cycles were significantly different according to the types of dental implant attachment systems.ope

    Surface modification of PVA thin film by nonthermal atmospheric pressure plasma for antifogging property

    Get PDF
    In this work, a polyvinyl alcohol (PVA) thin film was modified by exposure to a dielectric barrier discharge argon plasma. The plasma was generated by a sinusoidal power supply with discharge voltage of 4.75 kV (rms), and frequency of 30 kHz at duty cycle 6.13%. The effect of the plasma on the PVA thin film was investigated by analyzing the contact angle, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and UV–visible spectroscopy. After the plasma treatment, the contact angle was found to be decrease from 29.6 ± 0.4° to 14.5 ± 0.2°, which implied that the surface property had changed to a hydrophilic state caused by an increase in the surface roughness and introduction of oxygen, including a polar carbonyl group. It was found that the plasma-treated hydrophilic PVA thin film exhibited excellent antifogging and highly transparent characteristics, making it an appropriate material for food packaging and green houses.ope

    Application of GLP in identification and quantification of degradation products from bone graft materials

    Get PDF
    Biocompatibility testing of bone graft materials are important aspect for development of the device as well as the approval and certification by each individual country’s regulatory authority. Recently, importance in identification and quantification of degradation product as well as application of Good Laboratory Practice (GLP) in the process of biocompatibility testing has been emphasized. Hence, here identification and quantification of degradation products from bone graft materials were carried out in accordance with GLP process. Commercially available bone graft material from the animal source was used in this study. The test was carried out in accordance with International Standard, ISO 10993-14 Biological evaluation of medical devices - Part 14: Identification and quantification of degradation products from ceramics. Also, entire process followed Institute for Management of Good Laboratory Practice, published by Ministry of Food and Drug Safety, Korea. Degradation test of the bone graft materials resulted in degradation of bone graft, ranging between 0.32 g to 0.86 g, while Ca and P were detected. In terms of GLP process, it has been noted that consideration of other International Standard such as ISO 10993-12 is required for planning of the GLP test, especially during the sample preparation.ope

    Dental Materials Applied to 3D and 4D Printing Technologies: A Review

    Get PDF
    As computer-aided design and computer-aided manufacturing (CAD/CAM) technologies have matured, three-dimensional (3D) printing materials suitable for dentistry have attracted considerable research interest, owing to their high efficiency and low cost for clinical treatment. Three-dimensional printing technology, also known as additive manufacturing, has developed rapidly over the last forty years, with gradual application in various fields from industry to dental sciences. Four-dimensional (4D) printing, defined as the fabrication of complex spontaneous structures that change over time in response to external stimuli in expected ways, includes the increasingly popular bioprinting. Existing 3D printing materials have varied characteristics and scopes of application; therefore, categorization is required. This review aims to classify, summarize, and discuss dental materials for 3D printing and 4D printing from a clinical perspective. Based on these, this review describes four major materials, i.e., polymers, metals, ceramics, and biomaterials. The manufacturing process of 3D printing and 4D printing materials, their characteristics, applicable printing technologies, and clinical application scope are described in detail. Furthermore, the development of composite materials for 3D printing is the main focus of future research, as combining multiple materials can improve the materials’ properties. Updates in material sciences play important roles in dentistry; hence, the emergence of newer materials are expected to promote further innovations in dentistry. © 2023 by the authors.ope

    Physical and biodegradable properties of 3D printed resorbable membranes for periodontal guided tissue regenerations

    Get PDF
    The purpose of this study was to compare physical and biodegradable properties of 3D printed resorbable membranes that are used for guided tissue regenerations in periodontal tissues. Three types of 3D printed membranes (two types of non β-TCP and one type of β-TCP) were considered. The form and element compositions of 3D printed membranes were analyzed by field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS). Porosity and pore size were measured using Micro-CT. Also, tensile strength, biodegradability tests were performed. Statistical analyses were carried in tensile strength and cell viability test (p<0.05). The result of SEM images with EDS analyses showed linear layers of lattice structure with presence of C and O in all groups. There was a slight difference in Ca and P among some groups. Tensile strength was significantly different among all groups (p<0.05), and biodegradability showed that the group containing β-TCP resulted in the fastest degradation rate. Therefore, the results of this study concluded that the 3D printed resorbable membrane has variable physical and biodegradable properties for clinical use, where such information would be useful to be considered for the future development of related products and clinical application of the products.ope

    Mechanical properties and antibacterial effects on Streptococcus mutans of composite resins containing phytoncide

    Get PDF
    Objectives: The aim of this study is to investigate the mechanical properties and antibacterial effects on Streptococcus mutans of composite resins containing phytoncide. Methods: Phytoncide was mixed with commercial composite resins at 0 (control), 1.25, 2.5, 3.75, and 5.0 weight percentage (wt%). Mechanical properties related to composite resins such as surface hardness, depth of cure, and flexural strength were measured. Antibacterial effects of composite resins were analyzed by using Streptococcus mutans (ATCC 25175). The results were analyzed by one-way analysis of variance followed by Tukey’s test (p0.05). However, composite resins that contain high wt% of phytoncide had significantly decreased mechanical properties (p<0.05). In terms of antibacterial effects, composite resins containing phytoncide inhibited the growth of S. mutans. Conclusions: Our findings suggest that novel composite resins containing phytoncide have effective antibacterial properties while maintaining the originally important mechanical features of composite resins.ope

    Novel Osteogenic and Easily Handled Endodontic Calcium Silicate Cement Using Pluronic F127 Hydrogel

    Get PDF
    Calcium silicate cement (CSC) is widely used as an endodontic material in clinical applications such as direct pulp capping, pulpotomy, or root canal. CSC has good biocompatibility, sealing properties, and the ability to enhance hard tissue regeneration. However, the disadvantage of CSC is the difficulty in handling when placing it into endodontic tissue due to the long setting time. Several attempts have been made to improve handling of CSC; however, these methods were limited by osteogenic properties. To overcome such a disadvantage, this study investigated the use of Pluronic F127 (F127) for the development easy-to-handle novel endodontic CSCs with osteogenic properties. In this case, different concentrations of F127 (5%, 10%, 20%, 30%, and 40%) were implemented to generate CSC specimens H5, H10, H20, H30, and H40, respectively. Calcium ion was continuously released for 28 days. In addition, each group resulted in apatite formation for 28 days corresponding to calcium ion release. The concentration of F127 showed opposite relationships with water solubility and compressive strength. The H20 group showed a high level of osteogenic activity compared to other groups at 14 days. Mineralization of the H20 group was higher than that of the other groups. This study indicates that the novel F127-based hydrogel with CSC can potentially be used as endodontic filler.ope
    corecore