11 research outputs found

    A study on the new revision total knee prosthesis development with an assessment on the biomechanical stability and the biological safety

    Get PDF
    μ˜κ³ΌλŒ€ν•™/박사The knee joint consists of the femur, tibia, patella, articular cartilage, and ligaments and is one of the largest joints in the human body. The knee joint is constantly subjected to repeated weight-bearing loads and is prone to injury or functional decline. In severe cases, such as degenerative arthritis, degenerative knee joint arthritis, rheumarthritis, and trauma where conservative therapies show little improvement, total knee arthroplasty (TKA) has proven to be an efficient treatment option with good clinical outcomes. Revision TKR is required when the life span of the device implanted during the primary TKR has expired, and this method can serve as a suitable knee joint replacement procedure when different functional requirements (mechanical, clinical, and design) are needed or harsh conditions need to be overcome. In an effort to improve the service life of knee replacements, extensive studies have been conducted and a wide range of products have been commercialized. In Korea, the several primary TKR was already developed and commercialized, but the supply of revision TKR prostheses depends on imports from global companies, and revision TKR prostheses require domestic research and development. This study was conducted to analyze the clinical and mechanical design elements of revision total knee replacement systems based on the primary artificial knee joints currently in use and to develop a new revision TKR prosthesis by performing various tests and evaluations. To implement the design of a new revision TKR prosthesis, three design elements, namely stability, modularity, and safety, were taken into account in analyzing the detailed design elements and product design. In order to increase stability, the range of motion of the prosthesis was restricted with high conformity. Furthermore, the femur stem extension, tibial baseplate, and stem extension were anatomically designed to enhance the support provided by our revision TKR system. To restore bone removal and loss, reconstruction parts were introduced in order to compensate and the tibial insert post was concavely designed, which increases the jump distance and prevents dislocation. We performed a number of tests to evaluate this new revision TKR system wherein several prosthesis design parameters were considered. Structural stability was validated using finite element analysis (ABAQUS v6.10) and performed ASTM F1223-08 and F1800-07 and compared with the primary TKR system. The stress distribution results showed that the strength of the femoral component was 30% higher with the new revision TKR system than with the primary TKR system. Eccentric test results showed that the strength of the tibial baseplate was 23% lower compared with the primary TKR system, but this factor does not significantly affect stability considering the yield stress of CoCr and high load level. We conducted a tibial cyclic fatigue test and a stem extension assembly locking test to assess the tibial components. Fatigue load was applied to the proposed TKR prosthesis in accordance with the ASTM test method to investigate the failure feature. No fracture or crack was observed, even under the application of a load higher than the ASTM guideline standard. The bond strength between the stem extension and offset adapter was tested by the assembly and disassembly torque test. The result indicated an assembly-to-disassembly torque ratio ranging between 99.7% and 101% (average: 100.5%), thus demonstrating that stability was sufficiently reflected in the proposed revision TKR prosthesis. After TKR implantation, the major parameters for stability analysis include the load transfer of the knee and biomechanical characteristics. It is well known that the stress concentration and stress shielding induced by knee replacement during insertion can cause fracture, pain, and loosening induced by bone resorption. Thus, load distribution in the tibia is an important factor from the biomechanical point of view. We used computed tomography to reconstruct surgical finite element models in order to assess the influence of loading distribution with stress/strain. First, the stress analysis results showed that the new revision TKR system had lower than yield strength at the tibia baseplate, stem extension, and cortical and cancellous bone it means that the proposed TKR prosthesis does not need any additional improvement or supplement in design elements for application. As such, structural stability is sufficiently provided under the aspect of tibial fracture risk. Second, the stress-strain distribution at the cortical bone was high at the proximal posterior and distal anterior portions, whereas that at the cancellous bone was high at the proximal posterior and distal lateral portions. The pattern of the a real-life revision TKR system was similar to that of the new revision TKR system. This implies that adequate stress/strain can be generated in the cortical and cancellous bones during the insertion of the proposed revision TKR, which is expected to mitigate the loosening-related problem due to stress-shielding effects and increase in bond resorption and remodeling, which would not cause bone loss or stability. Since an artificial knee joint is a medical device that is inserted into the human body for a long period of time, its biological safety should be ensured. For the development of a new revision TKR prosthesis, the hole plug, for which metal is usually used, was fabricated with a new material, SL7870 and its biological safety was validated in the cytotoxicity, subcutaneous (intradermal) reactivity, sensitization, acute systemic toxicity, and genotoxicity tests. The cytotoxicity test revealed that the extract of the test material was non-toxic by verifying 99% cell viability. In the subcutaneous (intradermal) reactivity test using rabbits, the extract of the test material did not trigger skin reactions such as erythema, crusting, and swelling. Nor did the sensitization test reveal any abnormal reactions on the skin of the mice exposed to stimuli. The acute systemic toxicity test did not trigger any abnormal changes in skin, hide, eyes, and body weight. Finally, in the genotoxicity test, no significant differences were observed in the results of mutagenicity of microorganisms between the test material and negative controls. The biological safety of the new material was thus proved. The clinical and anatomical requirements for revision TKR prostheses were analyzed for the purpose of developing a new revision TKR prosthesis. Detailed parameters for important factors were analyzed, and a design meeting all the requirements was implemented. A variety of validation and testing methods were established in order to evaluate whether the designed product meets the functional and biomechanical requirements. We evaluated our new revision TKR system using structural, mechanical, and biological tests in order to assess whether it meets functional and key requirements. In analysis results of various performed tests, we confirmed the feasibility of our new revision TKR system and verified its clinical applicability and marketability. Furthermore, This study is significant in that it first provided the basic data for the development of a domestically produced revision TKR prosthesis. Based on the results of this study, research will be continued with the intent to obtain approval for the proposed revision TKR prosthesis through its efficacy validation and clinical trials. The achievement of this study is expected to contribute to the research and development of domestically produced revision TKR prostheses for the domestic and global market sharing, which is currently dominated by imported products. It is hoped that our results will be used as a foundation for the local TKR market, which predominantly includes foreign products.ope

    An analysis on the quasi-fiscal activities of the Bank of Korea from the perspective of Historical Institutionalism - Focusing on the Bank Intermediated Lending Support Facility -

    No full text
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ ν–‰μ •λŒ€ν•™μ› : ν–‰μ •ν•™κ³Ό 정책학전곡, 2016. 8. ꢌ혁주.κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ€ ν•œκ΅­μ€ν–‰μ΄ μ€ν–‰μ˜ μ€‘μ†ŒκΈ°μ—… λŒ€μΆœ 싀적을 κ³ λ €ν•˜μ—¬ 은행에 κΈ°μ€€κΈˆλ¦¬ 미만의 저리 μžκΈˆμ„ μ§€μ›ν•˜λŠ” μ œλ„μ΄λ‹€. 이 μ—°κ΅¬λŠ” κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ΄ ν•œκ΅­μ€ν–‰μ˜ λŒ€ν‘œμ μΈ μ€€μž¬μ •ν™œλ™μ΄λΌλŠ” μ „μ œλ‘œ, κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ˜ ν˜•μ„±κ³Ό λ³€ν™” κ³Όμ •, 그리고 κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœκ³Ό κ΄€λ ¨ν•œ ν–‰μœ„μžμ˜ μ „λž΅μ  ν–‰μœ„κ°€ μ œλ„μ— 미친 영ν–₯에 λŒ€ν•˜μ—¬ 역사적 μ œλ„μ£Όμ˜μ˜ κ΄€μ μ—μ„œ λΆ„μ„ν•˜μ˜€λ‹€. 이 μ—°κ΅¬λŠ” ꡬ쑰-μ œλ„-ν–‰μœ„λ₯Ό κ³„μΈ΅ν™”ν•˜μ—¬ μ œλ„ λ³€ν™”λ₯Ό ν†΅ν•©μ μœΌλ‘œ μ„€λͺ…ν•˜κ³ μž ν•˜λŠ” 역사적 μ œλ„μ£Όμ˜μ˜ 톡합적 접근방법을 λ”°λžλ‹€. 이에 λ…λ¦½λ³€μˆ˜λ‘œμ„œ κ΅­κ°€ μˆ˜μ€€μ˜ ꡬ쑰적 λ³€μˆ˜, κΈˆμœ΅μ œλ„ μˆ˜μ€€μ˜ μ œλ„μ  λ³€μˆ˜μ™€ ν–‰μœ„μž λ³€μˆ˜λ₯Ό μ„€μ •ν•˜μ˜€λ‹€. 그리고 박정희 μ •λΆ€μ˜ μ§‘κΆŒ, κΉ€μ˜μ‚Όμ •λΆ€μ˜ κΈˆμœ΅μžμœ ν™”, IMF μ™Έν™˜μœ„κΈ°, κΈ€λ‘œλ²Œ κΈˆμœ΅μœ„κΈ°λ₯Ό 기점으둜 ν•˜μ—¬, ν˜•μ„±κΈ°(1962γ€œ1994)-μ‘°μ •κΈ°(1994γ€œ1997)-μ „ν™˜κΈ°(1997γ€œ2008)-κ°•ν™”κΈ°(2008γ€œ2016 ν˜„μž¬)둜 μ œλ„μ˜ λ³€ν™” μ‹œκΈ°λ₯Ό κ΅¬λΆ„ν•˜μ˜€λ‹€. 뢄석 κ²°κ³Ό ν˜•μ„±κΈ°μ—λŠ” λ°œμ „κ΅­κ°€μ˜ κ΅­κ°€ 정체성 μ†μ—μ„œ μ •λΆ€ μ£Όλ„λ‘œ κΈˆμœ΅μ„ μ‚°μ—…λ°œμ „μ„ μœ„ν•œ μž¬μ› 쑰달에 ν™œμš©ν•˜λŠ” κ΄€μΉ˜ 금육이 μ •λ¦½λœ κ²ƒμœΌλ‘œ λ³΄μ•˜λ‹€. 이 κ³Όμ •μ—μ„œ κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ˜ 전신이 된 선별적 μž¬ν• μΈμ œλ„κ°€ μ •μ±…κΈˆμœ΅μ˜ κΈ°λŠ₯을 가지고 ν˜•μ„±λœ κ²ƒμœΌλ‘œ λΆ„μ„ν•˜μ˜€λ‹€. μ‘°μ •κΈ°μ—λŠ” μ‹ μžμœ μ£Όμ˜ κ΅­κ°€ 사쑰에 μž…κ°ν•œ 금육 μžμœ ν™”μ˜ 흐름이 λ‚˜νƒ€λ‚¬λ‹€. 이에 μ •μ±…κΈˆμœ΅ κΈ°λŠ₯을 μΆ•μ†Œν•˜κ³  μœ λ™μ„± 쑰절 κΈ°λŠ₯을 κ°•ν™”ν•˜λŠ” 과도기적 μ œλ„λ‘œμ„œ μ΄μ•‘ν•œλ„λŒ€μΆœμ΄ μ‹ μ„€λ˜μ—ˆλ‹€. μ „ν™˜κΈ°μ—λŠ” IMF μ™Έν™˜μœ„κΈ° 극볡을 μœ„ν•˜μ—¬ μ •μ±…κΈˆμœ΅μ˜ κΈ°λŠ₯이 λ‹€μ‹œ κ°•μ‘°λ˜μ—ˆλ‹€. κ°•ν™”κΈ°μ—λŠ” μ‹ μžμœ μ£Όμ˜ ꡭ가와 λ³΅μ§€κ΅­κ°€μ˜ κ΅­κ°€ 정체성이 혼재된 κ°€μš΄λ°, μ •μ±…κΈˆμœ΅, μœ λ™μ„±μ‘°μ ˆ κΈ°λŠ₯κ³Ό ν•¨κ»˜ μ„œλ―ΌκΈˆμœ΅ κΈ°λŠ₯이 κ°€λ―Έλ˜λ©΄μ„œ μ œλ„ λͺ…칭이 κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœλ‘œ λ³€κ²½λœ κ²ƒμœΌλ‘œ λΆ„μ„ν•˜μ˜€λ‹€. ν•œνŽΈ μ œλ„μ™€ κ΄€λ ¨ν•œ ν–‰μœ„μžλ‘œμ„œ, ν•œκ΅­μ€ν–‰μ€ μž¬λŸ‰κΆŒ 확보 λ˜λŠ” μ€‘μ†ŒκΈ°μ—… μ§€μ›μ΄λΌλŠ” κ΅­κ°€ 전체적 λͺ©ν‘œλ₯Ό μœ„ν•΄ λ¬Όκ°€μ•ˆμ •μ„ 훼손할 μš°λ €κ°€ μžˆλŠ” κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ„ μœ μ§€ν•œ κ²ƒμœΌλ‘œ λΆ„μ„ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 결정은 IMF μ™Έν™˜μœ„κΈ°κ°€ μ–΄λŠ 정도 ν•΄μ†Œλœ 2000년에 μ΄λ£¨μ–΄μ‘Œλ‹€λŠ” μ μ—μ„œ, 반볡된 κΈˆμœ΅μœ„κΈ°μ— λŒ€μ‘ν•˜κΈ° μœ„ν•˜μ—¬ μ •μ±…κΈˆμœ΅ 성격을 κ°•ν™”ν•˜μ˜€λ‹€λŠ” ν•œκ΅­μ€ν–‰μ˜ μ„€λͺ…κ³ΌλŠ” 차이가 μžˆλ‹€. μ œλ„ 개혁이 ν˜„μ‘΄ν•˜λŠ” μ‘°μ§μ—μ„œ 이루어짐에 따라 λ‹Ήμ΄ˆ μ •μ±…κΈˆμœ΅μ„ μΆ•μ†Œν•˜κΈ° μœ„ν•΄ μ΄μ•‘ν•œλ„λŒ€μΆœμ„ λ„μž…ν•œ 것과 달리 μ •μ±…κΈˆμœ΅ κΈ°λŠ₯이 μœ μ§€λœ κ²ƒμœΌλ‘œλ„ λΆ„μ„λœλ‹€. ν•œνŽΈ μ •λΆ€λŠ” μž¬μ •κ±΄μ „μ„±μ΄ μ•…ν™”λœ μƒν™©μ—μ„œ ν•œκ΅­μ€ν–‰μ˜ κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ„ ν™œμš©ν•˜μ—¬ μ€‘μ†ŒκΈ°μ—…μ„ μ§€μ›ν•˜κ³ μž ν•˜λŠ” μ „λž΅μ  ν–‰μœ„λ₯Ό μ§€μ†μ μœΌλ‘œ λ‚˜νƒ€λ‚΄κ³  μžˆλ‹€. μ •μ±…μˆ˜ν˜œμžμΈ μ€‘μ†ŒκΈ°μ—…κ³Ό 은행은 κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ„ 톡해 λ°›λŠ” ν˜œνƒμ„ μœ μ§€ν•˜κ³  ν™•λŒ€ν•˜κΈ° μœ„ν•œ μ „λž΅μ  ν–‰μœ„λ₯Ό 보이고 μžˆλ‹€. μ •μΉ˜κΆŒμ€ μ£Όμš” 유ꢌ자인 μ€‘μ†ŒκΈ°μ—…μ— λŒ€ν•œ 지원을 μ£Όμž₯ν•˜λŠ” ν•œνŽΈ μ •μ±…κΈˆμœ΅ μΆ•μ†Œ μ£Όμž₯은 거의 ν•˜κ³  μžˆμ§€ μ•Šμ€λ°, κ³΅λ‘œμžλž‘-λΉ„λ‚œνšŒν”Ό μ „λž΅μ˜ ν˜•νƒœλ‘œ λ³Ό 수 μžˆλ‹€. μ’…ν•©ν•˜λ©΄ ν•œκ΅­μ€ν–‰-μ •λΆ€-μ •μ±…μˆ˜ν˜œμž-μ •μΉ˜κΆŒμ˜ μ„ ν˜Έμ— λ”°λ₯Έ μ „λž΅μ  ν–‰μœ„κ°€ μƒν˜Έ μž‘μš©ν•˜λ©΄μ„œ, κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ€ 경둜의쑴적으둜 μ •μ±…κΈˆμœ΅ μ œλ„λ‘œμ„œ μœ μ§€λœ κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€. 이와 같은 뢄석을 톡해 λ„μΆœν•œ 정책적 μ œμ–Έμ€ λ‹€μŒκ³Ό κ°™λ‹€. 첫째, 쀑μž₯기적으둜 λ‹΄λ³΄λŒ€μΆœ μœ„μ£Όμ˜ μ€‘μ†ŒκΈ°μ—… κΈˆμœ΅μ œλ„μ˜ κ°œμ„ μ„ μ „μ œλ‘œ ν•˜μ—¬ κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ˜ μΆ•μ†Œ λ°©μ•ˆμ„ κ²€ν† ν•  ν•„μš”κ°€ μžˆλ‹€. λ‘˜μ§Έ, κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ— λ”°λ₯Έ λ¬Όκ°€μƒμŠΉ 뢀담을 지고 μžˆμœΌλ‚˜, μ •μ±… κ²°μ •κ³Όμ •μ—μ„œ 사싀상 λ°°μ œλ˜μ–΄ μžˆλŠ” ꡭ민을 κ΅­νšŒμ—μ„œ λŒ€λ³€ν•΄ 쀄 ν•„μš”κ°€ μžˆλ‹€. γ€Œν•œκ΅­μ€ν–‰λ²•γ€μ— κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ˜ κΈ°λŠ₯κ³Ό λ²”μœ„λ₯Ό λͺ…μ‹œν•˜λŠ” λ°©μ•ˆλ„ κ²€ν† ν•  수 μžˆλ‹€κ³  νŒλ‹¨λœλ‹€. μ…‹μ§Έ, μ •μ±… μˆ˜ν˜œμžλ‘œλΆ€ν„°μ˜ 영ν–₯을 μ΅œμ†Œν™”ν•˜κΈ° μœ„ν•˜μ—¬ κΈˆμœ΅ν†΅ν™”μœ„μ›νšŒ λ―Όκ°„μœ„μ›μ„ μ „κ΅­μ€ν–‰μ—°ν•©νšŒ 및 λŒ€ν•œμƒκ³΅νšŒμ˜μ†Œμ—μ„œ μΆ”μ²œν•˜λŠ” μ œλ„λ₯Ό νμ§€ν•˜λŠ” λ“± κ°œμ„  λ°©μ•ˆμ„ λͺ¨μƒ‰ν•  ν•„μš”κ°€ μžˆλ‹€.제1μž₯ μ„œλ‘  1 제1절 μ—°κ΅¬μ˜ λ°°κ²½κ³Ό ν•„μš”μ„± 1 제2절 μ—°κ΅¬μ˜ λŒ€μƒκ³Ό λ²”μœ„ 5 제2μž₯ μ€€μž¬μ •ν™œλ™μ— λŒ€ν•œ 이둠적 λ…Όμ˜ 및 연ꡬ 섀계 7 제1절 이둠적 λ…Όμ˜ κ²€ν†  7 1. 쀑앙은행 μ€€μž¬μ •ν™œλ™μ˜ λ²”μœ„ 및 κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœ 포함 μ—¬λΆ€ κ²€ν†  7 2. ν•œκ΅­μ€ν–‰ μ€€μž¬μ •ν™œλ™ κ΄€λ ¨ 선행연ꡬ 11 3. 쀑앙은행 λŒ€μΆœμ œλ„μ˜ ν–‰μœ„μž κ΄€λ ¨ 이둠적 λ…Όμ˜ 14 제2절 역사적 μ œλ„μ£Όμ˜μ˜ μ œλ„λ³€ν™” λ…Όμ˜ 및 선행연ꡬ κ²€ν†  16 1. 역사적 μ œλ„μ£Όμ˜μ˜ μ œλ„λ³€ν™” λ…Όμ˜ 16 2. μ œλ„λ³€ν™” κ΄€λ ¨ 선행연ꡬ 19 제3절 연ꡬ섀계: ꡬ쑰-μ œλ„-ν–‰μœ„μžκ°€ μ œλ„ 변화에 λ―ΈμΉ˜λŠ” 영ν–₯ 뢄석 24 제3μž₯ κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ œλ„μ˜ κ΅¬μ„±μš”μ†Œ 및 λ³€ν™”μ‹œκΈ° 뢄석 29 제1절 μ œλ„μ˜ 의의 및 μ™Έκ΅­κ³Όμ˜ 비ꡐ 29 1. μ œλ„μ˜ 의의 29 2. μ£Όμš”κ΅­μ˜ 쀑앙은행 μ€€μž¬μ •ν™œλ™ 비ꡐ 31 제2절 μ œλ„μ˜ κ΅¬μ„±μš”μ†Œ 및 λ³€ν™”μ‹œκΈ° 뢄석 39 1. κ΅¬μ„±μš”μ†Œ: μœ λ™μ„± μ‘°μ ˆμˆ˜λ‹¨, μ€‘μ†ŒκΈ°μ—… μ •μ±…κΈˆμœ΅, μ„œλ―Ό μ •μ±…κΈˆμœ΅ 39 2. μ‹œκΈ°: ν˜•μ„±κΈ°, μ‘°μ •κΈ°, μ „ν™˜κΈ°, κ°•ν™”κΈ° 45 3. 뢄석방법: μ œλ„μ˜ μ‹œκΈ°λ³„ κ΅¬μ„±μš”μ†Œμ˜ λ³€ν™” 기제 및 ν–‰μœ„μžμ˜ μ „λž΅μ  ν–‰μœ„ 뢄석 48 제4μž₯ κΈˆμœ΅μ€‘κ°œμ§€μ›λŒ€μΆœμ˜ λ³€ν™” 기제 뢄석 50 제1절 ν˜•μ„±κΈ°(1962∼1994) 50 1. μ œλ„μ˜ ν˜•μ„± 및 λ³€ν™” 50 2. ꡬ쑰, μ œλ„ 및 ν–‰μœ„μž λ³€μˆ˜μ˜ 영ν–₯ 52 3. μ†Œκ²°: μ •λΆ€ μœ„μ£Όμ˜ λΆˆκ· ν˜•ν•œ ꢌλ ₯κ΄€κ³„μ—μ„œ μ œλ„ ν˜•μ„± 56 제2절 μ‘°μ •κΈ°(1994∼1997) 56 1. μ œλ„μ˜ λ³€ν™” 56 2. ꡬ쑰, μ œλ„ 및 ν–‰μœ„μž λ³€μˆ˜μ˜ 영ν–₯ 58 3. μ†Œκ²°: μ •λΆ€Β·ν•œκ΅­μ€ν–‰μ˜ μž¬λŸ‰κΆŒ μœ μ§€, μ •μ±…κΈˆμœ΅ μš”μ†Œμ˜ 지속 62 제3절 μ „ν™˜κΈ°(1997∼2008) 64 1. μ œλ„μ˜ λ³€ν™” 64 2. ꡬ쑰, μ œλ„ 및 ν–‰μœ„μž λ³€μˆ˜μ˜ 영ν–₯ 65 3. μ†Œκ²°: ν•œκ΅­μ€ν–‰, μ •μ±…μˆ˜ν˜œμž, ꡭ회의 이해관계 μ†μ—μ„œ μ •μ±…κΈˆμœ΅ μš”μ†Œκ°€ 경둜의쑴적으둜 μœ μ§€ 77 제4절 κ°•ν™”κΈ°(2008∼2016) 78 1. μ œλ„μ˜ λ³€ν™” 78 2. ꡬ쑰, μ œλ„ 및 ν–‰μœ„μž λ³€μˆ˜μ˜ 영ν–₯ 80 3. μ†Œκ²°: ν•œκ΅­μ€ν–‰μ˜ μ—­ν•  강화에 λ”°λ₯Έ μ •λΆ€μ˜ κ°œμž… 유인 증가 86 제5μž₯ κ²°λ‘  87 제1절 μ—°κ΅¬μ˜ μš”μ•½ 87 제2절 μ—°κ΅¬μ˜ ν•¨μ˜μ™€ ν•œκ³„ 94 1. μ—°κ΅¬μ˜ ν•¨μ˜ 및 정책적 μ œμ–Έ 94 2. μ—°κ΅¬μ˜ ν•œκ³„ 97 μ°Έ κ³  λ¬Έ ν—Œ 99 뢀둝 106 Abstract 127Maste

    κΈ°λ‘₯λΆ€ ν—€λ“œμ² κ·Ό μΈλ°œκ°•λ„ 산정을 μœ„ν•œ ν•œκ³„μ΄λ‘  해석 λͺ¨λΈ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :건좕학과,2003.Maste

    Method for address mapping in Flash Translation Layer(FTL)

    No full text
    λ³Έ 발λͺ…은 맀핑 μ½”λ“œλ₯Ό κ°–λŠ” 블둝 맀핑 ν…Œμ΄λΈ”μ„ μ΄μš©ν•˜μ—¬ 맀핑 속도λ₯Ό λ†’μ΄λ©΄μ„œλ„ λ©”λͺ¨λ¦¬ μ‚¬μš©λŸ‰μ„ μž‘κ²Œ ν•˜λŠ” FTL의 μ–΄λ“œλ ˆμŠ€ 맀핑 방법을 μ œκ³΅ν•˜κΈ° μœ„ν•œ κ²ƒμœΌλ‘œμ„œ, 호슀트λ₯Ό 톡해 μ“°κΈ° μš”μ²­μ— λŒ€ν•œ LSN λ²ˆν˜Έκ°€ μž…λ ₯λ˜λŠ” 단계와, 상기 μž…λ ₯λ˜λŠ” LSN 번호λ₯Ό ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­μ˜ 빈 νŽ˜μ΄μ§€λ‘œ μ°¨λ‘€λ‘œ κΈ°λ‘λ˜λŠ” 단계와, λ™μΌν•œ LSN에 μˆ˜μ • μš”μ²­μ΄ λ“€μ–΄μ˜€λ©΄ κΈ° μ €μž₯된 ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ νŽ˜μ΄μ§€λŠ” λ¬΄νš¨ν•œ(invalid) μƒνƒœλ‘œ λ³€κ²½ν•˜κ³  λ‹€μŒ 빈 νŽ˜μ΄μ§€λ₯Ό ν• λ‹Ή λ°›μ•„μ„œ μ—…λ°μ΄νŠΈ λ‚΄μš©μ„ κΈ°λ‘ν•˜λŠ” 단계와, 상기 기둝된 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­ λ‚΄μ˜ μœ νš¨ν•œ 데이터가 기둝된 물리 블둝 번호, 상기 μœ νš¨ν•œ 물리 블둝 λ²ˆν˜Έλ‚΄μ˜ νŽ˜μ΄μ§€ μƒνƒœ 및 μœ νš¨ν•œ 논리 νŽ˜μ΄μ§€ λ²ˆν˜Έκ°€ 기둝된 블둝 맀핑 μ½”λ“œ 정보λ₯Ό 블둝 맀핑 ν…Œμ΄λΈ”μ— μ €μž₯ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ”λ° μžˆλ‹€.호슀트λ₯Ό 톡해 μ“°κΈ° μš”μ²­μ— λŒ€ν•œ LSN λ²ˆν˜Έκ°€ μž…λ ₯λ˜λŠ” 단계와, 상기 μž…λ ₯λ˜λŠ” LSN 번호λ₯Ό ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­μ˜ 빈 νŽ˜μ΄μ§€λ‘œ μ°¨λ‘€λ‘œ κΈ°λ‘λ˜λŠ” 단계와, λ™μΌν•œ LSN에 μˆ˜μ • μš”μ²­μ΄ λ“€μ–΄μ˜€λ©΄ κΈ° μ €μž₯된 ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ νŽ˜μ΄μ§€λŠ” λ¬΄νš¨ν•œ(invalid) μƒνƒœλ‘œ λ³€κ²½ν•˜κ³  λ‹€μŒ 빈 νŽ˜μ΄μ§€λ₯Ό ν• λ‹Ή λ°›μ•„μ„œ μ—…λ°μ΄νŠΈ λ‚΄μš©μ„ κΈ°λ‘ν•˜λŠ” 단계와, 상기 기둝된 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­ λ‚΄μ˜ μœ νš¨ν•œ 데이터가 기둝된 물리 블둝 번호, 상기 μœ νš¨ν•œ 물리 블둝 λ²ˆν˜Έλ‚΄μ˜ νŽ˜μ΄μ§€ μƒνƒœ 및 μœ νš¨ν•œ 논리 νŽ˜μ΄μ§€ λ²ˆν˜Έκ°€ 기둝된 블둝 맀핑 μ½”λ“œ 정보λ₯Ό 블둝 맀핑 ν…Œμ΄λΈ”μ— μ €μž₯ν•˜λŠ” 단계와, 상기 블둝 맀핑 ν…Œμ΄λΈ”μ„ 메인 λ©”λͺ¨λ¦¬μƒμ— λ‘œλ“œν•˜μ—¬ λ§΅ν•‘ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” FTL의 μ–΄λ“œλ ˆμŠ€ 맀핑 방법.호슀트λ₯Ό 톡해 μ“°κΈ° μš”μ²­μ— λŒ€ν•œ LSN λ²ˆν˜Έκ°€ μž…λ ₯λ˜λŠ” 단계와, 상기 μž…λ ₯λ˜λŠ” LSN 번호λ₯Ό ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­μ˜ 빈 νŽ˜μ΄μ§€λ‘œ μ°¨λ‘€λ‘œ κΈ°λ‘λ˜λŠ” 단계와, λ™μΌν•œ LSN에 μˆ˜μ • μš”μ²­μ΄ λ“€μ–΄μ˜€λ©΄ κΈ° μ €μž₯된 ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ νŽ˜μ΄μ§€λŠ” λ¬΄νš¨ν•œ(invalid) μƒνƒœλ‘œ λ³€κ²½ν•˜κ³  λ‹€μŒ 빈 νŽ˜μ΄μ§€λ₯Ό ν• λ‹Ή λ°›μ•„μ„œ μ—…λ°μ΄νŠΈ λ‚΄μš©μ„ κΈ°λ‘ν•˜λŠ” 단계와, 상기 기둝된 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­ λ‚΄μ˜ μœ νš¨ν•œ 데이터가 기둝된 물리 블둝 번호, 상기 μœ νš¨ν•œ 물리 블둝 λ²ˆν˜Έλ‚΄μ˜ νŽ˜μ΄μ§€ μƒνƒœ 및 μœ νš¨ν•œ 논리 νŽ˜μ΄μ§€ λ²ˆν˜Έκ°€ 기둝된 블둝 맀핑 μ½”λ“œ 정보λ₯Ό 블둝 맀핑 ν…Œμ΄λΈ”μ— μ €μž₯ν•˜λŠ” 단계와, 상기 블둝 맀핑 ν…Œμ΄λΈ”μ„ 메인 λ©”λͺ¨λ¦¬μƒμ— λ‘œλ“œν•˜μ—¬ λ§΅ν•‘ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” FTL의 μ–΄λ“œλ ˆμŠ€ 맀핑 방법.호슀트λ₯Ό 톡해 μ“°κΈ° μš”μ²­μ— λŒ€ν•œ LSN λ²ˆν˜Έκ°€ μž…λ ₯λ˜λŠ” 단계와, 상기 μž…λ ₯λ˜λŠ” LSN 번호λ₯Ό ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­μ˜ 빈 νŽ˜μ΄μ§€λ‘œ μ°¨λ‘€λ‘œ κΈ°λ‘λ˜λŠ” 단계와, λ™μΌν•œ LSN에 μˆ˜μ • μš”μ²­μ΄ λ“€μ–΄μ˜€λ©΄ κΈ° μ €μž₯된 ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ νŽ˜μ΄μ§€λŠ” λ¬΄νš¨ν•œ(invalid) μƒνƒœλ‘œ λ³€κ²½ν•˜κ³  λ‹€μŒ 빈 νŽ˜μ΄μ§€λ₯Ό ν• λ‹Ή λ°›μ•„μ„œ μ—…λ°μ΄νŠΈ λ‚΄μš©μ„ κΈ°λ‘ν•˜λŠ” 단계와, 상기 기둝된 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­ λ‚΄μ˜ μœ νš¨ν•œ 데이터가 기둝된 물리 블둝 번호, 상기 μœ νš¨ν•œ 물리 블둝 λ²ˆν˜Έλ‚΄μ˜ νŽ˜μ΄μ§€ μƒνƒœ 및 μœ νš¨ν•œ 논리 νŽ˜μ΄μ§€ λ²ˆν˜Έκ°€ 기둝된 블둝 맀핑 μ½”λ“œ 정보λ₯Ό 블둝 맀핑 ν…Œμ΄λΈ”μ— μ €μž₯ν•˜λŠ” 단계와, 상기 블둝 맀핑 ν…Œμ΄λΈ”μ„ 메인 λ©”λͺ¨λ¦¬μƒμ— λ‘œλ“œν•˜μ—¬ λ§΅ν•‘ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” FTL의 μ–΄λ“œλ ˆμŠ€ 맀핑 방법.호슀트λ₯Ό 톡해 μ“°κΈ° μš”μ²­μ— λŒ€ν•œ LSN λ²ˆν˜Έκ°€ μž…λ ₯λ˜λŠ” 단계와, 상기 μž…λ ₯λ˜λŠ” LSN 번호λ₯Ό ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­μ˜ 빈 νŽ˜μ΄μ§€λ‘œ μ°¨λ‘€λ‘œ κΈ°λ‘λ˜λŠ” 단계와, λ™μΌν•œ LSN에 μˆ˜μ • μš”μ²­μ΄ λ“€μ–΄μ˜€λ©΄ κΈ° μ €μž₯된 ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ νŽ˜μ΄μ§€λŠ” λ¬΄νš¨ν•œ(invalid) μƒνƒœλ‘œ λ³€κ²½ν•˜κ³  λ‹€μŒ 빈 νŽ˜μ΄μ§€λ₯Ό ν• λ‹Ή λ°›μ•„μ„œ μ—…λ°μ΄νŠΈ λ‚΄μš©μ„ κΈ°λ‘ν•˜λŠ” 단계와, 상기 기둝된 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­ λ‚΄μ˜ μœ νš¨ν•œ 데이터가 기둝된 물리 블둝 번호, 상기 μœ νš¨ν•œ 물리 블둝 λ²ˆν˜Έλ‚΄μ˜ νŽ˜μ΄μ§€ μƒνƒœ 및 μœ νš¨ν•œ 논리 νŽ˜μ΄μ§€ λ²ˆν˜Έκ°€ 기둝된 블둝 맀핑 μ½”λ“œ 정보λ₯Ό 블둝 맀핑 ν…Œμ΄λΈ”μ— μ €μž₯ν•˜λŠ” 단계와, 상기 블둝 맀핑 ν…Œμ΄λΈ”μ„ 메인 λ©”λͺ¨λ¦¬μƒμ— λ‘œλ“œν•˜μ—¬ λ§΅ν•‘ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” FTL의 μ–΄λ“œλ ˆμŠ€ 맀핑 방법.호슀트λ₯Ό 톡해 μ“°κΈ° μš”μ²­μ— λŒ€ν•œ LSN λ²ˆν˜Έκ°€ μž…λ ₯λ˜λŠ” 단계와, 상기 μž…λ ₯λ˜λŠ” LSN 번호λ₯Ό ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­μ˜ 빈 νŽ˜μ΄μ§€λ‘œ μ°¨λ‘€λ‘œ κΈ°λ‘λ˜λŠ” 단계와, λ™μΌν•œ LSN에 μˆ˜μ • μš”μ²­μ΄ λ“€μ–΄μ˜€λ©΄ κΈ° μ €μž₯된 ν”Œλž˜μ‹œ λ©”λͺ¨λ¦¬μ˜ νŽ˜μ΄μ§€λŠ” λ¬΄νš¨ν•œ(invalid) μƒνƒœλ‘œ λ³€κ²½ν•˜κ³  λ‹€μŒ 빈 νŽ˜μ΄μ§€λ₯Ό ν• λ‹Ή λ°›μ•„μ„œ μ—…λ°μ΄νŠΈ λ‚΄μš©μ„ κΈ°λ‘ν•˜λŠ” 단계와, 상기 기둝된 물리적 λ©”λͺ¨λ¦¬ μ˜μ—­ λ‚΄μ˜ μœ νš¨ν•œ 데이터가 기둝된 물리 블둝 번호, 상기 μœ νš¨ν•œ 물리 블둝 λ²ˆν˜Έλ‚΄μ˜ νŽ˜μ΄μ§€ μƒνƒœ 및 μœ νš¨ν•œ 논리 νŽ˜μ΄μ§€ λ²ˆν˜Έκ°€ 기둝된 블둝 맀핑 μ½”λ“œ 정보λ₯Ό 블둝 맀핑 ν…Œμ΄λΈ”μ— μ €μž₯ν•˜λŠ” 단계와, 상기 블둝 맀핑 ν…Œμ΄λΈ”μ„ 메인 λ©”λͺ¨λ¦¬μƒμ— λ‘œλ“œν•˜μ—¬ λ§΅ν•‘ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” FTL의 μ–΄λ“œλ ˆμŠ€ 맀핑 방법

    λΆˆμ—°μ† Weyl-Heisenberg 집합을 μ‚¬μš©ν•œ ν‘œν˜„μ—μ„œμ˜ 혼돈과 μ–‘μžν„΄λ„¬λ§

    No full text
    Thesis (doctoral)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :ν™”ν•™κ³Ό 물리화학전곡,1998.Docto

    Method for Decision initial Quantization Parameter

    No full text
    λ³Έ 발λͺ…은 μ˜μƒμ˜ νŠΉμ§•μ„ κ³ λ €ν•œ 초기 QP κ°’μ˜ κ²°μ •μœΌλ‘œ μž…λ ₯ μ˜μƒμ— μ μ‘ν•˜λŠ” μ‹œκ°„μ„ 쀄이고 ν™”μ§ˆ λ³€ν™”λ₯Ό 쀄일 수 μžˆλŠ” μ΅œμ μ— κ°€κΉŒμš΄ 초기 μ–‘μžν™” νŒŒλΌλ―Έν„°(Quantization Parameter : QP) 값을 κ²°μ •ν•˜λŠ” 방법을 μ œκ³΅ν•˜κΈ° μœ„ν•œ κ²ƒμœΌλ‘œμ„œ, ν”„λ ˆμž„ 레이트(frame rate), ν™”λ©΄ 크기, λΉ„νŠΈμœ¨μ— λ”°λΌμ„œ μ •μ˜λœ λ‹€μˆ˜κ°œμ˜ κ°’ μ€‘μ—μ„œ ν•˜λ‚˜λ₯Ό μ„ νƒν•˜μ—¬ 초기 μ–‘μžν™” νŒŒλΌλ―Έν„°(Quantization Parameter : QP) κ°’μœΌλ‘œ μ •μ˜ν•˜λŠ” 단계와, 상기 μ •μ˜λœ 초기 QP κ°’μœΌλ‘œ 첫 ν”„λ ˆμž„μ„ λΆ€ν˜Έν™”ν•˜μ—¬ λΉ„νŠΈμ–‘(bitrate)을 μ‚°μΆœν•˜λŠ” 단계와, 상기 μ‚°μΆœλœ λΉ„νŠΈμ–‘μ„ 기반으둜 κ²€μΆœλœ μž…λ ₯ μ˜μƒμ˜ νŠΉμ§•μ„ μ΄μš©ν•΄μ„œ μƒˆλ‘œμš΄ 초기 QP 값을 μƒμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ”λ° μžˆλ‹€.H.264/AVC λΉ„νŠΈμœ¨ μ œμ–΄ λ°©μ‹μ—μ„œ μ‚¬μš©λ˜λŠ” 초기 μ–‘μžν™” νŒŒλΌλ―Έν„° κ²°μ • 방법에 μžˆμ–΄μ„œ, (A) ν”„λ ˆμž„ 레이트(frame rate), ν™”λ©΄ 크기, λΉ„νŠΈμœ¨μ— λ”°λΌμ„œ μ •μ˜λœ λ‹€μˆ˜κ°œμ˜ κ°’ μ€‘μ—μ„œ ν•˜λ‚˜λ₯Ό μ„ νƒν•˜μ—¬ 초기 μ–‘μžν™” νŒŒλΌλ―Έν„°(Quantization Parameter : QP) κ°’μœΌλ‘œ μ •μ˜ν•˜λŠ” 단계와, (B) 상기 μ •μ˜λœ 초기 QP κ°’μœΌλ‘œ 첫 ν”„λ ˆμž„μ„ λΆ€ν˜Έν™”ν•˜μ—¬ λΉ„νŠΈμ–‘(bitrate)을 μ‚°μΆœν•˜λŠ” 단계와, (C) 상기 μ‚°μΆœλœ λΉ„νŠΈμ–‘μ„ 기반으둜 κ²€μΆœλœ μž…λ ₯ μ˜μƒμ˜ νŠΉμ§•μ„ μ΄μš©ν•΄μ„œ μƒˆλ‘œμš΄ 초기 QP 값을 μƒμ„±ν•˜κ³ , 이λ₯Ό μ΄μš©ν•˜μ—¬ 초기 μž…λ ₯ μ˜μƒμ— λΉ„νŠΈμœ¨ μ œμ–΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” 초기 μ–‘μžν™” νŒŒλΌλ―Έν„° κ²°μ • 방법.H.264/AVC λΉ„νŠΈμœ¨ μ œμ–΄ λ°©μ‹μ—μ„œ μ‚¬μš©λ˜λŠ” 초기 μ–‘μžν™” νŒŒλΌλ―Έν„° κ²°μ • 방법에 μžˆμ–΄μ„œ, (A) ν”„λ ˆμž„ 레이트(frame rate), ν™”λ©΄ 크기, λΉ„νŠΈμœ¨μ— λ”°λΌμ„œ μ •μ˜λœ λ‹€μˆ˜κ°œμ˜ κ°’ μ€‘μ—μ„œ ν•˜λ‚˜λ₯Ό μ„ νƒν•˜μ—¬ 초기 μ–‘μžν™” νŒŒλΌλ―Έν„°(Quantization Parameter : QP) κ°’μœΌλ‘œ μ •μ˜ν•˜λŠ” 단계와, (B) 상기 μ •μ˜λœ 초기 QP κ°’μœΌλ‘œ 첫 ν”„λ ˆμž„μ„ λΆ€ν˜Έν™”ν•˜μ—¬ λΉ„νŠΈμ–‘(bitrate)을 μ‚°μΆœν•˜λŠ” 단계와, (C) 상기 μ‚°μΆœλœ λΉ„νŠΈμ–‘μ„ 기반으둜 κ²€μΆœλœ μž…λ ₯ μ˜μƒμ˜ νŠΉμ§•μ„ μ΄μš©ν•΄μ„œ μƒˆλ‘œμš΄ 초기 QP 값을 μƒμ„±ν•˜κ³ , 이λ₯Ό μ΄μš©ν•˜μ—¬ 초기 μž…λ ₯ μ˜μƒμ— λΉ„νŠΈμœ¨ μ œμ–΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” 초기 μ–‘μžν™” νŒŒλΌλ―Έν„° κ²°μ • 방법.H.264/AVC λΉ„νŠΈμœ¨ μ œμ–΄ λ°©μ‹μ—μ„œ μ‚¬μš©λ˜λŠ” 초기 μ–‘μžν™” νŒŒλΌλ―Έν„° κ²°μ • 방법에 μžˆμ–΄μ„œ, (A) ν”„λ ˆμž„ 레이트(frame rate), ν™”λ©΄ 크기, λΉ„νŠΈμœ¨μ— λ”°λΌμ„œ μ •μ˜λœ λ‹€μˆ˜κ°œμ˜ κ°’ μ€‘μ—μ„œ ν•˜λ‚˜λ₯Ό μ„ νƒν•˜μ—¬ 초기 μ–‘μžν™” νŒŒλΌλ―Έν„°(Quantization Parameter : QP) κ°’μœΌλ‘œ μ •μ˜ν•˜λŠ” 단계와, (B) 상기 μ •μ˜λœ 초기 QP κ°’μœΌλ‘œ 첫 ν”„λ ˆμž„μ„ λΆ€ν˜Έν™”ν•˜μ—¬ λΉ„νŠΈμ–‘(bitrate)을 μ‚°μΆœν•˜λŠ” 단계와, (C) 상기 μ‚°μΆœλœ λΉ„νŠΈμ–‘μ„ 기반으둜 κ²€μΆœλœ μž…λ ₯ μ˜μƒμ˜ νŠΉμ§•μ„ μ΄μš©ν•΄μ„œ μƒˆλ‘œμš΄ 초기 QP 값을 μƒμ„±ν•˜κ³ , 이λ₯Ό μ΄μš©ν•˜μ—¬ 초기 μž…λ ₯ μ˜μƒμ— λΉ„νŠΈμœ¨ μ œμ–΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” 것을 νŠΉμ§•μœΌλ‘œ ν•˜λŠ” 초기 μ–‘μžν™” νŒŒλΌλ―Έν„° κ²°μ • 방법

    The First Quantization Parameter Decision Algorithm for the H.264/AVC Encoder

    No full text
    λ™μ˜μƒ μ••μΆ• ν‘œμ€€μΈ H.264/AVCλŠ” μ••μΆ• νš¨μœ¨μ„ 높이기 μœ„ν•΄μ„œ 기쑴의 ν‘œμ€€κ³ΌλŠ” λ‹€λ₯Έ 적응적인 λΉ„νŠΈμœ¨ μ œμ–΄(Adaptive Rate Control) 기법을 μ œκ³΅ν•œλ‹€. ν•˜μ§€λ§Œ λ™μ˜μƒμ˜ 첫 ν”„λ ˆμž„μ— λŒ€ν•œ QPλ₯Ό μ •ν™•νžˆ μ˜ˆμΈ‘ν•˜μ§€ λͺ»ν•˜λŠ” λ¬Έμ œμ μ„ 보인닀. λΆ€ν˜Έν™” μž…λ ₯ λ³€μˆ˜ 쀑 일뢀 값을 μ΄μš©ν•΄μ„œ 3~4개의 νŠΉμ • μƒμˆ˜ κ°’ 쀑에 ν•˜λ‚˜λ₯Ό μ„ νƒν•˜μ—¬ 초기 QP 값을 μ •ν•˜κ²Œ λœλ‹€. μ΄λ ‡κ²Œ ꡬ해진 초기 QP값은 μ‹€μ œ λΆ€ν˜Έν™” λ˜μ—ˆμ„ λ•Œμ˜ λΉ„νŠΈμ–‘μ„ κ³ λ €ν•˜μ§€ μ•Šμ€ λ°©λ²•μ΄λΌμ„œ νŠΉμ • μ˜μƒμ—μ„œλŠ” λΉ„νŠΈμœ¨ μ œμ–΄μ— μ‹€νŒ¨ν•˜κ±°λ‚˜ ν™”μ§ˆμ΄ κΈ‰κ²©ν•˜κ²Œ λ³€ν•˜λŠ” λͺ¨μŠ΅λ“€μ„ 보여쀀닀. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” H.264/AVC λΆ€ν˜Έν™”κΈ°μ—μ„œ 첫 번째 ν”„λ ˆμž„μ˜ QP값을 κ²°μ •ν•˜λŠ” μƒˆλ‘œμš΄ μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•œλ‹€. μ œμ•ˆλœ μ•Œκ³ λ¦¬μ¦˜μ€ 기쑴의 방법에 따라 초기 QPλ₯Ό κ²°μ •ν•΄μ„œ λΆ€ν˜Έν™”λ₯Ό μˆ˜ν–‰ν•œ ν›„ μƒμ„±λ˜λŠ” λΉ„νŠΈμ–‘μ— λ”°λΌμ„œ μƒˆλ‘œμš΄ 초기 QP 값을 κ΅¬ν•œλ‹€. μƒμ„±λ˜λŠ” λΉ„νŠΈμ–‘κ³Ό μƒˆλ‘œμš΄ 초기 QP κ°’ μ‚¬μ΄μ—λŠ” μ„ ν˜• 관계(A linear QP prediction model)κ°€ μ„±λ¦½ν•˜λ―€λ‘œ μ΅œμ μ— κ°€κΉŒμš΄ 초기 QP값을 예츑 ν•  수 μžˆλ‹€. μ΄λ ‡κ²Œ ꡬ해진 μƒˆλ‘œμš΄ 초기 QP값을 μ΄μš©ν•΄μ„œ 첫 ν”„λ ˆμž„μ„ μž¬λΆ€ν˜Έν™” ν•œλ‹€. μ‹€ν—˜κ²°κ³Ό κΈ°μ‘΄ μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œλŠ” λΉ„νŠΈμœ¨ μ œμ–΄κ°€ λΆˆκ°€λŠ₯ ν–ˆλ˜ μ˜μƒμ„ 효율적으둜 λΉ„νŠΈμœ¨ μ œμ–΄λ₯Ό ν•˜μ˜€κ³  기쑴의 방법보닀 평균 PSNR의 ν–₯상을 ν™•μΈν•˜μ˜€λ‹€. ν™”λ©΄ μ‚¬μ΄μ˜ ν™”μ§ˆ λ³€ν™” 폭을 μ€„μž„μœΌλ‘œμ¨ 주관적인 ν™”μ§ˆ λ˜ν•œ ν–₯μƒν•˜μ˜€λ‹€.2

    μ—λ„ˆμ§€ 관리λ₯Ό μœ„ν•œ μ΄λ™ν˜• μ—λ„ˆμ§€ μ €μž₯ μž₯치의 졜적 κ³„νš

    No full text
    MasterThis paper addresses the problem of scheduling the optimal power outputs and moving paths of mobile energy storage devices (MESDs) in a distribution network with the aim of minimizing total energy loss cost during a day. These MESDs operate as large-size batteries that can be loaded on electric trucks and timely connected to charging stations for electric vehicles, in contrast to stationary energy storage systems (ESSs). Distribution system operators (DSOs) can own and optimally operate the MESDs to provide cost-effective and reliable energy services adaptively. In this paper, the moving distances and transit time periods of the MESDs are modeled using a set of linear equations with consideration of traffic congestions. For the optimal scheduling, the linearized model is integrated with the linear constraints for the stable operation of a distribution power network. The optimization problem can then be solved using a mixed-integer linear programming (MILP) algorithm. Simulation case studies are performed using a modified IEEE 34-Node Test Feeder with the forecast data on the load demand, renewable power generation, and traffic time periods. The case study results demonstrate that the proposed scheduling method successfully leads to the effective use of the MESDs for the reduction in the total energy loss in the power and traffic networks, compared to the conventional method using stationary ESSs

    A Study on the Development of Korean Child Welfare between 1950s and 1970s in the Light of Children’s Light - Based on the Perspective of Social History -

    No full text
    corecore