8 research outputs found

    Pax6 Expressed in Osteocytes Inhibits Canonical Wnt Signaling

    Get PDF
    The transcription factor Pax6, which belongs to the paired box-containing gene family, regulates developmental processes, especially in the eyes, central nervous tissues and craniofacial structures. However, the role of Pax6 in bone has never been studied exclusively. Here we report that Pax6 is expressed at both the mRNA and protein level in the calvaria and long bones of adult mice as well as osteocyte-like MLOY4 cells and suppresses the canonical Wnt signaling pathway. Moreover, the expression levels of Pax6 were much higher in the calvaria than the long bones, and Pax6 was also expressed at E16 to E18 in both the calvaria and long bones. Knockdown of Pax6 in MLOY4 cells did not affect cell proliferation or survival; however, the expression of Sost, an osteocyte marker gene, was significantly decreased. In addition, the overexpression of Pax6 suppressed the canonical Wnt signaling pathway by enhancing the expression of Sost. Furthermore, we also demonstrated that Pax6 binds to the Sost promoter and that stimulation of Sost transcription by Pax6 was dependent on a specific Pax6-binding sequence within the promoter. In conclusion, the results of the present study suggest that Pax6 is expressed in bone and may play an important role in osteocyte differentiation by controlling canonical Wnt signaling.ope

    Hoxc8 downregulates Mgl1 tumor suppressor gene expression and reduces its concomitant function on cell adhesion

    No full text
    Hoxc8 is a homeobox gene family member, which is essential for growth and differentiation. Mgl1, a mouse homologue of the Drosophila tumor suppressor gene lgl, was previously identified as a possible target of Hoxc8. However, the biological effects and underlying molecular mechanism of Hoxc8 regulation on Mgl1 has not been fully established. The endogenous expression patterns of Hoxc8 were inversely correlated with those of Mgl1 in different types of cells and tissues. Here we showed that Hoxc8 overexpression downregulated the Mgl1 mRNA expression. Characterization of the ~2 kb Mgl1 promoter region revealed that the upstream sequence contains several putative Hox core binding sites and chromatin immunoprecipitation assay confirmed that Hoxc8 directly binds to the 5' upstream region of Mgl1. The promoter activity of this region was diminished by Hoxc8 expression but resumed by knockdown of Hoxc8 using siRNA against Hoxc8. Functional study of Mgl1 in C3H10T1/2 cells revealed a significant reduction in cell adhesion upon expression of Hoxc8. Taken together, our data suggest that Hoxc8 downregulates Mgl1 expression via direct binding to the promoter region, which in turn reduces cell adhesion and concomitant cell migration.ope

    The third helix of the Hoxc8 homeodomain peptide enhances the efficiency of gene transfer in combination with lipofectamine.

    No full text
    Protein transduction domains (PTDs) have been shown to cross the biological cell membranes efficiently through a receptor and energy independent mechanism. Because of its ease in membrane transducing ability, PTDs could be used as a gene delivery vector. Since we already have shown that purified Hoxc8 homeoprotein has the ability to cross the cellular membrane, we analyzed the possibility of the third helix of the Hoxc8 homeodomain as a useful gene delivery vector. For that purpose, a 16-aa long synthetic oligopeptide Hoxc8 Protein Transduction Domain (HPTD) was chemically synthesized and then tested to see whether the HPTD could form a complex with DNA or not. Gel retardation analysis revealed that the HPTD interacts with plasmid DNA efficiently but failed to transfer the DNA into the cells. However, HPTD can enhance the efficiency of gene transfer in combination with Lipofectamine which doubled the gene transfer rate into COS-7 cells compared with the DNA/Lipofectamine control. An MTT assay indicated that the amount of HPTD used in the complex for the transfection did not show any cytotoxicty in COS-7 cells. The TEM studies showed compact particle formation in the presence of HPTD. These results indicate that the HPTD could be a good candidate adjuvant molecule to enhance the gene transfer efficiency of Lipofectamine in eukaryotic cellsope

    The forkhead transcription factor Foxc2 promotes osteoblastogenesis via up-regulation of integrin β1 expression

    No full text
    The forkhead box C2 (Foxc2) protein, a member of the forkhead/winged helix transcription factor family, plays an important role in regulation of metabolism, arterial specification, and vascular sprouting. Foxc2-null mutants die prenatally or perinatally, and they exhibit hypoplasia of the vertebrae and insufficient chondrification or ossification of medial structures. However, the role of Foxc2 in osteoblastogenesis is not yet fully understood. According to the degree of differentiation of osteoblasts, we found that Foxc2 expression was gradually increased and dose-dependently up-regulated by well-known bone anabolic agents, such as hPTH(1-34) and BMP2. In ex vivo mouse calvarial organ culture, a significant reduction of the basal expression of Foxc2 induced by siFoxc2 remarkably suppressed cell proliferation and differentiation and induced cell death. Knockdown of Foxc2 expression using siFoxc2 in both MC3T3-E1 and primary mouse calvarial cells also resulted in a significant suppression of proliferation and differentiation, and induced cell death, supporting the ex vivo observations. In addition, the resistance to apoptosis induced by serum deprivation and phosphorylation of both Akt and ERK was significantly reduced after siFoxc2 treatment. Conversely, overexpression of Foxc2 increased the proliferation of MC3T3-E1 and primary mouse calvarial cells. Furthermore, we found that Foxc2 enhanced the expression of integrin β1, an important modulator of osteoblastogenesis, by direct binding to a Forkhead-binding element in its promoter. Taken together, these results indicate that Foxc2 plays an important role in osteoblastogenesis by promoting osteoblast proliferation, survival and differentiation through up-regulation of integrin β1 in response to stimuli which induce bone formation.ope

    The third helix of the murine Hoxc8 homeodomain facilitates protein transduction in mammalian cells

    No full text
    Previously, we have demonstrated that purified Hoxc8 homeoprotein has the ability to penetrate the cellular membrane and can be transduced efficiently into COS-7 cells. Moreover, the Hoxc8 protein is able to form a complex with DNA molecules in vitro and helps the DNA be delivered intracellularly, serving as a gene delivery vehicle. Here, we further analyzed the membrane transduction activity of Hoxc8 protein and provide the evidence that the 16 amino acid (a.a.191-206, 2.23 kDa) third helix of murine Hoxc8 protein is an efficient protein transduction domain (PTD). When the 16 amino acid peptide was fused at the carboxyl terminal of enhanced green fluorescence protein (EGFP), the fusion proteins were transduced efficiently into the primary pig fetal fibroblast cells. The transduction efficiency increased in a concentration-dependent manner up to 1 microM, and appeared to plateau above a concentration of 1 microM. When tandem multimers of PTD, EGFP-PTD(2), EGFP-PTD(3), EGFP-PTD(4), and EGFP-PTD(5), were analyzed at 500 nM of concentration, the penetrating efficiency increased in a dose-dependent manner. As the number of PTDs increased, the EGFP signal also increased, although the signal maintained plateau after EGFP-PTD(3). These results indicate that the 16 amino acid third helix is the key element responsible for the membrane transduction activity of Hoxc8 proteins, and further suggest that the small peptide could serve as a therapeutic delivery vehicle for large cargo proteinsope

    The transcription factor snail regulates osteogenic differentiation by repressing Runx2 expression

    No full text
    Osteoblasts originate from mesenchymal stem cells by the coordinated activities of different signaling pathways that regulate the expression of osteoblast-specific genes. Runt-related transcription factor 2 (Runx2) is the master transcription factor for osteoblast differentiation. Despite the importance of Runx2 in the developing skeleton, how Runx2 expression is regulated remains a pivotal question. Snail, a zinc finger transcription factor, is essential for triggering epithelial-to-mesenchymal transitions (EMTs) during embryonic development and tumor progression. Here, we report that Runx2 expression is significantly up- or down-regulated relative to Snail expression. We demonstrate that Snail binds to the Runx2 promoter and that repression of Runx2 transcription by Snail is dependent on specific E-box sequence within the promoter. With antisense morpholino oligonucleotide (MO)-mediated knockdown of Snail expression in zebrafish, we observed alterations in osteogenic potential. These results indicate that Snail plays a crucial role in osteogenic differentiation by acting as a direct Runx2 repressor.ope

    The Transcription Factor Protein Sox11 Enhances Early Osteoblast Differentiation by Facilitating Proliferation and the Survival of Mesenchymal and Osteoblast Progenitors

    No full text
    Sox11 deletion mice are known to exhibit developmental defects of craniofacial skeletal malformations, asplenia, and hypoplasia of the lung, stomach, and pancreas. Despite the importance of Sox11 in the developing skeleton, the role of Sox11 in osteogenesis has not been studied yet. In this study, we identified that Sox11 is an important transcription factor for regulating the proliferation and survival of osteoblast precursor cells as well as the self-renewal potency of mesenchymal progenitor cells via up-regulation of Tead2. Furthermore, Sox11 also plays an important role in the segregation of functional osteoblast lineage progenitors from osteochondrogenic progenitors. Facilitation of osteoblast differentiation from mesenchymal cells was achieved by enhanced expression of the osteoblast lineage specific transcription factors Runx2 and Osterix. Morpholino-targeted disruption of Sox11 in zebrafish impaired organogenesis, including the bones, which were under mineralized. These results indicated that Sox11 plays a crucial role in the proliferation and survival of mesenchymal and osteoblast precursors by Tead2, and osteogenic differentiation by regulating Runx2 and Osterix.ope

    miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1

    No full text
    Uncontrolled oxidative stress impairs bone formation and induces age-related bone loss in humans. The FoxO family is widely accepted to play an important role in protecting diverse cells from reactive oxygen species (ROS). Activation of FoxO1, the main FoxO in bone, stimulates proliferation and differentiation as well as inhibits apoptosis of osteoblast lineage cells. Despite the important role of FoxO1, little is known about how FoxO1 expression in bone is regulated. Meanwhile, several recent studies reported that microRNAs (miRNAs) could play a role in osteoblast differentiation and bone formation by targeting various transcriptional factors. Here, we identified one additional crucial miRNA, miR-182, which regulates osteoblastogenesis by repressing FoxO1 and thereby negatively affecting osteogenesis. Overexpression of miR-182 in osteoblast lineage cells increased cell apoptosis and inhibited osteoblast differentiation, whereas in vivo overexpression of miR-182 in zebrafish impaired bone formation. From in silico analysis and validation experiments, FoxO1 was identified as the target of miR-182, and restoration of FoxO1 expression in miR-182-overexpressing osteoblasts rescued them from the inhibitory effects of miR-182. These results indicate that miR-182 functions as a FoxO1 inhibitor to antagonize osteoblast proliferation and differentiation, with a subsequent negative effect on osteogenesis. To treat bone aging, an antisense approach targeting miR-182 could be of therapeutic value.ope
    corecore