25 research outputs found

    東澳嶺崩塌地之地形演育分析

    Get PDF
    梅姬颱風 (2010) 與東北季風之共伴效應於台灣宜蘭縣蘇澳地區帶來了豐沛降雨,高累積雨量造成了台9 線蘇花公路群集性土砂災害,尤其在115.9K 上邊坡更誘發了約210 萬m3 之大規模崩塌土砂災害。本文從現地地質調查、致災機制、水文分析及遙測影像判釋等面向進行討論。由降雨-延時-頻率分析得知近年來誘發重大崩塌事件的雨量皆高於200 年回歸週期,並獲致良好判別致災雨場之I-R 圖降雨臨界線關係(Re+53.5Iave=1,146)。多時期遙測影像判釋指出東澳嶺坡頂之弧型張力裂隙仍有持續溯源發展之趨勢。裸露崩塌地不連續面方位密度分布圖之裂隙位態大致與區域地質構造位態 (N70°W) 相近,顯示本區域崩塌主要仍受地質條件主控。此外,蝕溝溯源侵蝕、剪裂帶分布及凹漥坡型亦為影響研究區崩塌地地貌變遷之重要因子,而前期地震或長延時高強度降雨則為外在促崩因子。Typhoon Megi coupled with the northeastern monsoon induced an extreme rainfall of 939 mm on the Suao area, Yilan County, in eastern Taiwan on October 21st, 2010, causing the Dong-Ao Peak landslide of 2.1 million m3 along the coastal Su-Hua Section of Highway Route 9. This study adopts a geological survey, rainfall data, satellite images, orthophotos, and high-resolution DEM based on airborne laser scanner surveys to quantify the morphological changes before and after landslide events following major rainfall events since 2010. Rainfall frequency analysis indicates the cumulative precipitation triggering landslide events is greater than the 200-year return period. In addition, both the entrainment effect of debris flow and toe erosion on the down-slope is shown to induce regressive sliding failure at the adjacent roadbed. The results suggest that geological factors such as head-cutting erosion and the concave landform shape the landform evolution of the catchment. The occurrence of landslides also depends on antecedent earthquake events and extreme intense rainfalls

    斷層泥分類初探

    No full text

    Correction of Nonlinear Digital Fringe Error for 3D Shape Measurement

    No full text
    本文主要研究在數位條紋投射法中,因LCD投影機與數位相機所產生的非線性條紋誤差,並提出誤差校正策略。首先建立一個強度查詢表,用來儲存電腦中設計的理想強度與實際量測強度之間的差異,並根據此差異建立另一個相位誤差查詢表,應用於相位誤差補償。接著將強度校正與相位誤差補償,應用於不同色彩與材質的待測物,進行初步的三維物體外形量測,並比較兩種方法的優缺點。其中,使用相位誤差補償能較有效消除輪廓表面的週期條紋雜訊,而強度校正能局部改善輪廓斷裂的情形。最後結合強度校正與相位誤差補償的優點,提出一套誤差校正策略,為使用具對比導引之強度校正,及殘留相位誤差補償。透過具有不規則曲面、不同表面色彩與材質待測物的三維外形量測結果可知,本文提出之誤差校正策略能有效改善重建輪廓的品質。This thesis studies an error correction method to reduce nonlinear fringe errors induced by the LCD projector and digital cameras for measuring 3D shapes of objects. Firstly, an intensity look-up table is established for storing the difference between the assigned projected intensities and the measured intensities, and a phase error look-up table is also established for correcting the phase error induced by the intensity inconsistencies. Then, both intensity correction and phase error compensation are carried out for reconstruction of 3D object shapes, and the results between the uncorrected and corrected shapes are compared. It shows that the phase error compensation can effectively reduce the periodic fringe noise, and the intensity correction can improve the local splits on the reconstructed 3D shapes. Finally, by combining the advantages of the intensity correction and the phase error compensation, contrast-guided intensity correction and residual phase error compensation are proposed. 3D object shapes of several specimens with different colors and materials are measured. The results demonstrate that the proposed advanced error correction strategy offers good feasibility for improving the quality of reconstructed 3D shapes.致謝 i 摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 4 1.2.1條紋投射法 5 1.2.2量測校正與重建品質 8 1.3研究動機與目的 9 1.4論文大綱 11 第二章 數位條紋投射法基本原理 13 2.0前言 13 2.1數位條紋投射法原理 14 2.1.1相位移干涉法 14 2.1.2數位條紋投射法 15 2.2 相位移法 16 2.2.1 三步相位移法 17 2.2.2 四步相位移法 17 2.2.3 五步相位移法 18 2.2.4 相位移法結論 18 2.3 相位重建 19 2.4 三角量測法 25 2.5 座標轉換與資料結合 27 2.6 投射條紋輪廓量測法之誤差分析 32 2.6.1 相位移誤差 32 2.6.2 光源穩定性 33 2.6.3 量化誤差 34 2.6.4 系統振動誤差 34 2.6.5 條紋結構光 35 2.6.6 相位移步數之選擇 36 第三章 設備非線性誤差之分析與改善 37 3.0 前言 37 3.1 設備之非線性誤差分析 37 3.2 相位誤差補償與強度校正 40 3.2.1 相位誤差補償 40 3.2.2 強度校正 43 3.2.3 相位誤差補償與強度校正之成果比較 43 3.3 具對比導引之強度校正與殘留相位誤差補償 45 3.4 程式之架構與流程 48 3.5 本章結論 50 第四章 系統架構與量測結果 51 4.1 量測系統架構 51 4.1.1 影像感測器規格 52 4.1.2 投影機規格 53 4.2 量測系統校正與設定 54 4.2.1 強度分佈曲線之建立 54 4.2.2 相位-高度轉換常數校正 54 4.2.3 座標轉換之參數校正 58 4.3 量測實例與品質改善之成果比較 63 4.3.1 量測實例一:白色維納斯石膏像 65 4.3.2 量測實例二:彩色貝克漢人偶模型 67 4.3.3 量測實例三:單色人偶模型 68 4.3.4 量測實例四:彩色人偶模型 70 4.3.5 量測實例五:白色玫瑰少女石膏像 71 4.4 應用於人體相關之輪廓量測實例 73 4.4.1 量測實例一:石膏齒模 73 4.4.2 量測實例二:嬰兒頭顱之石膏模型 74 4.4.3 量測實例三:手掌外型 75 4.4.4 量測實例四:人臉輪廓 76 4.4.5 量測實例五:人體外型 76 4.5 雙相機量測與資料結合之應用實例 79 4.6 本章結論 88 第五章 結論與建議 91 5.1 結論 91 5.2 建議 91 參考文獻 93 附錄A 基本光學原理介紹 97 附錄B 程式執行與說明 101 作者簡歷 12

    Sound Source Localization via Cockpit Voice Recorder

    No full text
    在飛航事故的調查上,飛航資料記錄器(Flight Data Recorder, FDR)與座艙語音紀錄器(Cockpit Voice Recorder, CVR)均為失事調查的有利工具。而座艙語音記錄器除了駕駛員的通話內容外還會把非語音的聲音一併記錄起來,例如螺旋槳噪音與開關撥動聲等,因此座艙語音記錄器的資料也可以提供飛機失事前駕駛操作開關的狀況,以利失事原因的判別。本論文是基於現有標準的座艙語音記錄器資料的前提下,進行開關聲源定位的研究。傳統的定位方式首先是求得聲源發生後,經由不同傳遞長度到達不同麥克風所產生的抵達時間差(Time-Delay of Arrival, TDOA),再由此定位出開關的位置。我們更可利用同型飛機座艙內的開關位置普遍固定的特性,以及三隻艙內麥克風相對位置所差不遠的前提下,直接建立每個開關相對應的抵達時間差表格,這是最簡化的聲搜尋辦法。另外在此也提出另一個利用Trilateration的方法,來求得由抵達時間差所構成的雙曲面之間的交線,再利用此曲線與座艙配置進行聲源的定位。最後比較出這兩種方式的優缺點與成效,以及利用實驗驗證兩種方式的可行性。The Flight Data Recorder (FDR) and the Cockpit Voice Recorder (CVR) both can strongly facilitate the investigation of aviation accident. Besides the pilot communications, the CVR can also record the non-speech acoustic information as the sound of propeller and the voice of control levers and switches. For this reason, the CVR can provide the last operations of pilots in the accident and assist the investigation. The first step to locate sound sources of switches in traditional method is calculating the time-delay of arrival (TDOA) which is caused by different propagation length form the sound source to different microphones, and the second step is locating the position of sound sources with calculated TDOA. Furthermore, we can introduce the character that the allocations of switches are identical in the same type of aircraft, and premise that the relative positions of three cockpit microphones do not alter substantially. Under the premise, the task of sound source localization in the cockpit could be simplified to a simple table lookup issue, while the table consists of the TDOA set and each corresponding switch. Besides, the other method of hyperbolic positioning via trilateration is introduced. Trilateration is applied to obtain the intersection of hyperboloids which are from the estimated TDOA. Combine this hyperbolic curve and the geometry of aircraft cockpit, and the sound source can be identified. At last, the performances and their pros and cons of these two methods are compared and verified with experiments.Table of Contents文摘要 1bstract Itatement of Contributions II謝 IIIable of Contents IVist of Figures VIIist of Table XIIhapter 1 Introduction 1.1 Motivation ...........................................................................................................1.2 Background .........................................................................................................2.3 Problem Description ............................................................................................4.4 Thesis Organization .............................................................................................5hapter 2 Methodologies of Sound Source Localization 7hapter 3 Localization via TDOA 15.1 The Traditional Sound Source Localization ......................................................15.1.1 Hyperbolas and Hyperboloids 16.1.2 Intersection of Hyperboloids 21.2 Sound Source Localization with Table Lookup Method ...................................29hapter 4 The Factors of Localization Error 32.1 Mechanical Factors ............................................................................................33.2 Environmental Factors ......................................................................................36.3 Anthropogenic Factors ......................................................................................37hapter 5 Parameters & Settings 40.1 The variables and dimensions of simulation .....................................................40.1.1 The Dimensions of Boeing 767 Cockpit 41.1.2 Environment 46.1.3 Sampling rate 47.1.4 Movement of boom microphones 50.2 Process of simulation .........................................................................................51hapter 6 The Simulation of Sound Source Localization with CVR Data 54.1 Simulations of Table Lookup Method ...............................................................54.1.1 Result of localization: Switch 55.1.2 Result of localization: Area 60.1.3 Result of localization: Panel 65.2 Simulations of Hyperbolic Positioning .............................................................67.2.1 Special cases 68.2.2 Result of localization: Switch 70.2.3 Result of localization: Area 75.2.4 Result of localization: Panel 80hapter 7 Comparison of Two Algorithms 83.1 Comparison of two algorithms: Switch .............................................................83.2 Comparison of two algorithms: Area ................................................................84.3 Comparison of two algorithms: Panel ...............................................................86.4 Comparison of two algorithms: Mean accuracy ................................................87.5 Influence of different standard deviations .........................................................89hapter 8 Experiment 91.1 Apparatuses .......................................................................................................91.2 Verification of simple cross-correlation function for time-delay estimation ....94.3 Verification of simple cross-correlation function for time-delay estimation ....98hapter 9 Conclusions and Future Work 104.1 Conclusions .....................................................................................................104.2 Future Works ...................................................................................................105eferences 10

    集水區深層崩塌區位之推估及應用

    No full text
    Shiao Lin Village was destroyed seriously during the strike of Typhoon Morakot with long duration and high intensity rainfall. The event not only caused landslides but also resulted in life and property losses. The broad and large-scale landslides occurred in the watershed are difficult to manage. Hence, developing a system to screen the sites and estimate the volume of the landslide in advance is helpful for delineating the landslide potential and area of treatment priority. The risk of landslide can be estimated from the multiplication of watershed vulnerability and torrential hazard. Return period of a rainfall, road development and vegetation status are the crucial factors of a watershed. Soil depth, river concave and/or headwater erosion affect the landslide volume. The Chi-Shan creek watershed was selected to estimate the sites of large scale landslide potential and to verify the factors causing catastrophic disaster in Shiao Lin Village by using the watershed pre-disaster information of 200yr rainfall return period, index of road development, vegetation index, topographic wetness index, index of river concave and headwater erosion. Results show that the sites with high landslide potential are mainly located at the middle and downstream of the watershed which are mostly affected by the spatial distribution of rainfall intensity and degree of road development, while large scale landslides occurring at the sites of headwater. The failures of Shiao Lin Village are coincident with the sites of deep seated landslide estimated by this study. The sites with the characteristics of high landslide potential in probability and scale can be easily extracted using the models established in the study, and could be references of related authorities for decision making in treatment priority and conservation practices.小林村於莫拉克風災時,因長延時及強降雨事件造成嚴重災害。不僅產生崩塌亦造成生命 財產損失。集水區之廣泛且大規模崩塌使相關管理單位難以管理,因此透過崩塌區位的篩選及 崩塌量體的推估,將有助於劃定崩塌潛感區位及治理區位的優選。崩塌風險度可由集水區的脆 弱度與危害度相乘推估。以降雨重現期距、道路開發、植生狀況作為集水區之脆弱度。土壤深 度、河道凹岸及向源侵蝕影響崩塌量體。本研究以旗山溪集水區為樣區,利用災前之 200 年重 現期距、道路開發指標、植生指標、地形濕度指數、河道凹岸攻擊及向源侵蝕指標資料推估集 水區高風險及大規模崩塌區位,並驗證小林村大規模崩塌的致災原因。結果發現,崩塌潛勢高 之區位主要受到強降雨分布及道路開發程度影響,其主要分部於集水區中、下游;而大規模崩 塌區位主要分布於源頭區位。小林村災區範圍與本研究所推估深層崩塌區域吻合,因此藉由本 研究成果可篩選出崩塌風險度高且易產生大規模崩塌點位,應可提供優先治理或保全參考

    收納工具車

    No full text
    [[abstract]]我們這一組研究這份專題主要是因為我們平常白天在公司上班,工作內容性質跟我們晚上到學校進修所學相關,其中對機械裡的焊接有些許的興趣,裡面包括製圖、材料、焊接等,所以我們就開始著手這個專題,也希望藉由這個專題,能將我們在學校裡所學的知識與技能和我們在職場上手邊有的資源,來提升自我學習

    應用環境指標劃定阿里山溪集水區道路沿線崩塌潛勢之研究

    No full text
    2009 年莫拉克颱風侵襲台灣,累積雨量超過2500mm,造成中南部山區發生嚴重崩塌,其中嘉義阿里山地區累積雨量達3059.5mm,為莫拉克風災中降雨量最高的地區,使阿里山溪產生嚴重的崩塌情形,進而危害道路沿線與其他相關之保全對象;本研究旨在分析阿里山溪集水區內道路沿線之崩塌潛勢,利用SPOT 衛星影像進行影像相減萃取新增之崩塌地範圍,結合土地利用及地形資料,運用各類環境指標,探討不同崩塌類型與道路崩壞之相關性,並以不安定指數(DVM)進行崩塌潛勢因子權重劃分。結果顯示道路沿線之地形濕度指數為道路崩塌之重要指標,其權重為0.28;將各崩塌潛勢因子套疊後,以高潛勢區域之崩塌率為最高,與實際莫拉克崩塌災害案例相符,故模式可有效標出危險路段之區位,供相關單位監測管理之用。Typhoon Morakot lashed Taiwan in 2009. It brought more than 2,500mm accumulated rainfall and caused a lot of catastrophic landslides in central and southern Taiwan. The highest accumulated rainfall in the area of Alishan reached 3,059.5mm which is the highest in the island. The furious rainfall resulted in many massive landslides that affected the protected targets along the roads. The purpose of this study is to analyze the landslide potential along the roads in the watershed. Landslides extracted from SPOT images which coupled with environmental index calculated from land use and or topographic data was used to explore the correlation between landslide types and road failures. In addition, the Dangerous Value Method (DVM) is employed to derive the weight of factors to evaluate the vulnerability classes along the roads. The result shows that topographic wetting index with the weighting of 0.28 could be as an important factor to assess the landslide vulnerability along the roads. The highly potential areas are mostly located at the sites of highest landslide rate. It depicts that there is a good fit for the description of disaster sites caused by typhoon Morakot. Therefor the dangerous road sections could be efficiently identified as the hot spots for the use of further monitoring and maintenance
    corecore