3,390 research outputs found
Central Engine-Powered Bright X-ray Flares in Short Gamma-Ray Bursts: A Hint of Black Hole-Neutron Star Merger?
Short gamma-ray bursts may originate from the merger of double neutron stars
(NS) or that of a black hole (BH) and an NS. We propose that the bright X-ray
flare related to the central engine reactivity may hint a BH-NS merger, since
such a merger can provide more fall-back materials and therefore a more massive
accretion disk than the NS-NS merger. Based on the observed 49 short bursts
with Swift/X-ray Telescope follow-up observations, we find that three bursts
have bright X-ray flares, among which three flares from two bursts are probably
related to the central engine reactivity. We argue that these two bursts may
originate from the BH-NS merger rather than the NS-NS merger. Our suggested
link between the central engine-powered bright X-ray flare and the BH-NS merger
event can be checked by the future gravitational wave detections from advanced
LIGO and Virgo.Comment: 15 pages, 6 figures, accepted for publication in Ap
Block-block entanglement and quantum phase transitions in one-dimensional extended Hubbard model
In this paper, we study block-block entanglement in the ground state of
one-dimensional extended Hubbard model. Our results show that the phase diagram
derived from the block-block entanglement manifests richer structure than that
of the local (single site) entanglement because it comprises nonlocal
correlation. Besides phases characterized by the charge-density-wave, the
spin-density-wave, and phase-separation, which can be sketched out by the local
entanglement, singlet superconductivity phase could be identified on the
contour map of the block-block entanglement. Scaling analysis shows that behavior of the block-block entanglement may exist in both
non-critical and the critical regions, while some local extremum are induced by
the finite-size effect. We also study the block-block entanglement defined in
the momentum space and discuss its relation to the phase transition from
singlet superconducting state to the charge-density-wave state.Comment: 8 pages, 9 figure
Entanglement and quantum phase transition in the extended Hubbard model
We study quantum entanglement in one-dimensional correlated fermionic system.
Our results show, for the first time, that entanglement can be used to identify
quantum phase transitions in fermionic systems.Comment: 5 pages, 4 figure
Radial Angular Momentum Transfer and Magnetic Barrier for Short-Type Gamma-Ray Burst Central Engine Activity
Soft extended emission (EE) following initial hard spikes up to 100 seconds
was observed with {\em Swift}/BAT for about half of short-type gamma-ray bursts
(SGRBs). This challenges the conversional central engine models of SGRBs, i.e.,
compact star merger models. In the framework of the black hole-neutron star
merger models, we study the roles of the radial angular momentum transfer in
the disk and the magnetic barrier around the black hole for the activity of
SGRB central engines. We show that the radial angular momentum transfer may
significantly prolong the lifetime of the accretion process and multiple
episodes may be switched by the magnetic barrier. Our numerical calculations
based on the models of the neutrino-dominated accretion flows suggest that the
disk mass is critical for producing the observed EE. In case of the mass being
, our model can reproduce the observed timescale and
luminosity of both the main and EE episodes in a reasonable parameter set. The
predicted luminosity of the EE component is lower than the observed EE with
about one order of magnitude and the timescale is shorter than 20 seconds if
the disk mass being . {\em Swift}/BAT-like instruments may
be not sensitive enough to detect the EE component in this case. We argue that
the EE component would be a probe for merger process and disk formation for
compact star mergers.Comment: 9 pages, 3 figures, accepted for publication in Ap
Fermionic concurrence in the extended Hubbard dimer
In this paper, we introduce and study the fermionic concurrence in a two-site
extended Hubbard model. Its behaviors both at the ground state and finite
temperatures as function of Coulomb interaction (on-site) and
(nearest-neighbor) are obtained analytically and numerically. We also
investigate the change of the concurrence under a nonuniform field, including
local potential and magnetic field, and find that the concurrence can be
modulated by these fields.Comment: 5 pages, 7 figure
Mass Transfer, Transiting Stream and Magnetopause in Close-in Exoplanetary Systems with Applications to WASP-12
We study mass transfer by Roche lobe overflow in close-in exoplanetary
systems. The planet's atmospheric gas passes through the inner Lagrangian point
and flows along a narrow stream, accelerating to 100-200\kms velocity before
forming an accretion disk. We show that the cylinder-shaped accretion stream
can have an area (projected in the plane of the sky) comparable to that of the
planet and a significant optical depth to spectral line absorption. Such a
"transiting cylinder" may produce an earlier ingress of the planet transit, as
suggested by recent HST observations of the WASP-12 system. The asymmetric disk
produced by the accretion stream may also lead to time-dependent obscuration of
the star light and apparent earlier ingress. We also consider the interaction
of the stellar wind with the planetary magnetosphere. Since the wind speed is
subsonic/sub-Alfvenic and comparable to the orbital velocity of the planet, the
head of the magnetopause lies eastward relative to the substellar line (the
line joining the planet and the star). The gas around the magnetopause may, if
sufficiently compressed, give rise to asymmetric ingress/egress during the
planet transit, although more works are needed to evaluate this possibility.Comment: 6 pages with 2 figures. Accepted in ApJ. Small changes (add
discussion on asymmetric disks
- …
