17 research outputs found

    不同灌溉水溫對番茄苗生育之影響

    No full text
    本研究以'花蓮亞蔬五號'番茄為材料,調查不同水溫、植株部位、冷水灌溉時間對番茄苗矮化效果及其品質之影響,其目的為建立冷水灌溉矮化番茄苗之系統,以作為種苗產業之應用的參考依據,並作為深入研究矮化苗之基礎資訊。試驗結果顯示當灌溉水溫較室溫水愈低(5°C)或愈高(65°C)均可抑制番茄苗莖伸長,以冷水處理(5°C)能獲得較高莖硬度(g/mm)及壯苗指數(seedhng index;地上部乾物重/株高比值)之番茄苗。冷水處理主要抑制番茄苗之部位為第一節間莖長。冷水灌溉時間於每日清晨(8:00)進行較中午(13:00)及下午(16:00)能夠獲得更矮之植株;每日植株最大生長速率為夜晚至清晨期間。冷水處理四週後,矮化植株的效果最佳,且冷水處理之溫度愈低或處理持續時間愈長,矮化植株效果愈明顯。冷水澆施至栽培介質內,介質土溫能夠在60-90秒內降至最低點,土溫回復至正常溫度約需60分鐘;葉溫鞍上溫變化程度大且葉片回溫時間較介質為短。綜合上述結果顯示5°C冷水灌溉能夠有效的矮化番茄苗及提升種苗品質,可作為種苗產業之參考及應用。In this study,‘Hwalien Yasu No.5'tomato was used to study the effects of different temperatures of irrigation water, parts of plant, timing of irrigation on the shortening and quality of plg-seedling. The purposes of this study were to establish the cold-water irrigation system for plug-seedlings production, and to provide the basic knowledge of shortening seedling for advanced study. The results indicated that shortest seedling was found in the seeding irrigated with the lowest (5∘C) or highest (65∘C) water temperature.However, highest stem strength and seedling index was only found in the seedling irrigated with the 5∘C water. Decrease in the length of first internode was primary responsible for the shortening seedling by cold-water irrigation.Irrigation of cold water at the morning (8:00) or evening (16:00) showed the best results in shortening seedling. After the cold water irrigation, the soil temperature drop to minimum within 60 to 90 sec, and recovered to the room temperature after 60 min. Longer period of cold-water irrigation and lower the cold-water temperature resulted shorter the seedlings. In conclusion, cold-water irrigation system for plug-seedlings production could apply in the commercial usages

    推動智慧農業-翻轉臺灣農業

    No full text

    SEED-FILL PHYSIOLGY OF PEANUT (ARACHIS HYPOGAEA. L)

    No full text
    本省種植之Virginia型落花生品種普遍存有種子充實不良及產量低落之現象,而此一 現象通常與植株光合能力不足、光合產物配置不當或種子積儲能力不夠有關.本研究 之主要目的即在探討Virginia型與Spanish 型落花生品種植株光合能力、種子生長以 及產量等性狀在不同期作間與高濃度 (圖表省略) 處理下之反應,同時藉由調整Virginia型立枝仔品種之栽植密度,並配合斷水處理以 瞭解落花種子充實特性. 田間試驗結果顯示,Virginia型立枝仔品種植株光合能力與乾物質生產均優於 Spanish 型台南11號品種,二品種株冠 (圖表省略) 交換率在種子充實後期均有降低之現象,但降低幅度以立枝仔品種較為明顯.盆栽試 驗證實高濃度 (圖表省略) 處理可大幅提高植株光合能力及乾物質累積,但唯有在高濃度 (圖表省略) 處理配合去除子房柄處理才可有效提高種子充實下節位葉片在生殖生長期間必須利用 由上節位葉片轉流而來的同化產物.此一結果充分顯示,Virginia型立枝仔品種在種 子發育期間有過多之無效性積儲應為影響種子充實之主要原因,而株冠光合能力在種 子充實期之降低則為次要原因. 本研究也證實落花生種子之子葉細胞數目並不因植株始源/積儲比值改變或莢果著生 時期晚而發生明顯之變化,但是著生較早之莢細胞及較高的種子生長速率,顯示立枝 仔充實不良主要仍在於種子無法獲得足夠之光合產物供應,因而限制子葉細胞體積及 種子乾質累積. 改變栽植密度或給予植株斷水處理對Virginia型立枝仔品種植株光合能力、乾物質生 產、種子乾物質分配係數及經濟產量均有顯著的影響.提高栽植密度雖有助於產量之 提升,但對種子充實卻有不良之影響;斷水處理之結果也證實,種子充實與產量具有 負相關性.本試驗結果顯示栽植密度由111,000 株/公頃降低至83,300株/公頃時,經濟產量降低有限但種子充實則有明顯之改善, 是立枝仔品種值得考慮之栽植密度. /////// Poor seed fill and resultant seed-coat shriveling commonly occur on virginia-type peanuts (Arachis hypogaea L.) grown in Taiwan. These phenomena could result from the lower co2 exchange rate ( CER ), undesirable photosynthate partitioning, and the poor seed filling capacity of the plants. The basic objectives of this study were to evaluate the leaf and canopy CER, seed growth, and yield responses of two peanut genotypes differing in botanical type to cropping season, co2 enrichment, population density, and regulated water deficit. The results indicated that the virginia-type genotype ( Li-Chih-Tzae ) exhibited high leaf and canopy CER and biomass accumulation than spanish-type genotype ( Taiwan 11 ). Both genotypes showed canopy CER decline at late stages of seed filling, but with more accelerated decline in genotype Li-Chih-Tzae. Carbon dioxide enrichment experiment showed that both canopy CER and dry mass accumulation were increased in the plants receiving high (圖表省略) treatment ( 1,000 uL (圖表省略) But the production of marketable seeds and their seed filling capacity were improved only in the plants receiving high (圖表省略) and depegging treatments.目錄 表目錄 圖目錄 縮寫目錄 摘要 第一章 緒言 第二章 不同株型落花生碳素同化代謝研究 2.1前人研究 2.2材料與方法 2.3結果 2.4討論 第三章 高 CO2濃度與去子房柄處理對落花生碳素同化代謝之影響 3.1前人研究 3.2材料與方法 3.3結果 3.4討論 第四章 高供源/積儲比值對落花生種子子葉細胞發育與乾物質累積之影響 4.1前人研究 4.2材料與方法 4.3結果 4.4討論 第五章 栽堷密度與斷水處理對Virginia型落花生種子品質與產量之影響 5.1前人研究 5.2材料與方法 5.3結果 5.4討論 第六章 綜合討論 Summary 參考文獻 附錄一 誌

    The Selection and Molecular Markers Development of Functional Rice

    No full text
    本研究目標是研發機能米,以因應民眾對營養、機能性食品需求。稻米是國人主食,其中最營養的部分是米糠層,含有豐富維生素E與米糠醇,它們具有許多特殊生理活性,包括抗氧化、抗癌、降低膽固醇等等。本研究是篩選含有高維生素E與米糠醇含量之水稻品系,並且建立水稻合成維生素E與米糠醇代謝途徑相關基因之eQTL,由其鄰近的SSR (simple sequence repeat) markers,分析二成分極端差異之水稻品系,進行基因定位關聯性分析以確認關聯之功能基因,開發其DNA分子標誌用於之後水稻分子輔助育種工作。 This study aims at developing functional rice whose active ingredients are needed by human body. Rice is our staple, and the most nutritious part of rice is on the bran layer, in which vitamin E and oryzanol are abundant, can provide physiological functions of anti-oxidation, anti-cancer and reducing blood cholesterol, etc. In this study we will select out the rice lines/varieties with higher amount of vitamin and/or oryzanol, and analyze the rice SSR markers nearly located at the eQTL, involved in biosynthesis pathway of vitamin E and oryzanol, between rice lines/varieties with opposite or extremely different expression patterns of both ingredients. By association mapping of the phenotype and genotype, we may identify related functional genes which will be used as templates to design DNA markers for subsequent work of rice molecular assisted breeding

    水稻花藥培養癒傷組織形成及分化能力之研究

    No full text
    本文利用台農67號,台南 5號兩種利用兩種取梓方式比較不同次位分蘗、不同穗位及 不同板梗間癒傷組織的形成,並以台農67號所形成之癒傷組織進行分化能力之試驗, 所得結果摘錄於后: 1.第一種取梓方式,主桿與各分蘗之間花樂癒傷組織形成能力表現一致,第二的取梓 方式下,主桿,一、二分蘗癒傷組織表現一致,但三次分蘗則有低下情形。 2.穗位及板梗間癒傷組織之形成,在兩種取梓方式下都沒有差異。 3.接種密度對癒傷組織分化能力影響甚鉅,每根試管接1—2個癒傷組織具最高之分化 能力。 4.癒傷組織在形成十天內移植有最高之分化能力。 5.小株之染色體受移植日齡所左右,初形成之癒傷組織能分化較多的二倍體及單倍體

    淹水對大豆葉片光合代謝之影響

    No full text

    植物組織培養瓶內微氣候之量測

    No full text
    為改善組織培養苗於組織培養瓶內的生長環境,需要進行瓶內微氣候量測。本 研究中利用工業界所提供之感測元件,配合各型訊號轉換器與數據記錄器,以建立組織培 養瓶內即時,現地且連續性之量測系統。感測元件經紫外光殺菌燈與酒糟消毒後移入組織 培養瓶內可進行長期性監測作業。由文心蘭、國蘭、山葵與蝴蝶蘭之組織培養瓶內微氣 候量測,證實此系統量測值之合理性。在半年試驗期中,僅有氧氣感測元件需要更換。此 研究之量化數據可作為組織培養苗生理作用量化模式建立之參考。Plant tissue culture technique is very important for the development of flower industry in Taiwan. To improve the growth condition of the plantlets in the culture vessels, the measurement of the microclimate need to be executed. An in situ, real
    corecore