20 research outputs found

    [[alternative]]Energy saving in flapping formation flight : the first ground test

    No full text
    碩士[[abstract]]根據Lissaman 與 Shollenberger於1970年的Science文章,提到鳥類的編隊飛行帶來了節能的效果,因此進一步思考:假若使用仿生拍翼機進行群體飛行,是否也能得到類似的節能效果。 本文執行兩種實驗,第一種為動態實驗,將三隻拍翼機固定於框架上懸掛,進行水平迴旋飛行,模擬鳥類在巡航時的群體飛行,探討功率消耗是否減少。因為三隻拍翼機飛行懸掛飛行,本身並不穩定,經常造成最長滯空時間之量測中斷,故實驗所得的有限功耗數據缺乏一致性,而暫告實驗失敗。 第二種為靜態實驗,改用淡江大學風工程中心的大型風洞,進行拍翼機編隊之氣動力量測。本文製作了可移動式拍翼機群夾具,量測 1~3隻拍翼機,在不同前後距離、不同風速、不同攻角條件下的升力與推力變化,進而探討是否有達到節能的效果。實驗數據雖然複雜,但初步分析已有節能效果在風速3m/s、攻角10˚效果最好,功率減少消耗了1.2W。比對鳥類在編隊飛行時,會自行彈性調整相位和頻率,以達最佳節能效果,為本文後續研究之未來可努力改善方向。[[abstract]]According to Lissaman and Shollenberger’s article published in Science in 1970, birds fly in formation to reduce the overall energy expenditure for flight. Thus this work adopted the same principle of flight formation to flapping micro-air-vehicles (MAVs) to save energy. Two experiments are described herein. Firstly, a rigid frame housing three flapping MAVs was made and a tethered flight of it around a fixed suspension point was performed to evaluate the cruise performance of the MAV formation and check for energy saving by monitoring the endurance against a known reference value. Due to the intrinsic instabilities of the MAVs, lack of data consistency about in power saving in formation flight concludes less promising results from the 1st experiment. In the second experiment, a jig housing three flapping MAVs was subject to a wind tunnel test at the Wind Engineering Center of Tamkang University. The aerodynamic force evaluation of the MAV formation was done. The tests were performed under different wind speeds, and angle of attacks, and the lift and thrust force produced by the MAVs was measured via a force gauge. Due to the mechanical vibrations from the jig itself and the wind tunnel structure, interpretation of the complicated lift/thrust data was processed by the help of Fast Fourier Transform. From the preliminary examination, it is found that at 3 m/s, 10˚ angle of attack, the performance was the best to save power up to 1.2W. When compared to the real birds flying in a formation, the energy saving of flapping MAVs may be further improved by replicating the dynamic adjustments of frequency, phase change and separation among neighboring MAVs, to obtain best energy-saving results in the future.[[tableofcontents]]論文提要 I 目錄 IV 圖目錄 VI 表目錄 XIII 符號表 XIV 第一章 仿生拍翼飛行器簡介 1 1.1 研究背景 1 1.1 拍翼飛行器研究近況 1 1.2 拍翼飛行器阻力與功率 6 1.3 拍翼飛行編隊與節能 10 1.4 研究目的 14 第二章 拍翼機群水平迴旋飛行之功率初探 17 2-1 實驗構想 18 2-2 拍翼機群之吊掛機械框架設計 19 2-3 水平迴旋之飛行功率數據分析 23 第三章拍翼機群在風洞中之測力探討 27 3-1實驗構想 27 3-2拍翼機群之風洞之夾具設計 32 3-3風洞量測訊號分析 35 3-3-1數位訊號處理(FFT) 36 3-3-2同樣實驗條件下單隻到三隻拍翼力規訊號 40 3-3-3 加上實驗變數之單隻到三隻拍翼力規訊號比較 55 3-3-4 力規數據總整理 74 第四章 結論 86 4-1本文貢獻 87 4-2未來工作 88 參考文獻 89 附錄A 定電壓控制 95 附錄B 數據訊號圖 100 (a)拍翼前後距離改變訊號圖 100 (b)不同拍翼攻角情況訊號圖 105 (c)不同風速情況下拍翼訊號圖: 112 圖1 - 1 初航者 3 圖1 - 2 Eagle II 3 圖1 - 3 第一代金探子 3 圖1 - 4 Pro-金探子 3 圖1 - 5 Aero Viroment 蜂鳥懸停拍翼微飛行器 4 圖1 - 6 雙側桿機構 4 圖1 - 7 實際飛行 4 圖1 - 8 Robobees 蒼蠅拍翼微飛行器 5 圖1 - 9 伊氏近似直線機構 6 圖1 - 10編隊飛行省力圖 11 圖1 - 11 拍翼機懸掛飛行(1)水平迴旋到左側;(2)飛到右側;紅虛線為懸掛繫繩 15 圖1 - 12風洞測試 16 圖2 - 1 編隊飛行排列 17 圖2 - 2鳥類飛行之翼尖渦流 17 圖2 - 3鳥類編隊飛行之排列距離 19 圖2 - 4編隊飛行配置 20 圖2 - 5「e-bird」編隊飛行示意圖 21 圖2 - 6飛行攻角30° 22 圖2 - 7「e-bird」重心位置 22 圖2 - 8實際製作 22 圖2 - 9拍翼機懸掛飛行:(1)水平迴旋到左側;(2)飛到右側;紅虛線為懸掛繫繩 23 圖2 - 10懸掛水平迴旋飛行情形: (a)單一飛行; (b)三編隊飛行………..24 圖3 - 1實驗量測架構 28 圖3 - 2風洞翼尖渦流量測 29 圖3 - 3三隻拍翼機量測 29 圖3 - 4 拍翼機前後位置定義 30 圖3 - 5 六軸力規 31 圖3 - 6 兩隻拍翼機 32 圖3 - 7 三隻拍翼機 32 圖3 - 8 風洞量測夾具 33 圖3 - 9夾具插件 34 圖3 - 10 3D印表機 34 圖3 - 11 FFT程式碼 36 圖3 - 12 無拍翼機之升力時變圖 38 圖3 - 13 無拍翼機之升力頻譜圖 38 圖3 - 14 無拍翼機之推力時變圖 39 圖3 - 15 無拍翼機之推力頻譜圖 39 圖3 - 16 單隻無拍翼升力時變圖 42 圖3 - 17 單隻無拍翼升力頻譜圖 42 圖3 - 18 單隻拍翼升力時變圖 43 圖3 - 19 單隻拍翼升力頻譜圖 43 圖3 - 20 兩隻無拍翼升力時變圖 44 圖3 - 21 兩隻無拍翼升力頻譜圖 44 圖3 - 22 兩隻拍翼之升力時變圖 45 圖3 - 23 兩隻拍翼之升力頻譜圖 45 圖3 - 24 三隻無拍翼升力時變圖 46 圖3 - 25 三隻無拍翼升力頻譜圖 46 圖3 - 26 三隻拍翼之升力時變圖 47 圖3 - 27 三隻拍翼之升力頻譜圖 47 圖3 - 28 單隻無拍翼推力時變圖 49 圖3 - 29 單隻無拍翼推力頻譜圖 49 圖3 - 30 單隻拍翼推力時變圖 50 圖3 - 31 單隻拍翼推力頻譜圖 50 圖3 - 32 兩隻無拍翼推力時變圖 51 圖3 - 33 兩隻無拍翼推力頻譜圖 51 圖3 - 34 兩隻拍翼推力時變圖 52 圖3 - 35 兩隻拍翼推力頻譜圖 52 圖3 - 36 三隻無拍翼推力時變圖 53 圖3 - 37 三隻無拍翼推力頻譜圖 53 圖3 - 38 三隻拍翼推力時變圖 54 圖3 - 39 三隻拍翼推力頻譜圖 54 圖3 - 40 兩隻拍翼在原點升力時變圖 56 圖3 - 41 兩隻拍翼在原點升力頻譜圖 56 圖3 - 42 兩隻拍翼移動1公分升力時變圖 57 圖3 - 43 兩隻拍翼移動1公分升力頻譜圖 57 圖3 - 44 三隻拍翼在原點升力時變圖 58 圖3 - 45 三隻拍翼在原點升力頻譜圖 58 圖3 - 46 三隻拍翼移動1公分升力時變圖 59 圖3 - 47 三隻拍翼移動1公分升力頻譜圖 59 圖3 - 48 一隻拍翼攻角10˚升力時變圖 61 圖3 - 49 一隻拍翼攻角10˚升力頻譜圖 61 圖3 - 50 一隻拍翼攻角20˚升力時變圖 62 圖3 - 51 一隻拍翼攻角20˚升力頻譜圖 62 圖3 - 52 兩隻拍翼攻角10˚升力時變圖 63 圖3 - 53 兩隻拍翼攻角10˚升力頻譜圖 63 圖3 - 54 兩隻拍翼攻角20˚升力時變圖 64 圖3 - 55 兩隻拍翼攻角20˚升力頻譜圖 64 圖3 - 56 三隻拍翼攻角10˚升力時變圖 65 圖3 - 57 三隻拍翼攻角10˚升力頻譜圖 65 圖3 - 58 三隻拍翼攻角20˚升力時變圖 66 圖3 - 59 三隻拍翼攻角20˚升力頻譜圖 66 圖3 - 60 單隻拍翼在風速2m/s升力時變圖 68 圖3 - 61 單隻拍翼在風速2m/s升力頻譜圖 68 圖3 - 62 單隻拍翼在風速3m/s升力時變圖 69 圖3 - 63 單隻拍翼在風速3m/s升力頻譜圖 69 圖3 - 64 兩隻拍翼在風速2m/s升力時變圖 70 圖3 - 65 兩隻拍翼在風速2m/s升力頻譜圖 70 圖3 - 66 兩隻拍翼在風速3m/s升力時變圖 71 圖3 - 67 兩隻拍翼在風速3m/s升力頻譜圖 71 圖3 - 68 三隻拍翼在風速2m/s升力時變圖 72 圖3 - 69 三隻拍翼在風速2m/s升力頻譜圖 72 圖3 - 70 三隻拍翼在風速3m/s升力時變圖 73 圖3 - 71 三隻拍翼在風速3m/s升力頻譜圖 73 圖3 - 72 風速2m/s;攻角10度拍翼機放置不同距離升力數據圖 74 圖3 - 73 風速2m/s;攻角20度拍翼機放置不同距離升力數據圖 75 圖3 - 74 風速2m/s;攻角30度拍翼機放置不同距離升力數據圖 75 圖3 - 75 風速3m/s;攻角10度拍翼機放置不同距離升力數據圖 76 圖3 - 76 風速3m/s;攻角20度拍翼機放置不同距離升力數據圖 76 圖3 - 77 風速3m/s;攻角30度拍翼機放置不同距離升力數據圖 77 圖3 - 78 風速4m/s;攻角10度拍翼機放置不同距離升力數據圖 77 圖3 - 79 風速4m/s;攻角20度拍翼機放置不同距離升力數據圖 78 圖3 - 80 風速4m/s;攻角30度拍翼機放置不同距離升力數據圖 78 圖3 - 81 風速2m/s;攻角10度拍翼機放置不同距離推力數據圖 79 圖3 - 82 風速2m/s;攻角20度拍翼機放置不同距離推力數據圖 80 圖3 - 83 風速2m/s;攻角30度拍翼機放置不同距離推力數據圖 80 圖3 - 84 風速3m/s;攻角10度拍翼機放置不同距離推力數據圖 81 圖3 - 85風速3m/s;攻角20度拍翼機放置不同距離推力數據圖 81 圖3 - 86 風速3m/s;攻角30度拍翼機放置不同距離推力數據圖 82 圖3 - 87 風速4m/s;攻角10度拍翼機放置不同距離推力數據圖 82 圖3 - 88 風速4m/s;攻角20度拍翼機放置不同距離推力數據圖 83 圖3 - 89 風速4m/s;攻角30度拍翼機放置不同距離推力數據圖 83 圖3 - 90 升力不同風速不同攻角比較圖 84 圖3 - 91 推力不同風速不同攻角比較圖 84 圖3 - 92 結論圖……………………………………………………..........87 圖A- 1第一腳位 95 圖A- 2第三腳位 95 圖A- 3遙控器可變電阻 96 圖A- 4定電壓實驗整體架構 97 圖A- 5遙控器可變電阻 97 圖A- 6定電壓實驗電路圖………………………………………………..98 圖B- 1 兩隻拍翼在原點推力時變圖 101 圖B- 2 兩隻拍翼在原點推力頻譜圖 101 圖B- 3 兩隻拍翼移動1公分推力時變圖 102 圖B- 4 兩隻拍翼移動1公分推力頻譜圖 102 圖B- 5 三隻拍翼在原點推力時變圖 103 圖B- 6 三隻拍翼在原點推力頻譜圖 103 圖B- 7 三隻拍翼移動一公分推力時變圖 104 圖B- 8 三隻拍翼移動一公分推力頻譜圖 104 圖B- 9 一隻拍翼攻角10˚推力時變圖 106 圖B- 10 一隻拍翼攻角10˚推力頻譜圖 106 圖B- 11 一隻拍翼攻角20˚推力時變圖 107 圖B- 12 一隻拍翼攻角20˚推力頻譜圖 107 圖B- 13 兩隻拍翼攻角10˚推力時變圖 108 圖B- 14 兩隻拍翼攻角10˚推力頻譜圖 108 圖B- 15 兩隻拍翼攻角20˚推力時變圖 109 圖B- 16 兩隻拍翼攻角20˚推力頻譜圖 109 圖B- 17 三隻拍翼攻角10˚推力時變圖 110 圖B- 18 三隻拍翼攻角10˚推力頻譜圖 110 圖B- 19 三隻拍翼攻角20˚推力時變圖 111 圖B- 20 三隻拍翼攻角20˚推力頻譜圖 111 圖B- 21 單隻拍翼在風速2m/s推力時變圖 113 圖B- 22 單隻拍翼在風速2m/s推力頻譜圖 113 圖B- 23 單隻拍翼在風速3m/s推力時變圖 114 圖B- 24 單隻拍翼在風速3m/s推力頻譜圖 114 圖B- 25 兩隻拍翼在風速2m/s推力時變圖 115 圖B- 26 兩隻拍翼在風速2m/s推力頻譜圖 115 圖B- 27 兩隻拍翼在風速3m/s推力時變圖 116 圖B- 28 兩隻拍翼在風速3m/s推力頻譜圖 116 圖B- 29 三隻拍翼在風速2m/s推力時變圖 117 圖B- 30 三隻拍翼在風速2m/s推力頻譜圖 117 圖B- 31 三隻拍翼在風速3m/s推力時變圖 118 圖B- 32 三隻拍翼在風速3m/s推力頻譜圖 118 表2 - 1 e-bird一定高度與水平迴旋速度下定電壓之計時測試: 25 表2 - 2 e-bird一定高度與水平迴旋速度下之計時測試: 26 表3 - 1 3D印表機規格 35[[note]]學號: 602370552, 學年度: 10

    文末・連体修飾節におけるテイルの用法の習得研究

    No full text

    Characterization of Function and Regulation of Zinc Ion in 3T-L1 Preadipocytes Differentiation

    No full text
    [[abstract]]Plasma and tissue zinc ion levels are associated with the development of obesity. Previous studies have suggested that zinc ions may regulate adipocyte metabolism and that nitric oxide (NO) plays a pivotal role in the regulation of adipocyte physiology. Our previous study showed that chronic NO deficiency causes a significant decrease in adipose tissue mass in rats. Studies also suggested that zinc ions play an important modulatory role in regulating NO function. This study aims to explore the role of zinc ions in NO-regulated adipocyte differentiation. We hypothesized that NO could increase intracellular Zn2+ level and then stimulate adipocyte differentiation. ZnCl2 and the NO donor, NONOate, were used to explore the effects of Zn2+ and NO on adipocyte differentiation. Regulatory mechanisms of NO on intracellular Zn2+ mobilization were determined by detection. Then, Zn2+-selective chelator TPEN was used to clarify the role of intracellular Zn2+ on NO-regulated adipocyte differentiation. Furthermore, the relationship between adipocyte size, Zn2+ level, and NOS expression in human subcutaneous fat tissue was elucidated. Results showed that both ZnCl2 and NO stimulated adipocyte differentiation in a dose-dependent manner. NO stimulated intracellular Zn2+ mobilization in adipocytes through the guanylate cyclase (GC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) pathway, and NO-stimulated adipocyte differentiation was Zn2+-dependent. In human subcutaneous adipose tissue, adipocyte size was negatively correlated with expression of eNOS. In conclusion, NO treatment stimulates intracellular Zn2+ mobilization through the GC/cGMP/PKG pathway, subsequently stimulating adipocyte differentiatio

    Development and Application of Gas-Assisted Transfer Stamping Technique

    No full text
    本論文以開發氣體輔助軟模轉印技術為主軸,研究以快速簡單的製程技術製作微結構。此製程主要特色有:一.製程單純;二.所製作的微結構無殘留層,不須額外去除殘留層步驟,有效降低製程複雜性,並提高可應用材料之多樣性;三.可製作多層微結構;四.製程相容性高,只要是可溶液製程(solution-processable)之材料皆可進行轉印;五.無須額外化學方法即可進行轉印。論文主要研究內容包括黃光微影製程製作底部平整之微結構母模、PDMS鑄造技術製作彈性軟模具、利用有限元素法進行軟模變形模擬分析、單層與雙層微結構轉印製程之開發與微結構轉印製程之應用等部分。底部平整之微結構母模製作方面,本研究以電感耦合電漿蝕刻法、乾膜光阻定義圖案與SU-8厚膜光阻定義圖案製作微結構圖案母模,並探討三種方式之優缺點。在軟模變形模擬分析部分,利用光學顯微鏡觀察PDMS軟模實際受力變形的狀態,證明利用有限元素法分析軟模變形狀態之可行性。根據模擬結果,垂直方向壓力會致使PDMS模具微結構間間隙產生垂直方向的位移,可能導致轉印殘留層的產生。模擬結果更提出藉著改變PDMS模具厚度可以有效降低間隙垂直位移量,防止殘留層產生。單層與雙層微結構轉印製程之開發方面,提出表面能控制機制,以獲得成功之轉印結果。針對PDMS模具進行氧氣電漿表面處理,藉此提高PDMS模具表面能,使墨水能均勻塗佈於PDMS模具表面,再以加熱方式恢復PDMS模具原有之低表面能特性,同時藉著提高基材溫度增加基材表面能,搭配適當之製程參數,EPG 510光阻墨水可完整轉印至壓克力基材上,且無殘留層產生,並證實微結構轉印製程可將EPG 510光阻轉印於不同基材上(包括PMMA、鋁、不鏽鋼、PET、PC、矽晶片與ITO)。在轉印製程之應用方面,本研究驗證轉印導電高分子材料(PEDOT:PSS)於PMMA基材上,直接製作出有機薄膜電晶體之源極/汲極結構。另外本研究也驗證轉印製程可直接轉印光阻於ITO薄膜與鋁基材上,作為蝕刻擋罩與無電鍍鎳擋罩,而不需經過黃光微影製程。The thesis develops a micro transfer stamping technique to fabricate microstructures. There are five advantages of the micro transfer stamping technique: 1. This is a simple process; 2. There is no residual layer, therefore no additional process is needed to remove the residual layer; 3. The process can fabricate multi-layer structure; 4. The process is theoretically suitable for all solution-processable materials; 5. No additional chemical process is needed in the process.here are five research topics in this thesis, including fabrication of mold with flat bottom surface using lithography process, casting technique for fabricating PDMS mold, deformation simulation of PDMS mold in the transfer stamping process, development of single-/ multi- layer transfer stamping process, and application of the micro transfer stamping process.n the section of fabrication of mold with flat bottom surface using lithography process, for obtaining the mold with flat bottom surface, ICP, dry film resist and SU-8 were used to fabricate the master mold with microstructures, and compared advantages and disadvantages in this study. In the “deformation simulation of soft mold in the transfer stamping process” section, to verify the accuracy of Infinite Element simulation, we observed the real deformation of PDMS mold using optic microscopy. According to the simulation results, the “gap” between microstructures of PDMS mold sags as the applied pressure is high enough or the gap length is large. A large sagging distance would lead to residual layer appearance in the transfer stamping process. It was found that increasing PDMS mold thickness could prevent residual layer forming.n the section of development of single-/ multi-layer transfer stamping process, we proposed a method of controlling the surface energy to transfer stamping. PDMS mold was treated by oxygen plasma surface treatment to increase the surface energy for uniformly spin coating “ink” on PDMS mold. And then, with proper pressure, temperature, and heating the PDMS mold to restore surface energy for detaching, the ink (EPG510) could successfully be transferred on the PMMA substrate with no residual layer. The section also proves that the micro transfer stamping technique can transfer the ink (EPG510) on various substrate, such as PMMA, aluminum, PET, PC, silicon wafer and ITO. In the section of application of micro transfer stamping technique, we proved that the micro transfer stamping can successfully transfer PEDOT:PSS on PMMA. We also proved that the single-layer transferred PR patterns can replace lithography process, to be directly used as the etching mask or electroless nickel plating mask.誌謝 I文摘要 II文摘要 III錄 V目錄 X目錄 XVII一章 導論.1 各種精密複製成型技術 1.2 多層結構製作技術介紹 2.3 應用塑膠高分子材料轉印技術優勢 2.4 有機薄膜電晶體元件 3.5 具體研究方向與目標 4.6 論文內容與架構 5二章 文獻回顧.1 結構轉印技術 10.2 浮雕轉印技術 11.3 多層結構元件轉印技術 11.4 氣體輔助壓印文獻 13.5 有機薄膜電晶體 14.5.1 有機薄膜電晶體元件介紹 15.5.2 有機半導體材料 16.6 有機薄膜電晶體(OTFT)製程相關文獻 17.7 文獻總體回顧與研究創新 20三章 初步製程與實驗設備.1 微結構圖案母模製作 38.1.1 電感耦合電漿蝕刻法(ICP)製作微結構圖案母模 38.1.2 乾膜光阻定義圖案製作微結構母模 41.1.3 SU-8厚膜光阻定義圖案製作微結構母模 42.1.4 微結構圖案母模製作成果與比較 44.2 PDMS軟模製作 46.2.1 PDMS材料介紹 46.2.2 翻製PDMS軟模 46.3 塑膠微熱壓成型複製微結構圖案母模 48.4 氣體輔助軟模轉印設備 48.5 量測儀器簡介 50.5.1 光強計 50.5.2 表面接觸角量測儀 50.5.3 光學顯微鏡 50.5.4 微結構輪廓量測 50.5.5 3D雷射掃描顯微鏡 50.5.6 白光干涉儀 50.5.7 原子力顯微鏡 51.5.8 薄膜型力量感測器 51四章 軟式模具變形模擬分析.1 PDMS模具轉印時變形分析 66.2 有限元素法簡介 68.2.1 有限元素法 68.2.2 超彈性材料分析介紹 69.3 模型與模擬參數之建立 70.3.1 PDMS軟模與PMMA基材3D模型建立 70.3.2 PDMS軟模與PMMA基材之材料性質建立 70.3.3 邊界條件設定 72.3.4 元素選擇 72.3.5 網格分割 72.4 初步模擬結果與討論 73.5 模擬結果對照轉印參數分析與討論 73.5.1 施加壓力與微結構間隙差異分析 73.5.2 模具厚度與微結構間隙差異分析 74.6 模擬結果與實際變形之驗證 74.7 軟式模具變形模擬總結 75五章 氣體輔助軟模轉印技術之開發研究.1 氣體輔助軟模轉印製程設計開發 85.1.1 軟模轉印機制介紹 85.1.2 PDMS轉印模具 86.1.3 氧氣電漿表面處理 86.1.4 表面能控制—轉印溫度 88.1.5 加壓方法 89.1.6 轉印製程步驟 89.2 軟模轉印缺陷探討及解決方法 90.3 轉印製程參數探討 91.3.1 轉印製程參數探討-旋塗速率 92.3.2 轉印製程參數探討-轉印時間 92.3.3 轉印製程參數探討-轉印溫度 93.3.4 轉印製程參數探討-轉印壓力 94.4 製作多層堆疊結構 95.5 不同基材之轉印測試 95.6 氣體輔助軟模轉印製程總結 96六章 氣體輔助軟模轉印技術之應用.1 有機薄膜電晶體源極/汲極製作 120.2 銦錫氧化物薄膜蝕刻擋罩 121.3 無電鍍鎳擋罩 121.3 奈米結構轉印 122七章 結論與未來展望.1 研究成果總結 128.2 原始貢獻 129.3 未來研究方向與展望 130考文獻 134錄A:軟模受力變形模擬結果 14

    IFRS and Accounting Quality: Evidence from China’s Listed Companies

    No full text
    本研究以中國上市公司為觀察對象,運用盈餘管理程度及即時認列損失等方法,來探討以IFRS及中國舊企業會計準則為基礎編製之財務報表,其會計品質是否有顯著差異。由於中國資本市場環境特殊,本研究將其分為三組樣本,分別為A股、B股及所有A、B股,以個別測試其會計品質之差異性。在實證模型方面,本文採用Barth, Landsman, and Lang(2007)之衡量方法,實證結果彙整說明如下: 1.以盈餘變動數之變異數及其與營運活動現金流量變動數之變異數比率來進行分析,發現第一組(A股)及第三組(所有A、B股)其採用IFRS之後會計品質較佳,第二組(B股)則相反,採用IFRS之後會計品質並無提升。 2.在比較應計數與營運活動現金流量之相關係數方面,此三組採用IFRS之後其應計數與營運活動現金流量負相關程度皆比採用中國舊企業會計準則為高。 3.探討認列小額淨利之程度方面,實證結果指出第二組在採用IFRS之後,認列小額淨利之程度降低,表示其會計品質提升;第一組與第三組之結果則不顯著。 4.探討即時認列大額損失之程度方面,實證結果發現第一組及第三組在採用IFRS之後,即時認列大額損失的程度提高,表示其會計品質提升;第二組結果則不顯著。 綜觀上面所述,本研究發現整體而言A股在採用IFRS之後,會計品質提升之程度較高,可能原因為IFRS與中國舊企業會計準則之差異較大,故改善幅度亦較大;反觀B股則不顯著,我們推測由於B股原本就應提供兩套財務報表,故公司在編製時為避免兩套不同準則之報表其呈現的數字有明顯差異,會採用較一致的方法進行編製,故其結果並未完全支持假說。The purpose of this research is to investigate whether the application of IFRS is associated with higher accounting quality. The investigation involves a sample of companies from People’s Republic of China (PRC) which are listed on the Shanghai Stock Exchange and Shenzhen Stock Exchange. Due to the characteristics of China investment environment, we divide the sample into 3 groups, which is A shares, B shares, and both A and B shares, respectively. The method employed in Barth, Landsman, and Lang (2007) is mainly taken in this research. The empirical results are shown below: We find out that A shares which adopt IFRS exhibit the higher accounting quality through 3 of 5 measures we test than those adopting PRC GAAP. However, B shares perform less improvement in accounting quality through 4 of 5 measures we test. We infer that because of the discrepancy between IFRS and PRC GAAP, when A shares have changed to adopt the superior accounting standards, they exhibit the bigger improvement in accounting quality. However, the companies issuing B shares should provide two types of financial statements which one of them adopts PRC GAAP, and the other is in accordance with IFRS at the same time since 1993. They have tended to take a consistent point of view to prepare two types of financial statements in order to prevent big differences shown to the users. Therefore, the improvement is not clear

    Using FAHP to Determine the Factors of Partner Selection-A Case on the "Bridging the Digital Divide of SME Project"

    No full text
    In Taiwan, the segregation exist between the large enterprises who can afford the Internet Technology and the SMEs who cannot forms the “digital divide” between these two groups of enterprises. To help the SMEs to bridge the difficulty in the adoption of IT, government in Taiwan implements a series of e-business project. “Bridging the Digital Divide of the SME Project” is one of them, which is implemented by the 12 e-business sub-contractor agencies and over 1,000 ISPs. In this research, we focus on the partner selection criteria of the 12 e-business sub-contractor agencies and ISPs in the “Bridging the Digital Divide of the SME Project”. Through literature review and interview with the experts who join this e-business project in practice, we develop two models to deal with our two research questions: 1) what the selection criteria for the 12 e-business sub-contractor agencies finding the cooperation partners (ISPs) in the “Bridging the Digital Divide of the SME Project” (for model 1); 2) what the selection factors that drive ISPs to find the capable SMEs implementing e-business (for model 2). FAHP is adopted to analyze the research data in two models. The results of the analysis in model 1 show that “ISP's top management support to the alliance (x11)”, “both sides have similar motivation and objective to the alliance (x15)”, “manger's communicating, operating, and managing capability (x23)”, “professional technique, capability to serve their customer, and the number of spots of ISP's store (x24)”, and “ISP's goodwill (x22)” are considered as important criteria for the e-business sub-contractor agencies to select the ISPs as their cooperative partners. On the other side, the analysis results in model 2 tell us that “trust between SME and ISP (y14)”, “support for cooperation from the internal of SME (y11)”, “SME's ability to integrate company strategy and Internet functions (y13)”, “SME's ability to manage and operate the business (y24)”, and “both sides have similar motivation and objective for cooperation (y15)” are determined as important factors for the ISPs to find capable SMEs for implementing e-business. Based on the results above, we provide suggestions to the government who want to implement e-business projects, the ISPs who want to join e-business projects, and the SMEs who want to join the e-business projects supported by the government.論文摘要 I ABSTRACT II TABLE OF CONTENTS III LIST OF TABLES VI LIST OF FIGURES VIII CHAPTER 1 INTRODUCTION 1 1.1 RESEARCH BACKGROUND 1 1.2 RESEARCH MOTIVATION 2 1.3 RESEARCH PURPOSE AND RESEARCH QUESTIONS 3 1.4 RESEARCH PROCESS 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 INTRODUCTION TO THE “BRIDGING THE DIGITAL DIVIDE OF THE SME PROJECT” 6 2.2 PRIOR PARTNER SELECTION STUDIES 8 2.3 SUCCESS FACTORS FOR E-BUSINESS ADOPTION 14 CHAPTER 3 RESEARCH METHODOLOGY 17 3.1 AHP 18 3.1.1 Steps of AHP 20 3.1.2 Advantages and Drawbacks of AHP 25 3.2 FUZZY SET THEORY AND FAHP 26 3.2.1 Fuzzy Set Theory 27 3.2.2 FAHP 29 3.3 THE THREE RANKING LOGIC TO CALCULATE THE GLOBAL WEIGHTS 32 3.3.1 Partial Inheritance Law 34 3.3.2 Complete Inheritance Law 35 3.3.3 Complete Independent Law 36 3.4 ESTABLISHMENT OF THE RESEARCH MODELS 37 3.4.1 Research Model 1 37 3.4.2 Research Model 2 41 3.5 RESEARCH DESIGN 46 3.5.1 Questionnaire Design for Model 1 47 3.5.2 Questionnaire Design for Model 2 49 3.5.3 Research Target 51 3.5.4 Sample Collecting Method and Time Period 51 CHAPTER 4 DATA ANALYSIS AND RESEARCH FINDING 52 4.1 BASIC INFORMATION OF THE SUBJECT IN MODEL 1 52 4.2 THE EIGENVALUES, THE EIGENVECTORS, AND THE CONSISTENCY OF LEVEL 2 IN MODEL 1 54 4.3 THE THREE RANKING LOGIC FOR MODEL 1 56 4.3.1 Partial Inheritance Law 56 4.3.2 Complete Inheritance Law 59 4.3.3 Complete Independent Law 62 4.4 DISCUSSION—MODEL 1 64 4.4.1 Comparison of Three Ranking Logic 64 4.4.2 Research Findings 68 4.5 BASIC INFORMATION OF THE SUBJECT IN MODEL 2 70 4.6 THE EIGENVALUES, THE EIGENVECTORS, AND THE CONSISTENCY OF LEVEL 2 IN MODEL 2 72 4.7 THE THREE RANKING LOGIC FOR MODEL 2 74 4.7.1 Partial Inheritance Law 74 4.7.2 Complete Inheritance Law 76 4.7.3 Complete Independent Law 79 4.8 DISCUSSION—MODEL 2 81 4.8.1 Comparison of Three Ranking Logic 81 4.8.2 Research Findings 84 CHAPTER 5 CONCLUSION 87 5.1 SUGGESTION FOR FUTURE STUDY 91 REFERENCE 93 APPENDIX A 103 APPENDIX B 10

    熱身運動的新方式-振動刺激

    No full text
    [[abstract]]振動刺激是一種新興的訓練方式,目前被運動教練與學者廣泛用於訓練與研究中。經過綜評振動刺激之相關文獻,發現振動刺激具有類似於熱身運動的效果,例如:增加血流量、耗氧量與肌肉溫度,因此,振動刺激或許可以成為另外一種熱身運動方式,透過以上機制,可達到提升身體溫度、預防運動傷害與促進爆發力表現的目的。雖然有部分文獻並未支持振動刺激能有效提升爆發力,但值得注意的是,有熱身效果並不代表對隨後之運動表現一定有助益,或許與振動刺激參數有關,因此,透過振動刺激達到熱身目的後,若要再促進隨後爆發力運動表現,必須考慮與振動刺激之有關參數的設定,才能讓振動刺激的熱身效果更為顯著
    corecore