6 research outputs found

    機關車之吊懸組

    No full text

    Kinetic Analysis and Modelling Study on the Denitrification Biofilm System in Treating Wastewater with Nitrogenous Compounds

    No full text
    由於生物反應動力模式在廢水生物處理程序的設計與操作是非常重要的參考依據,因此,本研究選用Rotating Drum反應器,利用其體積小、容易操作與控制、以及敏感性等特點,進行生物膜脫硝動力試驗,求出生物膜脫硝動力參數之半飽和常數KS為242.10 mg N/L,最大比基質利用速率k為0.058 g N/g VSS-hr,以此作為脫硝動力學模式之輸入參數值,再進行生物脫硝動力學模式的模擬分析研究。 追蹤劑試驗結果顯示,Rotating Drum反應器很接近完全混合槽的狀態,因其槽內延散數為1.34 (未長生物膜)與1.05 (已長生物膜)。根據合成廢水五個試程連續流試驗,其碳氮比與鹼氮比值分別為3.65與3.32,此二參數結果接近於本實驗室活性污泥系統、生物活性碳流體化床與上流式固定化細胞反應槽之試驗結果。 對於進流合成廢水有關生物膜特性之生物膜厚度分析,經統計量測結果後,各點生物膜平均厚度約為3∼5 mm;生物質量分析結果顯示,在相同反應器體積(2.5 L)下,進流體積負荷愈大(1.1→6.4 kg N/m3-day),其生物膜愈厚(2.35→4.52 mm)而生物量愈多(MLVSS : 3763→37892 mg/L)。由生物膜乾密度分析結果顯示,當生物膜由1.27 mm增至4.82 mm,生物膜的乾密度會下降,由50 mg/cm3降為30 mg/cm3,且有逐漸減緩的趨勢。生物脫硝活性分析結果顯示,以進流合成廢水反應槽之生物脫硝活性最佳(0.205 mg NO3--N/g VSS-min),而進流樹脂製程廢水反應槽之生物脫硝活性較差(0.053 mg NO3--N/g VSS-min)。 生物脫硝動力學模式乃針對三種不同型式的反應槽進行脫硝反應模擬,包括懸浮生長反應槽、生物固定濾床以及生物活性碳流體化床等。對於懸浮生長反應槽,模擬結果顯示模式可以很成功的模擬實際操作;對於生物固定濾床,模式經修正系統內部微生物量的誤差後,其模擬結果較未修改前更接近實際值;對於生物活性碳流體化床,除了實際廢水因製程之變化外,模式模擬皆能得到與實際操作相當接近的結果。 最後,分析生物脫硝動力學模式在懸浮生長反應槽、生物固定濾床與生物活性碳流體化床等三種反應槽之應用,當分別考慮放流水NO3--N濃度管制標準為50 mg/L與100 mg/L時,則選用生物活性碳流體化床的潛力最大,其進流濃度分別可容忍值為3100 mg/L與4000 mg/L,生物固定濾床可容許的濃度分別為1400 mg/L與2000 mg/L,懸浮生長反應槽可容許的濃度分別為1600 mg/L與1800 mg/L。綜合上述結果,若欲處理廢水之水質水量性質固定且濃度不高(如上述範例:不超過1500 mg/L),則操作容易之懸浮生長反應槽應是較佳的選擇,若廢水之水質水量經常變動且濃度較高,則生物活性碳流體化床反應槽應是優先且必要的選擇。For the importance of biological kinetic model on the design and operation of wastewater treatment processes, the Rotating Drum with the advantages of less volume, easy operation and control, and sensitiveness was used for the denitrification kinetic tests of biofilm in this study. The half-velocity constant (Ks) and the maximum specific substrate utilization rate (k) gained from investigations on the kinetic test of biofilm were 242.10 mg N/L and 0.058 g N/g VSS-hr respectively. From the tracer test, the flow pattern within the Rotating Drum was very close to complete-mixed because the dispersion number of the Rotating Drum were 1.34 (without biofilm growth) and 1.05 (with biofilm growth). According to the results of five runs from the synthetic wastewater test, the carbon-nitrogen ratio and alkalinity-nitrogen ratio were 3.65 and 3.32 respectively. This results were close to those of activated sludge reactor, biologically mediated activated carbon fluidized bed reactor and upflow immobilized cell reactor in our previous studies. For the thickness analysis of biofilm, the average thickness of biofilm on each position of the Rotating Drum was 3 - 5 mm. For the biomass analysis under the same reactor volume (2.5 L), the larger the volumetric loading (from 1.1 to 6.4 kg N/m3-day), the thicker the biofilm (from 2.35 to 4.52 mm) and the larger the biomass within the Rotating Drum (from 3,763 to 37,892 mg/L). For the analysis of biofilm dry density, when the biofilm thickness increased from 1.27 mm to 4.82 mm, the biofilm dry density decreased gradually from 50 mg/cm3 to 30 mg/cm3. For the analysis of biofilm activity, the biofilm activity was higher with the influent of synthetic wastewater (0.205 mg NO3--N/g VSS-min) and lower with the influent of resin manufacturing wastewater (0.053 mg NO3--N/g VSS-min). Three different types of bio-reactor including an activated sludge reactor, a biofilter and a biologically mediated activated carbon fluidized bed reactor were modeling by the combined biological denitrification kinetic model. For the activated sludge reactor, this combined kinetic model could successfully formulate the results of actual operation. For the biofilter, the modified kinetic model by the correction of biomass within the biofilter was closer to the actual results than the un-modified one. For the fluidized bed reactor, without the influence of process changes in the resin manufacturing wastewater, the kinetic model could get the close results to those of actual operation as well. Finally, for the application of the combined kinetic model, the potential loading capacity of fluidized bed reactor was investigated to both the effluent quality standards of NO3--N being 50 mg/L and 100 mg/L. It results that the influent NO3--N concentration could allow to 3,100 mg/L and 4,000 mg/L respectively. For the biofilter, the influent NO3--N concentration could allow to 1,400 mg/L and 2,000 mg/L respectively. For the activated sludge reactor, the influent NO3--N concentration could allow to 1,600 mg/L and 1,800 mg/L respectively. Therefore, if the characteristics and flow rate of wastewater are remained constant and the influent NOx-N concentration is lower, the activated sludge reactor with the advantage of easy operation will be the best choice. If the characteristics and flow rate of wastewater are varied considerably and the influent NOx-N concentration is higher, the biologically mediated activated carbon fluidized bed reactor will be the promising and necessary choice.封面 誌謝 中文摘要 英文摘要 目錄 圖目錄 表目錄 照片目錄 第一章 緒論 第二章 文獻回顧 2.1 含氮污染物之去除 2.2 生物脫硝反應 2.3 生物膜程序 2.4 生物脫硝處理之應用 第三章 生物脫硝動力學模式之推導 3.1 生物脫硝處理程序動力學模式 3.2 懸浮生長系統 3.3 生物膜系統動力學模式 3.4 生物脫硝處理程序動力學模式之求解 3.5 動力學模式所需之參數值 第四章 實驗設備與分析方法 4.1 生物膜反應器 4.2 實驗設備 4.3 進流廢水特性 4.4 分析方法 第五章 結果與討論 5.1 生物膜反應器試驗 5.2 生物脫硝處理程序動力學模式之模擬 5.3 生物脫硝處理程序動力學模式之應用 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻 符號說明 附

    Literaturverzeichnis und Anhang

    No full text
    corecore