26 research outputs found

    基于生物质谱技术的磷酰化修饰策略在多肽测序中的应用

    Get PDF
    该文建立了一种利用磷酰化修饰结合电喷雾质谱(ESI-Q-TOF)测定多肽氨基酸序列的有效方法。利用Atherton-Todd反应,以二丙基亚磷酰酯(DPP)为磷酰化试剂,应用生物质谱技术,对磷酰化修饰后的5种模型肽的磷酰化反应情况进行了系统研究,考察了磷酰化肽的二级质谱特征,并与未经磷酰化反应的肽的二级质谱特征对比。结果表明,经过磷酰化修饰后,肽的二级质谱中的a1离子信号强度明显增加,可以准确鉴定其N端氨基酸;b系列离子信息完整,信号强度增强,使得多肽C ID测序的谱图简单、清晰,有利于肽的氨基酸序列的测定;赖氨酸(K,128.10 u)和谷氨酰胺(Q,128.13 u)两种氨基酸质荷比相近,由于二者磷酰化修饰后的差异性,使其得到准确区分。经过5种已知氨基酸序列的模型肽的磷酰化后结合质谱技术进行氨基酸序列测定验证,结果表明该方法简单、快速、准确,提高了利用质谱技术进行多肽测序的准确度和灵敏度,可为蛋白质组学研究提供有效的技术手段

    贝壳吸声界面吸声性能试验研究

    Get PDF
    以贝壳、玻璃棉为主要材料,利用贝壳、玻璃棉、空腔组成一个吸声界面,通过驻波管吸声降噪的试验研究,探究不同厚度的贝壳层、玻璃棉层、空腔这三者的搭配组成的吸声界面的吸声频谱特性及变化规律,用于不同贝壳层厚度、不同玻璃棉厚度吸声性能的预测评估,为最终实现贝壳吸声产品研发提供参考

    Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis

    Get PDF
    乙醇既可作为替代燃料或优质汽油添加剂亦是重要基础化学品,同时也是一种理想的氢载体。乙醇需求量近年增长迅速,我国需求缺口巨大,当前合成气合成乙醇有三种方法,其中直接法因在同一催化剂上存在多种反应通道,导致产物选择性不超过60%。另一方面,多步法路线虽然较为成熟,但因反应和分离/纯化步骤多,存在成本贵、能耗高等问题。发展合成气直接制乙醇的新方法和新路线具有重大意义。王野课题组在C1化学领域率先提出以接力催化控制反应选择性的新方法,并在合成气高选择性制备液体燃料、低碳烯烃和芳烃等方面取得成功。该工作是在王野教授、张庆红教授共同指导下完成的。醇醚酯化工清洁生产国家工程实验室高工康金灿、2018级博士生何顺和2017级博士生周伟为论文共同第一作者。陈明树教授课题组在原位红外、准原位XPS等表征中给予了支持,南京大学彭路明教授课题组在固体核磁表征方面提供了帮助。Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO–ZrO2, modified zeolite mordenite and Pt–Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K+–ZnO–ZrO2 catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt–Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor.This work was supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (No. 2017YFB0602201) and the National Natural Science Foundation of China (Nos. 91945301, 91545203, 21972116, 21433008, 21872112, 21673188 and 21690082). We acknowledge Prof. L. Peng and Y. Wen (Nanjing University, China) for performing NMR characterizations.该研究得到科技部重点研发计划(2017YFB0602201)和国家自然科学基金重大研究计划(91945301、91545203)等项目的资助

    农业地质环境信息系统的设计与实现

    No full text
    corecore