3 research outputs found

    锂/钠离子电池材料的固体核磁共振谱研究进展

    Get PDF
    深入全面理解锂/钠离子电池材料的静态结构及演化过程是提升电池材料性能的关键因素,在材料结构的各种表征方法中,固体核磁共振波谱(SS NMR)技术是获取电池材料局域结构以及微观离子扩散动力学等定量信息的一个重要表征手段。到目前为止,人们通过SS NMR技术在获取与分析电池电极/电解质材料的离子占位,充放电过程中材料的结构演化以及微观离子扩散动力学过程如离子传输路径与离子扩散系数等信息上已取得重要的研究进展,进而为理解分析电极材料的储锂机制,电池材料的构效关系乃至电池的衰减机理等方面提供了重要实验数据。结合课题组的研究工作,综述了近三年来SS NMR技术在锂/钠离子电池电极和固体电解质材料研究以及核磁共振成像技术在电池领域的应用研究进展

    锂离子电池三元层状氧化物正极材料失效模式分析

    Get PDF
    镍钴锰三元层状氧化物(NCM)正极材料由于其优越的综合性能在动力/储能电池系统(ESS)领域得到广泛应用。虽然Ni含量的增加可提高三元材料的比容量及电池的能量密度,但相关电池体系的容量保持率和安全性将会变差。如何有效解决该矛盾是此类NCM电池所面临的关键问题。本文从NCM电池体系循环过程中常见的体相结构破坏和正极-电解液界面组成改变两方面失效现象出发,结合近年来国内外对NCM失效模式研究中所提出的新理论、方法、应用,从机械破坏、结构演变、电化学极化、化学副反应、正负极协同效应等多个角度对NCM材料的衰退机理提出见解,对指导电池用户合理制定充放电协议、缓解电动汽车(EV)里程焦虑乃至材料设计本身均有重要的指导及借鉴意义。国家重点研发计划资助(2018YFB0104400,2018YFB0905400

    Research Progresses in Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials for Li-Ion Batteries

    No full text
    高镍三元正极材料由于高容量和高工作电压被认为是下一代锂离子电池有力的候选者,然而循环稳定性和热稳定性不佳限制了其广泛应用. 镍钴锰/铝三元浓度梯度正极材料的梯度设计可以在保证高容量的同时兼具优良的循环稳定性,因而在过去十年中得到了广泛研究. 本文综述了锂离子电池镍钴锰/铝三元浓度梯度材料最新的研究进展,论文首先总结了梯度材料的不同合成方法,并阐述了核壳浓度梯度材料和全浓度梯度材料的研究方向. 其次,介绍了浓度梯度材料的结构表征手段并揭示性能改善的原因. 最后讨论了目前该材料产业化的难点,并提出了可能的解决方案.Nickel-rich ternary materials with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next generation lithium-ion batteries (LIBs). However, the inferior cycle stability and thermal stability have limited their widely commercial applications. Concentration gradient design of Ni-Co-Mn/Al ternary concentration gradient materials have been extensively studied in the past decade, which can ensure high cycle capacity while maintaining excellent cycle stability. In this paper, the latest research progresses in Ni-Co-Mn/Al ternary concentration gradient materials for LIBs are reviewed. Firstly, we summarize the different synthesis methods of ternary concentration-gradient materials, especially focusing on the research directions towards core-shell concentration gradient (CSCG) materials and full concentration gradient (FCG) ternary materials. In addition, this review also introduces the structural characterizations for concentration gradient ternary materials and reveals the reasons for their performance improvements. Finally, we discuss the current challenges of CSCG and FCG materials in the industrialization and display possible solutions to address them.福建省高校产学研重点资助项目(No. 2018H6020)和福建省科技重大专项/专题(No. 2014HZ0002-1)资助作者联系地址:1. 厦门大学能源学院, 福建 厦门 361005; 2. 固体表面物理化学国家重点实验室,能源材料化学协同创新中心, 厦门大学化学化工学院, 福建 厦门 361005Author's Address: 1. College of Energy, Xiamen University, Xiamen 361102, Fujian, China; 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Energy Materials Chemistry Collaborative Innovation Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China通讯作者E-mail:[email protected]
    corecore