3 research outputs found

    Effects of Nd element addition on microstructure refinement of Ti-6Al-4V-2Cr alloy

    Get PDF
    采用冷等静压–真空烧结法制备Ti-6Al-4V-2Cr-1Nd合金,然后进行固溶及时效热处理,通过实验与最小错配度理论计算,研究Nd元素对该合金组织细化的影响,并分析细化机理。结果表明,添加1%(质量分数)的稀土元素Nd后,析出相Nd2O3能有效促进晶粒细化。二维错配度的计算结果证明析出相Nd2O3是有效的形核剂,可促进非均匀形核,增加形核率,从而使晶粒细化。通过对合金试样薄区进行高分辨率观察,发现另一种絮状的、非常细小的、弥散分布的Nd2Ti4O11相,由于其界面错配度较低,也可作为非均匀形核的核心,促进形核,起到细化晶粒的作用。Titanium alloy Ti-6Al-4V-2Cr-1Nd is made by the cold isostatic pressing and vacuum sintering, then the solution and aging heat treatment was carried on the prepared of titanium alloy, the effect of Nd elements on the microstructure refinement and the refinement mechanism were researched and analyzed through the experiment and theory calculation of minimum mismatch degree. The results show that the main precipitation phase Nd_2O_3 can effectively promote the grain refinement after adding rare earth element 1% Nd(mass fraction). The two-dimensional mismatch degree calculation results proved that the precipitated phase Nd2O3 is the effective nucleating agents that can promote the heterogeneous nucleation and increase the nucleation rate, thus promote the grain refinement. Through the high resolution observation of thin area in the sample, another precipitated phase Nd2Ti4O11 is found, which is flocculent, dispersed and very small. Because of the low degree of interface mismatch, Nd2Ti4O11 can also be used as the core of heterogeneous nucleation and promote nucleation, which means it can also play a role in grain refinement.河南省重大科技专项(102105000007

    3D-printed integrative probeheads for magnetic resonance

    Get PDF
    射频探头前端作为核磁共振设备的核心部件之一,极大程度的决定着系统实验性能的优劣。探头前端通常由射频线圈、射频电路及样品检测管道等部分组成。现有的射频线圈制作技术主要是通过手工或机械手段按照所需的线圈形状进行绕制。但是,当线圈结构较为复杂、不规则,或体积尺寸较小时,常规绕制方法便难以满足结构设计和制造的精度需求,因此造成线圈性能的劣化,增大检测区域的射频场不均匀性,对核磁共振检测产生负面影响。本研究中,利用3D打印熔融沉积制造或光敏树脂选择性固化技术精确加工出一体化磁共振探头前端,使用常温液态金属填充线圈模型管路形成射频线圈,搭建出稳定的一体化磁共振射频探头。利用高精度3D打印和液态金属灌注技术制备出包含有射频线圈和定制化样品管道结构在内的一体化磁共振射频探头前端,克服了传统磁共振三维微型线圈成型困难、与样品腔匹配程度差等问题,提高了探头的信噪比,为定制化的磁共振检测提供了新思路。 该工作由厦门大学电子科学与技术学院陈忠教授、游学秋副研究员和孙惠军高级工程师共同指导完成,博士研究生谢君尧为论文第一作者。厦门大学电子科学与技术学院黄玉清高级工程师、王忻昌副教授、倪祖荣助理教授、硕士研究生张德超,化学化工学院杨朝勇教授、博士研究生李星锐,萨本栋微米纳米科学技术研究院陈宏教授为合作作者。【Abstract】Magnetic resonance (MR) technology has been widely employed in scientific research, clinical diagnosis and geological survey. However, the fabrication of MR radio frequency probeheads still face difficulties in integration, customization and miniaturization. Here, we utilized 3D printing and liquid metal filling techniques to fabricate integrative radio frequency probeheads for MR experiments. The 3D-printed probehead with micrometer precision generally consists of liquid metal coils, customized sample chambers and radio frequency circuit interfaces. We screened different 3D printing materials and optimized the liquid metals by incorporating metal microparticles. The 3D-printed probeheads are capable of performing both routine and nonconventional MR experiments, including in situ electrochemical analysis, in situ reaction monitoring with continues-flow paramagnetic particles and ions separation, and small-sample MR imaging. Due to the flexibility and accuracy of 3D printing techniques, we can accurately obtain complicated coil geometries at the micrometer scale, shortening the fabrication timescale and extending the application scenarios.The work is supported by the National Natural Science Foundation of China (Grants U1632274, 11761141010, U1805261, 11475142, 22073078, and 61801411), and China Postdoctoral Science Foundation (2017M622075).研究工作得到国家自然科学基金、中国博士后科学基金等项目支持
    corecore